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A B S T R A C T   

This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin 
bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the 
Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 
articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments 
including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. 
Air abrasion with finer particles (25–53 µm) showed higher immediate bond strength than larger particles 
(110–150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the 
CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl 
dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl 
methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after 
aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effec-
tiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving 
bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.   

1. Introduction 

The escalating demand for aesthetic dental restorations in recent 
years has led to a transition from metal-ceramic prostheses to metal-free 
alternatives. Yttria-stabilized tetragonal zirconia polycrystalline (Y- 
TZP) ceramics have emerged as a favored choice due to their 
commendable mechanical properties, chemical stability, and biocom-
patibility [1]. In the pursuit of enhanced aesthetic attributes, certain 
variants of zirconia with notable translucency have entered the market, 
finding application in the fabrication of fixed dental prostheses, 
full-coverage crowns, and partial-coverage veneers [2]. Moreover, the 
superior mechanical characteristics of zirconia, coupled with 
computer-aided design/computer-aided manufacturing technology, 
facilitate the precise production of expansive and complex restorations, 
yielding a high rate of success [3]. 

In addition to the swift progress in manufacturing technology, the 
long-term efficacy of ceramic restorations hinges substantially upon 
proper pretreatment and cementation techniques. In the case of silica- 
based ceramics, surface treatment involving hydrofluoric acid (5–9.6 
%) and subsequent silanization proves to be an efficacious method for 
achieving durable bonding with resin-based luting agent [4,5]. How-
ever, owing to the quasichemical inertness and absence of a silica phase, 
zirconia remains unetchable and cannot attain a satisfactory bond 
strength through the conventional approach outlined above [6]. 
Consequently, several methodologies have been scrutinized in recent 
years to enhance the bond between zirconia and resin-based luting 
agent. These approaches include air abrasion with alumina oxide par-
ticles [7], tribochemical silica coating [8], selective infiltration etching 
(SIE) [9] and various laser treatments [10]. Among these techniques, air 
abrasion, also known as airborne-particle abrasion, is the most widely 
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employed method in clinical practice. Beyond the surface conditions, 
researchers have also investigated the incorporation of adhesive 
monomers into resin-based luting agent or primers to bolster chemical 
bonding. Given the slender nature of the bonding interface, the primer 
and cement were treated as an integrated entity when determining the 
truly efficacious constituents in this investigation. Subsequent to 
exhaustive research endeavors, 10-methacryloyloxydecyl dihydrogen 
phosphate (10-MDP) has surfaced as an exceedingly efficacious adhesive 
monomer that is widely assimilated into primers and resin-based luting 
agent [11–13]. 10-MDP is recognized for its capacity to adhere to zir-
conia through the formation of hydrogen bonds between the Zr-OH and 
the oxygen from P = O groups or via ionic interactions between the 
partially positive Zr4+ and deprotonated 10-MDP (P-O-) groups [14]. 
Despite numerous investigations probing the influence of diverse pre-
treatments and adhesive monomers on zirconia bonding, a consensus on 
the optimal strategy to enhance bonding effectiveness and durability 
remains elusive. 

Previous meta-analyses investigating the bonding between zirconia 
and resin luting agent have underscored the effectiveness of combining 
mechanical and chemical treatments to enhance bond performance [12, 
15,16]. Additionally, these studies identified several factors influencing 
the bond to zirconia, including the type of luting agent, artificial aging 
processes, and test methodologies [12,15]. However, these analyses 
were primarily descriptive, making it challenging for clinicians to 
determine which specific treatments or resin luting agent compositions 
would yield the highest bond strength. Therefore, in response to the 
aforementioned challenge, this systematic review and network 
meta-analysis (NMA) of in vitro studies was specifically designed to 
harness the strengths of NMA by comprehensively assessing various 
mechanical and chemical surface treatments simultaneously. Addition-
ally, it seeks to identify the potentially dominant factors exerting an 
influence on the bond strength between zirconia and resin-based luting 
agent, thereby supporting decision-making in clinical practice. The null 
hypothesis is that the application of different surface treatments and 
adhesive monomers does not significantly affect the zirconia-resin bond 
strength. 

2. Materials and methods 

This systematic review adhered to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) Extension Statement 
for NMA [17] and followed the guidelines outlined in the Cochrane 
Handbook. The research inquiry posed was “which surface treatment 
method and adhesive monomer are most advantageous for bonding to 
zirconia?”. 

2.1. Search strategy 

Five electronic databases underwent comprehensive screening in this 
study, including PubMed (MEDLINE), Embase, Web of Science, Scopus, 
and the Cochrane Library. The literature search was diligently con-
ducted by two independent reviewers and included the timeframe from 
January 2000 to May 30, 2023. The following search terms and their 
combinations were used: “zirconia,” “Y-TZP,” “zirconium dioxide,” 
“ZrO2,” “adhesion,” “bond,” “bonding,” “cement,” and “resin”. The 
specific search strategy is listed in Appendix S1. 

2.2. Study selection 

To uphold objectivity, two authors independently screened titles and 
abstracts, followed by the extraction of potentially suitable articles. A 
second review was carried out by the authors once the inclusion criteria 
were satisfied. The complete texts of articles that held potential rele-
vance were subject to independent evaluation by two review authors, 
adhering to the inclusion and exclusion criteria outlined in Table 1. Only 
studies that fully met all the inclusion criteria were incorporated into 

this review. Any discrepancies were resolved through discussion with a 
third researcher to reach a consensus. 

2.3. Data extraction 

Two independent authors conducted data extraction using stan-
dardized forms within Microsoft Office Excel 2016. The extracted data 
included several key elements, including the publication year, authors, 
zirconia type, primer type, resin-based luting agent type, surface treat-
ment, and mean bond strength values, along with their corresponding 
standard deviations. In instances where experimental groups included 
varying parameters within a single pretreatment method or involved the 
utilization of different primers or resin-based luting agents that shared 
common components, data amalgamation followed the guidelines stip-
ulated in the Cochrane Handbook for Systematic Reviews of In-
terventions 6.5.2.10. To ensure precision, a rigorous cross-verification of 
the extracted data was conducted. 

2.4. Quality and bias assessment 

The assessment of bias risk within the included studies was con-
ducted by two independent authors utilizing a modified version of the 
Consolidated Standards of Reporting Trials (CONSORT) scale [18]. This 
tool, selected for its suitability in appraising the quality of in vitro 
studies in dentistry, has also been employed in prior dental review 
studies [19–21]. The evaluation of bias risk centered on the clarity of 
fifteen distinct elements, including a structured abstract, a specific 
introduction delineating background and objectives, methodological 
aspects such as replicability, appropriate results, sample size, randomi-
zation method and mechanism, blinding procedures, and statistical 
methodologies, as well as transparent reporting of results and their 
estimation, limitations, and supplementary information. Each of these 
items was assessed with a binary assignment of Yes (indicating reported, 
1 point) or No (indicating not reported, 0 points). The risk bias score was 
categorized as follows: 0–5 points (high risk), 6–10 points (medium 
risk), and 11–15 points (low risk). 

2.5. Statistical analysis 

The quantitative analysis included the extraction of sample size, 
mean bond strength measured in megapascals, and standard deviation 
values from both immediate and aged groups. An overarching analysis 
was conducted using NMA to evaluate the overall effects. Additionally, 
standard pairwise meta-analysis (SPMA) was employed to assess specific 
factors pertinent to clinical practitioners, such as particle size in air 
abrasion, silica coating systems, and the utilization of 10-MDP. 

The SPMA was executed using Review Manager (version 5.4). Given 
the diversity in resin-based luting agent and zirconia types across 
various studies, we adopted the random-effects model to derive pooled 
effect estimates. A 95 % confidence interval was utilized to present the 
results of individual studies and the pooled results, with a p-value of <

Table 1 
The inclusion and exclusion criteria.  

Inclusion Criteria Exclusion Criteria  

• Between 2000 and May 2023  • Before 2000  
• Literature in English  • Literature in a language other than 

English  
• In vitro studies  • Clinical trials, pilot studies, case reports, 

case series, commentaries, and reviews  
• Measuring strength between 

zirconia and resin cement  
• Treatments in pre-sintered stage  

• Including macroshear, microshear, 
macrotensile or microtensile tests  

• Incomplete information or full texts 
unavailable  

• Reporting mean and standard 
deviation (SD) data in MPa  

• Reporting only one treatment without 
control  
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0.05 signifying statistical significance. Heterogeneity between studies 
was evaluated through Cochran’s Q test and I(2). 

Four Bayesian NMAs were conducted utilizing the R package gemtc 
0.9–8 [22] and R package BUGSNET version 1.0.3 [23] within the 
MetaInsight V4.0.0 tool [24,25]. Two NMAs focused on surface 
methods, while the other two examined primer and resin-based luting 
agent components within immediate and aged samples. Surface treat-
ments were categorized as follows: (1) control; (2) air abrasion; (3) silica 
coating; (4) SIE; (5) laser; (6) hot etching; and (7) gas plasma. The 
primer and resin-based luting agent components were classified as fol-
lows: (1) control; (2) 10-methacryloyloxydecyl dihydrogen phosphate 
(10-MDP); (3) other acidic monomers (acidic monomers excluding 

10-MDP); (4) silane; (5) 2-hydroxyethyl methacrylate (HEMA); (6) 
silane + 10-MDP; (7) silane + other acidic monomers; (8) HEMA +
10-MDP; (9) HEMA + other acidic monomers; (10) silane + HEMA +
10-MDP; (11) silane + HEMA + other acidic monomers; and (12) silane 
+ HEMA. Network plots, illustrating clusters of control and experi-
mental groups as nodes, with connections representing direct compari-
sons between the groups, were generated using Stata 17.0. 

League tables were produced through Markov chain Monte Carlo 
simulation, with an initial 5000 iterations discarded, followed by 20,000 
iterations across four chains at a thinning interval of 1 [26]. The surface 
under the cumulative ranking (SUCRA) values were calculated within 
the Bayesian framework to rank surface treatments [27]. A higher 

Fig. 1. Study selection flowchart adhering to PRISMA guidelines.  
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SUCRA value approaching 100 % indicates a greater likelihood of the 
corresponding surface treatment yielding the best results in terms of 
higher bond strengths, while a value closer to 0 % implies reduced 
effectiveness. Convergence was assessed via trace plots based on the 
Brooks Gelman-Rubin criteria, and inconsistency was evaluated using 
the split node method [28]. Statistical significance was established at α 
= 0.05, with reference to 95 % CIs. 

3. Results 

3.1. Study selection 

Fig. 1 depicts the study selection process in accordance with the 
PRISMA statement. The initial search strategy yielded a total of 8878 
potentially relevant studies. Following the elimination of duplicate re-
cords, 4518 articles underwent initial screening based on their titles and 
abstracts. Two additional studies were procured through manual 
searching, leading to a comprehensive assessment of 181 studies in full 
text for eligibility. Ultimately, 77 studies [29–105] were deemed suit-
able for inclusion in the analysis, with 104 studies being excluded for 
various reasons, as outlined in the flowchart. 

3.2. Descriptive analysis 

The key characteristics of the 77 studies selected for this review are 
comprehensively detailed in Appendix S2. These studies span the pub-
lication period from 2000 to 2023. In the assessment of bonding per-
formance between resin-based luting agent and zirconia, the macroshear 
bond strength test (61.0 %) emerged as the most frequently employed 
method, followed by microshear (19.5 %), microtensile (11.7 %), and 
macrotensile (7.8 %) tests. 

Regarding surface treatments, as illustrated in Fig. 2A, air abrasion 
(n = 54) was the predominant method used in the majority of studies, 
followed by silica coating (n = 25), laser (n = 16), SIE (n = 8), gas 
plasma (n = 5), and hot etching (n = 4). Fig. 2B provides an overview of 
the primers and resin-based luting agents utilized in this review, cate-
gorized based on their potentially functional components. Notably, 
"Silane + 10-MDP" and "HEMA + 10-MDP" emerged as the most prev-
alent combinations in adhesion, with a total of 16 instances. 

3.3. Risk of bias 

Appendix S2 presents the risk of bias assessment for each study 
included, based on the modified CONSORT guidelines. The majority of 
the studies were categorized as having a medium risk of bias (94.8 %), 
while a small fraction, comprising four studies (5.2 %) [38,75,83,94], 
were identified as carrying a high risk of bias. Notably, most studies 
provided a structured summary and offered detailed descriptions of the 
interventions. However, approximately 15.6 % of the studies omitted 
the explicit statement of their hypotheses. Although statistical methods 
were explicitly outlined in the majority of studies (97.4 %), there was 
notable inconsistency in the reporting of limitations (48.1 %) and 
disclosure of funding resources (51.9 %) across all included studies. It is 
worth noting that a few studies mentioned the utilization of randomi-
zation (3.9 %), but none of them furnished sufficient information con-
cerning the mechanism employed for implementing the random 
allocation sequence and trial protocol. Furthermore, the process of 
sample size calculation was documented in only 3.9 % of the studies. 

3.4. Network meta-analyses 

Figs. 3–6 present the network maps for the NMA. In the NMAs of 
surface treatments and components of bonding agents, seven and twelve 
arms were compared with each other, respectively. The details of the 
Bayesian NMA, including the inconsistency test, convergence assess-
ment, and deviance report, are presented in Appendix S3. 

3.4.1. NMA of surface treatment 
Two separate sets of NMA were carried out, one focusing on imme-

diate data (Fig. 3) and the other on aged data (Fig. 4). Predominantly, 
pairwise comparisons were made between the air abrasion group and 
the control group (Figs. 3A, 4A). Figs. 3B and 4B illustrate that surface 
treatments exhibited greater effectiveness than the control group in both 
immediate and aged conditions, with the exception of gas plasma (im-
mediate effect size: 2.82, 95 % CI: − 1.47 to 7.16; aged effect size: 0.440, 
95 % CI: − 6.27 to 7.16). 

The cumulative probability ranks and SUCRA values for surface 
treatments are displayed in Figs. 3C and 4C. In terms of the immediate 
bond strength between resin-based luting agent and zirconia, the 
probability of being the most effective surface treatment was ranked as 
follows: SIE (91.30 %), hot etching (86.76 %), silica coating (68.77 %), 
air abrasion (49.68 %), laser (33.90 %), and gas plasma (17.98 %). For 

Fig. 2. Frequency distribution of surface treatments (A) and adhesive monomers (B) used in the included studies.  
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long-term bond strength, the ranking was as follows: SIE (90.49 %), 
followed by hot etching (85.16 %), laser (56.93 %), silica coating 
(53.65 %), air abrasion (46.84 %), and gas plasma (9.44 %). 

Figs. 3D and 4D illustrate the mean difference (MD) values for the 
pairwise comparisons conducted in this NMA. In comparison to the 
commonly employed air abrasion pretreatment method, SIE exhibited 
statistically superior performance (immediate comparison: 5.73, 95 % 
CI: 0.93 to 10.53; aged comparison: 6.15, 95 % CI: 0.72 to 11.54). 
However, except for gas plasma in aged conditions (aged comparison: 
− 9.78, 95 % CI: − 16.74 to − 2.76), no significant differences in bond 
strengths were observed between the other surface treatments and air 
abrasion. 

3.4.2. NMA of adhesive monomers 
The network was established based on bond strength data from 27 

studies, with 24 studies reporting immediate data and 24 studies 
reporting age data. These studies utilized bonding agents with varying 
components, resulting in a total of twelve treatment arms available for 
comparison (Figs. 5, 6). The forest plots comparing these different 
groups with the control group revealed that bonding agents containing 
10-MDP (10-MDP, silane + 10-MDP, HEMA + 10-MDP, silane + HEMA 
+ 10-MDP) exhibited effectiveness in resin-zirconia bonding. 
Conversely, formulations other than HEMA + other acidic monomers in 
aged conditions were statistically ineffective. Bonding agents containing 
silane, 10-MDP, and HEMA demonstrated the highest bonding potential 
to zirconia, while the primer containing only HEMA exhibited the lowest 
potential (Figs. 5C, 6C). For a comprehensive breakdown of the NMA 
results for all pairwise comparisons, please consult the league table 
provided in Appendix S4. The analysis indicated that there were no 
significant differences among the four formulations containing 10-MDP. 

3.5. Standard PAirwise Meta-analysis 

3.5.1. Particle size in air abrasion 
Fig. 7 presents the results of the meta-analysis investigating the in-

fluence of different particle sizes in abrasion application on immediate 
and long-term bond strengths. A notable disparity in immediate bond 
strength was discerned between the two groups, with an advantage fa-
voring the utilization of small particle sizes (25–53 µm) compared to 
large particle sizes (110–150 µm) (p < 0.00001). However, no statisti-
cally significant difference was evident in long-term bond strength 
(p = 0.52). 

3.5.2. Silica coating system 
Fig. 8 illustrates the meta-analysis findings for both immediate and 

aged conditions, with the silica coating system as the primary variable 
factor. In comparison to the CoJet system, both the Rocatec Soft and 
Rocatec Plus systems demonstrated superior bond-enhancing perfor-
mance. Additionally, Appendix S5 provides evidence that no significant 
difference was observed between Rocatec Soft and Rocatec Plus, with p- 
values of 0.64 for immediate conditions and 0.14 for aged conditions. 

3.5.3. 10-MDP in primer or resin-based luting agent 
Fig. 9 presents the results of the meta-analysis pertaining to bonding 

agents. Notably, primers or resin-based luting agents containing 10- 
MDP exhibited a superior effect on zirconia-resin bond strength in 
comparison to those containing other acidic monomers, with an MD of 
12.15 and a 95 % confidence interval ranging from 8.91 to 15.39 
(p < 0.00001). This superiority was consistent across aging conditions, 
as indicated by a nonsignificant p-value of 0.80. 

Fig. 3. Network meta-analysis of immediate bond strengths in 50 studies comparing surface treatments. (A) Network plot where node size and connecting line 
thickness reflect sample size and direct comparisons, respectively. (B) Forest plot graph presenting the pooled effect estimates of bond strengths. (C) Cumulative 
ranks and SUCRA values of all surface treatments. (D) League table illustrating Bayesian comparisons for all surface treatments. 
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3.6. Bond durability of the main surface treatments 

Fig. 10 incorporates a total of 204 bond strength data points from 
studies that compared the bond strength of the air abrasion group or 
silica coating with the control group under both immediate and long- 
term conditions. The graph amalgamates 102 matched data points, 
combining the results of both immediate and long-term bond strength 
for each surface treatment. 

It is noteworthy that the resin-zirconia bond strength values 
commonly exhibited a decrease (91.2 % of samples) after undergoing 
artificial aging. The fitted lines for each group demonstrate that while 
there is a significant decline in bond strength after aging in all groups, 
air abrasion (m=0.78 ± 0.10, where ’m’ denotes the slope of the fitted 
lines) and silica coating (m=0.72 ± 0.13) significantly mitigate this 
decline when compared to the control group, which exhibits the smallest 
slope (m=0.27 ± 0.11). The data points representing the air abrasion 
(pink dots) and silica coating (blue dots) groups are more concentrated 
in the upper-right quadrant, signifying relatively higher bond strength 
for these two surface methods when compared to the control group (gray 
dots). 

4. Discussion 

This study aimed to examine factors that may exert an influence on 
the bond strength and longevity of zirconia, with a specific emphasis on 
pretreatment techniques and the constituents of bonding agents. Based 
on the results of the study, the null hypothesis was rejected. 

4.1. Surface treatment 

In this comprehensive review, several surface treatments proved 

effective in enhancing both the ’immediate’ and ’aged’ bond strength of 
zirconia, with the notable exception of gas plasma, a finding consistent 
with prior research [12,15,16,106]. Among these pretreatments, air 
abrasion employing alumina particles has emerged as the most 
frequently employed technique in both scientific investigations and 
clinical applications. Our results confirm the efficacy of air abrasion in 
improving bond strength. The irregular surface generated through the 
air abrasion process provides a substantial bonding surface area for 
zirconia. Furthermore, it contributes to increased wettability, surface 
energy, and hydroxyl group content, all of which are conducive to 
achieving higher bond strength [32,53]. The particle sizes employed in 
the studies ranged from 25 to 150 µm. While the immediate bond 
strength was superior in the small particle size group (25–53 µm) 
compared to larger particles (110–150 µm), long-term bond strengths 
exhibited no significant difference between the two particle sizes, 
consistent with the findings of Comino-Garayoa et al. [107]. Typically, 
an increase in particle size results in greater surface roughness, a factor 
generally considered advantageous for bonding [94]. However, our 
findings indicate improved performance with smaller particle sizes, 
necessitating cautious interpretation and prompting the need for further 
research into the effect of particle size. Regardless of the particle size in 
air abrasion, the mean differences between the air abrasion group and 
the control group expanded following the aging process (Fig. 7). This 
suggests that air abrasion exhibits a degree of resistance to the aging 
effect. The coarse surfaces created by air abrasion offer superior reten-
tion effects compared to polished surfaces, thereby enhancing resistance 
to aging. 

Optimal blasting pressure is pivotal for achieving durable zirconia- 
resin bonds. A study by Aung et al. revealed that both inadequate and 
excessive pressure failed to produce durable zirconia-resin bonds, even 
when adhesives containing 10-MDP were employed [7]. Large particle 

Fig. 4. Network meta-analysis of long-term bond strengths in 35 studies comparing surface treatments. (A) Network plot where node size and connecting line 
thickness reflect sample size and direct comparisons, respectively. (B) Forest plot graph presenting the pooled effect estimates of bond strengths. (C) Cumulative 
ranks and SUCRA values of all surface treatments. (D) League table illustrating Bayesian comparisons for all surface treatments. 
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Fig. 5. Network meta-analysis of immediate bond strengths in 24 studies comparing adhesive monomers. (A) Network plot where node size and connecting line 
thickness reflect sample size and direct comparisons, respectively. (B) Forest plot graph presenting the pooled effect estimates of bond strengths. (C) Cumulative 
ranks and SUCRA values of all adhesive monomer combinations. 

X. Li et al.                                                                                                                                                                                                                                        



Japanese Dental Science Review 60 (2024) 175–189

182

Fig. 6. Network meta-analysis of long-term bond strengths in 24 studies comparing adhesive monomers. (A) Network plot where node size and connecting line 
thickness reflect sample size and direct comparisons, respectively. (B) Forest plot graph presenting the pooled effect estimates of bond strengths. (C) Cumulative 
ranks and SUCRA values of all adhesive monomer combinations. 
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sizes, higher pressure, and extended treatment times may lead to the 
formation of microcracks and an increase in the monoclinic phase, 
potentially compromising the durability of zirconia [85,108,109]. 
Ozcan et al. recommended a specific air abrasion protocol, including the 
use of 30 to 50 µm alumina particles, pressure ranging from 0.5 to 
2.5 bar, a minimum treatment duration of 20 s, a distance of 10 mm 
between the blast jet and the zirconia surface, and continuous move-
ment of the blast jet to prevent defect formation [110]. Interestingly, 
Aurélio et al. observed that air abrasion improved the flexural strength 
of zirconia. This phenomenon is likely attributed to the confinement of 
microcracks and defects within the transformation layer, where the 
volume of the grains increased by approximately 4 % during the phase 
transformation [111]. This is probably also a result of the compressive 
stress generated by air abrasion. [112,113] Additionally, Abi-Rached 
et al. reported that applying air abrasion before sintering zirconia ten-
ded to reduce the monoclinic phase content [114]. However, certain 
studies have suggested that the sequence of air abrasion and zirconia 
sintering had no significant effect on adhesion (Monaco et al., 2011; 
Moon et al., 2011; Fazi et al., 2012; Ebeid et al., 2018; Okutan, et al., 
2019) [44,115–118]. Consequently, despite the demonstrated effec-
tiveness of air abrasion with alumina particles in enhancing zirconia 
bond strength, careful consideration should be given to factors such as 
particle size, pressure, treatment duration, and their potential implica-
tions on phase transformation and zirconia durability. 

Within the scope of this review, the tribochemical method (TSC) 
emerged as the predominant approach for silica coating. Silica coating 
was executed with particle sizes ranging from 30 to 110 µm, primarily 
utilizing the CoJet and Rocatec systems. While alternative methods such 
as the sol-gel process [119,120] and physical vapor deposition [121] 
have been documented, TSC remains the prevailing choice. This method 
involves the utilization of silica-coated alumina particles, which not 
only introduce silica into the zirconia surface but concurrently enhance 

the surface roughness [122,123]. The application of silane further en-
hances chemical bonds and surface energy through the formation of 
siloxane chains between the silica-enriched zirconia surface and 
resin-based luting agent [44]. Analytically, the silica coating method 
exhibited a higher SUCRA ranking in comparison to air abrasion, 
although no statistically significant distinction was observed between 
these two techniques in pairwise comparisons. This finding aligns with 
results from a previous meta-analysis, which demonstrated that TSC 
provides better bond durability than air abrasion [124]. The silica 
coating approach combines increased roughness and chemical bonding 
potential. However, it did not manifest statistically significant 
improvement when juxtaposed with air abrasion. This lack of 
improvement could be attributed to the manner in which silica particles 
are deposited, forming loose clusters on the surface rather than 
becoming deeply impregnated, resulting in bond strength below antic-
ipated levels [31]. Among the distinct TSC systems examined, the 
Rocatec system demonstrated superior bond strength when compared to 
the CoJet system. This difference may be attributed to the additional 
step of air abrasion integrated into the Rocatec system, leading to 
heightened surface roughness [125]. Additionally, an innovative silica 
coating method employing silicon nitride hydrolysis has been reported, 
offering the potential for further advancements in counteracting phase 
transformation and optimizing zirconia bonding [126]. 

The utilization of lasers on zirconia surfaces is a common practice in 
in vitro studies due to their ability to enhance surface roughness and 
wettability. Laser irradiation instigated surface modifications through 
the release of laser energy, causing micro-explosions, vaporization, or 
fusion of the uppermost zirconia layer [127]. Various types of lasers, 
including Er:YAG, Nd:YAG, and CO2, were employed in the studies 
included. Bitencourt et al. reported that among various laser types, only 
the Er:YAG laser did not exhibit the ability to enhance zirconia bond 
strengths among the various laser types [127]. In our analysis, lasers 

Fig. 7. Forest plot of standard pairwise meta-analysis comparing the bond strength applying air abrasion with small particle size (25–53 µm) and large particle size 
(110–150 µm) in (A) immediate and (B) aged condition. 
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received lower SUCRA rankings compared to air abrasion, although 
statistical significance was not established. Arami et al. found that the 
zirconia surface treated by the laser at the lowest power had similar 
surface roughness to air abrasion [128]. It is crucial to consider laser 
parameters carefully, as high-energy intensity lasers can lead to adverse 

results, such as color changes, surface melting, significant cracks, and 
carbonized layers [128,129]. Consequently, prudence in laser parameter 
selection is primary to avoid detrimental consequences. Despite the 
potential advantages of lasers in zirconia bonding, the field currently 
lacks a universally accepted laser protocol [127]. A noteworthy 

Fig. 8. Forest plot of standard pairwise meta-analysis comparing the bond strength applying silica coating with CoJet, Rocatec Plus or Rocatec Soft system in (A) 
immediate and (B) aged condition. 

Fig. 9. Forest plot of standard pairwise meta-analysis comparing the effects of 10-MDP and other acidic monomers.  
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development in this arena is femtosecond laser technology, based on 
titanium/sapphire crystals, which can generate near-infrared wave-
lengths (795 nm) [130]. This technology has been shown to create more 
regular pits on the zirconia surface compared to Er:YAG laser irradiation 
and improve micromechanical bonding with veneering ceramics [131]. 
However, it is worth noting that only one study in our review employed 
femtosecond laser technology [76], highlighting the need for further 
investigations to comprehensively understand the adhesive behavior of 
zirconia treated with various types of lasers. 

Surface treatment methods such as SIE, hot etching, and gas plasma, 
while effective in laboratory experiments, are not commonly employed 
in clinical practice. Among these methods, SIE emerged as the most 
effective, statistically surpassing the commonly used air abrasion tech-
nique. SIE involves coating the zirconia surface with a conditioning 
agent containing glass, heating it to facilitate glass infiltration into grain 
boundaries, and subsequently rinsing with an acid bath to enhance 
retention [29]. The glass percentage in the conditioning agent may in-
fluence its melting temperature and efficiency in infiltrating the zirconia 
surface [39]. The current analysis underscores SIE’s efficacy in estab-
lishing a robust and enduring zirconia-resin bond, likely attributed to 
the highly retentive surfaces it generates, facilitating resin-based luting 
agent penetration and interlocking. Jiang et al. reported that the SIE 
group had a roughness of 12.42 µm, exceeding that of the air abrasion 
group (8.34 µm) [57]. It is worth noting that SIE is relatively technically 
sensitive and involves multiple steps, necessitating further assessment of 
its clinical applicability. 

Hot etching ranked second in SUCRA but did not exhibit a significant 
difference when compared to air abrasion. This method entails placing 
samples in a reaction kettle and heating them in a hot-etching solution, 
typically composed of 800 mL of methanol, 200 mL of 37 % HCl, and 2 g 
of ferric chloride [39,72]. It dissolved the outermost grain structure of 
the zirconia surface, enhancing nanoscale roughness [132]. Notably, hot 
etching offers the advantage of lower temperature compared to SIE and 
generates less internal stress than air abrasion [133]. However, it is 
essential to highlight the potential risks associated with hot etching, as it 
involves the use of corrosive and potentially harmful chemicals, making 
it more hazardous than conventional surface treatments. Proper safety 
precautions, including protection against inhalation or ingestion and 
burn prevention, must be taken when employing the hot etching 
method. Thus, its clinical applicability requires further refinement. 

In the present analysis, gas plasma was the sole surface treatment 
that exhibited no significant difference compared to the control group. 
Through chemical reactions or physical collisions induced by excited gas 
molecules, it can modify the zirconia surface with high-energy ion 

bombardment [134]. The analysis indicates that merely increasing polar 
groups on the zirconia surface is insufficient to generate adequate 
zirconia-resin bond strength. However, carbon and nitrogen plasma 
have been reported to enhance the bioactivity and cytocompatibility of 
zirconia, suggesting their potential for other dental applications, such as 
implant surface treatments. [135]. 

4.2. Adhesive monomers 

In this review, the effectiveness of various chemical components in 
improving the adhesion of zirconia to resin was explored, with a 
particular focus on the role of 10-MDP. The findings unequivocally 
demonstrate that formulations lacking 10-MDP are ineffective in 
enhancing zirconia-resin bonds. Conversely, strategies based on 10-MDP 
exhibited significantly higher efficiency in improving bond strength, 
underscoring the pivotal role played by 10-MDP in zirconia-resin 
bonding. The key attribute of 10-MDP is its composition, which in-
cludes a phosphoric acid group that acts as an adhesion promoter for 
zirconia, along with a vinyl group at the opposite end that aids in 
polymerization with unsaturated carbon bonds [14]. The bonding 
mechanism involves hydroxylation-driven chemistry, where phosphate 
groups theoretically interact with zirconium atoms, forming either 
"double coordinate" or "single coordinate" bonds [136]. Recent studies 
employing time-of-flight secondary ion mass spectrometry have identi-
fied various chemical bonds, including single coordinate bonds and 
bridging of one zirconia atom by two or three phosphate or phosphite 
groups [137,138]. It is important to note that the bonding performance 
of 10-MDP may be compromised after prolonged storage due to hy-
drolysis of the ester portion induced by dissociated protons [139]. For 
improvement, Koko et al. proposed a novel MDP-based strategy for 
zirconia, which incorporates 10-MDP as a functional adhesive monomer 
and triethanolamine as a surface cleaner [140]. 

This review also examined other acidic monomers derived from 
different acids, such as phosphonic acid (e.g., 6-methacryloxyhexyl-
phosphonoacetate - 6-MHPA, dipentaerythritol penta acrylate mono-
phosphate - PENTA) and carboxylic acid (e.g., 4-methacryloxyethyl 
trimellitate anhydride - 4-META, 4-acryloyloxyethoxycarbonylphthalic 
acid - 4-AET, 11-methacryloyloxy-1, 10-undecanedicarboxylic acid - 
MAC-10). These acidic monomers possess functional groups such as 
phosphate groups in PENTA and 6-MHPA, which can react with zirconia, 
forming Zr-O-P bonds that enhance chemical bonding between zirconia 
and resin-based luting agent [141,142]. While carboxylic acid-derived 
monomers such as 4-META demonstrated chemical bonding with the 
zirconia surface, they exhibited lower adsorption compared to 10-MDP 
[143]. Pilo et al. [144] suggested that primers formed carboxylate salts 
on the zirconia surface, promoting chemical interactions, but the precise 
chemical mechanism behind the bonding of carboxylic acid derivatives 
to zirconia remains unclear. Despite their potential to enhance chemical 
bonding, most combinations involving these acidic monomers did not 
demonstrate significant improvements in zirconia-resin bonds, necessi-
tating further research to explore the effects of various acidic monomers. 
HEMA is a low-molecular monomer, which is commonly used in adhe-
sives as a wetting agent [145]. Z-Prime Plus (Bisco), which contains 
10-MDP, HEMA, and BPDM, is the most frequently used zirconia primer 
in the studies analyzed. While most studies did not light-cure Z-Prime 
Plus, a few studies reported that a two-layer, light-cured approach was 
superior to a single-layer application [146,147]. The presence of HEMA 
and BPDM appeared to diminish the beneficial effect of 10-MDP. BPDM, 
a carboxylic monomer with a double hydroxyethyl group, could facili-
tate chemical interactions between 10-MDP and zirconia but create a 
more acidic environment that might negatively affect the durability of 
MDP-ZrO coordination bonds [40,99,136]. 

Regarding silane, 3-methacryloxypropyltrimethoxysilane (MPS) was 
the most commonly used silane in commercial primers and resin-based 
luting agents [148]. Silane is extensively employed in bonding with 
silica-based ceramics because its methoxy-silyl groups (–Si–O–CH3) can 

Fig. 10. Comparison of immediate and long-term bond strengths of the 
zirconia-resin bonds. 
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react with water and silica, forming a strong siloxane (–Si–O–Si–O–) 
network [139]. The methacryloyl groups in the silane can react with 
those in the resin-based luting agent through a free radical polymeri-
zation process, resulting in the formation of a strong bond [149]. 
However, the effectiveness of silane is limited for zirconia bonding, as 
zirconia lacks silica on its surface. Silane addition had little effect on 
zirconia bonding without silica coating, and it has been reported to in-
crease the surface hydroxylation of zirconia while potentially impairing 
the adsorption and chemical activity of 10-MDP during cotreatment 
[138,150,151]. 

4.3. Artificial aging process 

Currently, there exists no standardized protocol for water storage 
and thermocycling specifically tailored to zirconia-resin bond strength 
testing. Therefore, this study adopted a protocol based on ISO 
10477–2020, designed for testing polymer-based crown and veneer 
materials [152]. A minimum of 5000 thermocycles was employed as 
part of the aging process for zirconia bonding in this investigation. 

The observed mean differences between surface treatments and the 
control group were more pronounced in aged conditions compared to 
immediate conditions, except for gas plasma treatment. This observation 
substantiates the notion that these pretreatments confer benefits in 
terms of resistance to aging, aligning with previous research findings 
[108,124]. It is noteworthy that the mean bond strength in aged con-
ditions exhibited a significant decrease when compared to the imme-
diate bond strength, as depicted in Fig. 9, where the majority of data 
points fall below the y = x line. The steeper slope of the fitted line for air 
abrasion and silica coating illustrates their capacity to mitigate the ef-
fects of aging. This observation was supported by the study conducted by 
E. Rigos et al. [124], which reported enhanced bond durability with 
these treatments when non-MDP luting agents and primers were used. 
This effectiveness could be attributed to the rough surfaces generated by 
these treatments, which impede water penetration and promote stronger 
chemical bonding, resulting in a more robust sealed bond interface. The 
similarity in the slopes for air abrasion and silica coating suggests 
comparable anti-aging performance. However, this stands in partial 
contrast to the aforementioned study by E. Rigos et al. which indicated a 
superior durability with TSC [124]. 

4.4. Advantages and limitations of the study design 

This study boasts several notable strengths. This study represents the 
first use of an NMA approach to juxtapose the bonding efficacy of 
diverse surface treatments and adhesive monomers in the context of 
zirconia-resin bonding. It is unique in analyzing the effectiveness of 
different monomer combinations and comprehensively assessing both 
physical and chemical enhancements, providing a broad and detailed 
understanding of their impacts. The application of NMA facilitates a 
comprehensive assessment of multiple treatments or components that 
may not have been directly compared within a single in vitro experi-
ment. Additionally, the Bayesian framework employed in the NMA af-
fords the flexibility to incorporate different sources of uncertainty, 
enhancing the statistical model’s versatility [107,153]. 

Nonetheless, several limitations warrant consideration. Notably, the 
presence of substantial heterogeneity among the included studies may 
have exerted an effect on the precision of the results. Furthermore, the 
exclusively in vitro nature of the included studies potentially restricts 
the direct extrapolation of findings to clinical practice. Consequently, it 
is crucial to exercise prudence when interpreting the results of this 
analysis, duly acknowledging these aforementioned limitations. 

4.5. Fields requiring further investigation 

Despite SIE being identified as the most effective method, the 
existing evidence is limited. Consequently, further research on the 

utilization of SIE is still necessary. Numerous studies assessing zirconia 
bonding performance have been conducted within laboratory settings, 
often lacking the incorporation of critical oral environmental factors 
such as pH fluctuations, contamination by saliva or blood, and the in-
fluence of occlusal loads. Consequently, a pressing need exists for either 
in vivo experiments or in vitro methodologies capable of faithfully 
replicating the complexities of oral environments. This enhancement in 
research procedure standardization, particularly concerning artificial 
aging processes, is crucial to elevate the quality of studies and facilitate 
high-quality meta-analyses. Furthermore, the crucial for long-term 
clinical trials looms large. Such trials are essential in establishing 
applicable and dependable clinical guidelines for pretreatment meth-
odologies and bonding strategies pertaining to zirconia-based restora-
tions. These endeavors can empower clinicians to make well-informed 
decisions and, in turn, enhance the success rates of zirconia-based res-
torations within clinical practice. 

5. Conclusion 

Based on the primary findings of this systematic review and NMA, 
the following conclusions may be drawn:  

1. Excluding gas plasma, surface treatments such as air abrasion, silica 
coating, laser application, selective infiltration etching, and hot 
etching significantly enhanced the bond strength between zirconia 
and resin.  

2. The Rocatec system, comprising both Rocatec Soft and Rocatec Plus, 
exhibited superior performance over the Cojet system in TSC, 
regardless of the presence of aging.  

3. The incorporation of 10-MDP into the primer or cement provided a 
notable advantage in bond strength, surpassing the performance of 
other acidic monomers.  

4. Over time, the bond strength between zirconia and resin diminished, 
but this decrease could be ameliorated through the utilization of air 
abrasion and silica coating.  

5. For a comprehensive evaluation of zirconia bond performance, 
standardization of in vitro research methodologies and the execution 
of clinical trials are crucial. 
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Air abrasion before and/or after zirconia sintering: surface characterization, 
flexural strength, and resin cement bond strength. Oper Dent 2015;40(2):E66–75. 

[115] Monaco C, Cardelli P, Scotti R, Valandro LF. Pilot evaluation of four experimental 
conditioning treatments to improve the bond strength between resin cement and 
Y-TZP ceramic. J Prosthodont 2011;20(2):97–100. 

X. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref58
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref58
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref58
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref59
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref59
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref59
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref60
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref60
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref60
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref61
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref61
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref62
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref62
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref63
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref63
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref63
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref64
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref64
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref64
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref65
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref65
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref65
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref66
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref66
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref66
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref67
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref67
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref67
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref68
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref68
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref68
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref69
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref69
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref69
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref70
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref70
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref70
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref71
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref71
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref72
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref72
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref73
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref73
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref73
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref73
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref74
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref74
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref74
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref75
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref75
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref75
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref76
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref76
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref76
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref76
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref77
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref77
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref77
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref78
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref78
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref78
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref79
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref79
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref79
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref80
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref80
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref80
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref81
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref81
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref81
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref82
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref82
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref82
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref83
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref83
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref83
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref84
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref84
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref84
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref84
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref85
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref85
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref85
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref86
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref86
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref86
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref87
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref87
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref87
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref88
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref88
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref88
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref89
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref89
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref89
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref90
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref90
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref90
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref91
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref91
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref91
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref92
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref92
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref92
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref93
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref93
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref93
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref93
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref94
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref94
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref94
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref95
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref95
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref95
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref96
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref96
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref96
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref97
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref97
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref97
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref98
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref98
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref98
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref99
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref99
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref100
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref100
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref100
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref101
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref101
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref101
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref102
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref102
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref102
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref103
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref103
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref104
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref104
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref104
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref105
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref105
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref105
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref106
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref106
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref106
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref107
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref107
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref107
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref108
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref108
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref108
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref109
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref109
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref109
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref110
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref110
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref111
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref111
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref111
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref112
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref112
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref112
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref113
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref113
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref113
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref114
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref114
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref114
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref115
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref115
http://refhub.elsevier.com/S1882-7616(24)00010-3/sbref115


Japanese Dental Science Review 60 (2024) 175–189

189

[116] Moon JE, Kim SH, Lee JB, Ha SR, Choi YS. The effect of preparation order on the 
crystal structure of yttria-stabilized tetragonal zirconia polycrystal and the shear 
bond strength of dental resin cements. Dent Mater 2011;27(7):651–63. 

[117] Fazi G, Vichi A, Ferrari M. Influence of surface pretreatment on the short-term 
bond strength of resin composite to a zirconia-based material. Am J Dent 2012;25 
(2):73–8. 

[118] Okutan Y, Yucel MT, Gezer T, Donmez MB. Effect of airborne particle abrasion 
and sintering order on the surface roughness and shear bond strength between Y- 
TZP ceramic and resin cement. Dent Mater J 2019;38(2):241–9. 

[119] Lung CY, Kukk E, Matinlinna JP. The effect of silica-coating by sol-gel process on 
resin-zirconia bonding. Dent Mater J 2013;32(1):165–72. 

[120] Xie H, Wang X, Wang Y, Zhang F, Chen C, Xia Y. Effects of sol-gel processed silica 
coating on bond strength of resin cements to glass-infiltrated alumina ceramic. 
J Adhes Dent 2009;11(1):49–55. 

[121] Cakir-Omur T, Gozneli R, Ozkan Y. Effects of silica coating by physical vapor 
deposition and repeated firing on the low-temperature degradation and flexural 
strength of a zirconia ceramic. J Prosthodont 2019;28(1):e186–94. 

[122] Nagaoka N, Yoshihara K, Tamada Y, Yoshida Y, Meerbeek BV. Ultrastructure and 
bonding properties of tribochemical silica-coated zirconia. Dent Mater J 2019;38 
(1):107–13. 

[123] Araújo AMM, Januário A, Moura DMD, Tribst JPM, Özcan M, Souza ROA. Can the 
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