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Implementation of an automated 
workflow for image‑based seafloor 
classification with examples 
from manganese‑nodule covered 
seabed areas in the Central Pacific 
Ocean
Benson Mbani1*, Timm Schoening1, Iason‑Zois Gazis1, Reinhard Koch2 & Jens Greinert1,3

Mapping and monitoring of seafloor habitats are key tasks for fully understanding ocean ecosystems 
and resilience, which contributes towards sustainable use of ocean resources. Habitat mapping relies 
on seafloor classification typically based on acoustic methods, and ground truthing through direct 
sampling and optical imaging. With the increasing capabilities to record high-resolution underwater 
images, manual approaches for analyzing these images to create seafloor classifications are no longer 
feasible. Automated workflows have been proposed as a solution, in which algorithms assign pre-
defined seafloor categories to each image. However, in order to provide consistent and repeatable 
analysis, these automated workflows need to address e.g., underwater illumination artefacts, 
variances in resolution and class-imbalances, which could bias the classification. Here, we present a 
generic implementation of an Automated and Integrated Seafloor Classification Workflow (AI-SCW). 
The workflow aims to classify the seafloor into habitat categories based on automated analysis of 
optical underwater images with only minimal amount of human annotations. AI-SCW incorporates 
laser point detection for scale determination and color normalization. It further includes semi-
automatic generation of the training data set for fitting the seafloor classifier. As a case study, we 
applied the workflow to an example seafloor image dataset from the Belgian and German contract 
areas for Manganese-nodule exploration in the Pacific Ocean. Based on this, we provide seafloor 
classifications along the camera deployment tracks, and discuss results in the context of seafloor 
multibeam bathymetry. Our results show that the seafloor in the Belgian area predominantly 
comprises densely distributed nodules, which are intermingled with qualitatively larger-sized nodules 
at local elevations and within depressions. On the other hand, the German area primarily comprises 
nodules that only partly cover the seabed, and these occur alongside turned-over sediment (artificial 
seafloor) that were caused by the settling plume following a dredging experiment conducted in the 
area.

Understanding the geological and ecological characteristics of the seafloor is key for monitoring and managing 
marine ecosystems. Together with bathymetric information, underwater optical images are typically used to char-
acterize the seafloor by partitioning it into classes, and assigning the relevant semantic seafloor- or habitat-label 
to each class1. The cameras recording these images are usually attached to platforms such as towed camera frames 
as in the Ocean Floor Observation System (OFOS), Automated Underwater Vehicles (AUVs) and Remotely 
Operated Vehicles (ROVs). Such cameras generate a high-volume of seafloor images in number and storage 
space, whose analysis requires automated workflows. This is because manually inspecting each photo is infeasible 
and non-scalable2 and thus, automated seafloor classification workflows are preferred because of the benefit of 
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repeatability, which also reduces subjectivity and bias3. Despite this benefit, the implementation of automated 
workflows is still challenging. This is on one hand because of changing conditions during image acquisition even 
within one dive (changing light conditions from different altitude; variable backscatter of particles in the water 
over time) and between dives (potentially different light and camera configurations), but also because domain 
expertise is needed to annotate a large number of training examples for fitting an image classification model. 
This necessitates the implementation of seafloor classification workflows, which require only minimal human 
annotations when dealing with a voluminous dataset comprising images recorded with same camera and illumi-
nating system. When the trained image classification models are used to make automated predictions, they assist 
in rather quick and objective generation of baseline habitat information, which is crucial for managing marine 
ecosystems and potentially man-made changes in general3, but also in adjusting sampling strategies on the fly.

During image acquisition, laser pointers mounted around the camera build a fixed calibrated geometry that 
is used for scale determination of the image. Two or more laser points are photographed to define e.g., a trian-
gular geometry of red dots around the center of each acquired photo. The pixel-distance of the photographed 
geometry in each image varies in proportion to the camera altitude above the seafloor. The ratio between the 
photographed and calibrated geometries can be used to infer both the image scale and approximate altitude of 
each photo during acquisition. However, the varying size of the photographed geometry, and changes of the 
seafloor color and roughness makes it challenging to automatically detect the laser points by existing techniques 
such as template matching e.g. as described in4. Another challenge is that each laser point may only be repre-
sented in a 20 pixel area5, which is small and cannot be detected by standard object detection algorithms such as 
single shot multi-box detector6 or YOLO7. Despite these challenges, the image scale is essential for downstream 
tasks, such as illumination normalization, and conversion of measurements from pixel units to metric units5. 
This necessitates the incorporation of a laser point detection into the seafloor classification workflow, which is 
invariant to the mentioned challenges.

Usually, a significant proportion of photos recorded during video transect deployments are redundant for 
wider area seafloor or habitat mapping purposes, because the camera records a photo e.g., every 10th or even 
every second, while being towed at slow speed of 0.5 knots (~ 0.9 m/s; every 10 m or 1 m an image). Therefore, 
the same habitat/seafloor type is likely to be photographed in multiple frames. Particularly for the deep sea, 
most photos represent the dominant seafloor class since the deep sea is changing slowly in space (hundreds of 
meters). However, this might be different in shallow water where the geological substrate such as rocks, sand, or 
outcropping basement may change quickly on meter scale. In the deep sea, the more homogenous seafloor causes 
a class imbalance, since the frequency of photos representing the dominant seafloor classes is disproportionately 
higher than the rare classes8. A classification model trained on this imbalanced dataset is likely to be biased, by 
falsely associating photos with the dominant class, causing lower classification performance. In addition, the 
high number of images recorded during an expedition causes computational bottlenecks when used to train a 
seafloor classifier, because storing the images requires large computer memory and computational resources9. 
These challenges need to be addressed by an automated classification workflow. This can be done by identifying 
an efficient sampling strategy, which generates class-balanced training set that fits in computer memory during 
the training of a classification model.

The training of a seafloor classifier can either be supervised or unsupervised. It is considered supervised when 
manually labeled images are used, and unsupervised otherwise. Even though supervised classifiers perform 
better when trained with sufficiently labeled examples10, manually annotating the images is a subjective and 
time-consuming process that has limitations for very large data sets11. This calls for semi-automated annotation 
workflows, in which a human analyst provides only limited labels, while the rest are automatically generated. 
Alternatively, a fully unsupervised classification model could be trained to classify the seafloor by clustering 
unlabeled photos. A human analyst is then required to only assign semantic labels to the resulting clusters. There-
fore, an automated classification workflow should incorporate both supervised and unsupervised classification 
approaches, so that users can choose whichever is more convenient.

Past studies on automated laser point detection mostly involve manually annotating a set of laser points to be 
used for training either a classifier or regression model, which is then used to automatically detect laser points 
on test images5,12. While these approaches work well, they also require a lot of manual annotation which renders 
them sometimes infeasible. With respect to seafloor classification, there have also been previous implementations 
using different approaches. Most workflows typically employ technologies such as side scan sonar and multi-beam 
echosounders to record hydro acoustic or multispectral imagery at kilometer scale, after which remote sensing 
based image interpretation techniques are used to discriminate among the different benthic habitat categories 
using site specific fingerprints13–15. Such acoustic-based methods have also been previously developed by estab-
lished institutions e.g. MBARI’s integrated mapping system16, IFREMER’s software for multibeam echosounder 
and side scan sonar mapping (CARAIBES)17 and JAMSTEC’s deep seafloor monitoring system18. The limiting 
characteristic of these hydro-acoustic based workflows is that their footprint size makes them unsuitable for 
detecting small objects on the seafloor. This limitation is addressed when processing optical images with mil-
limeter resolution. Previous studies that derived seafloor classes from images involved the use of hand engi-
neered features such as color and texture to encode visual content from image patches, upon which supervised 
and unsupervised classifiers are trained19–22. Further, there have been studies that employed photogrammetric 
techniques to monitor the benthic habitat coverage using orthophoto mosaics and dense point clouds23. These 
approaches assume that discernible features e.g., texture and color extracted from underwater photos are enough 
information to distinguish the various seafloor categories. To avoid this assumption, other studies employ deep 
learning to automatically extract abstract features using a sequence of convolution and pooling operations24,25. 
A linear classifier fit on top of these features is then used to assign each image to a habitat class. The drawback of 
these deep learning approaches is, that they require substantial manually annotated training examples, without 
which they easily lead to overfitting26.
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With the above given setting in mind, we develop a generic end-to-end workflow that aims to assist marine 
researchers to automate image-based seafloor classification. The seafloor classification workflow (AI-SCW) works 
on optical RGB images recorded by any platform such as ROV, AUV and towed camera systems as the OFOS. 
The workflow starts with automatically detecting laser points and using these to infer the photo scale. The scale 
is used as the basis for choosing e.g., a reference image for color normalization. This normalization is done by 
matching the histogram of all other images to the respective reference image. The images are further rescaled to 
a defined resolution, and central parts of the image are cropped out to have the same spatial footprint in square 
meters. The cropping also cuts off the darker image rims that are typical for deep sea images as a result of too 
little light. A labeled training set is then generated semi-automatically, and used to fit a convolutional neural 
network classification model using the Inception V3 architecture27. In addition to this approach, an empirical 
comparison of four sampling strategies is done to identify the optimal strategy to generate training data for fit-
ting an unsupervised k-means classification model.

Although we use an example of a Mn-nodule area in the deep sea because of the current economic and eco-
logical interest for such areas, AI-SCW can be used to classify any other seafloor. Thus, it is useful to researchers 
in the marine community who routinely use optical imagery to monitor the seafloor geology, ecosystem or 
habitats, and who aim for an automated and less subjective image analysis.

Results
Image pre‑processing; scale determination and color correction.  This section presents the results 
of automated laser point detection and subsequent determination of scale for all the underwater images. Also 
presented are results for the correction of artifacts caused by illumination drop-off towards the periphery of the 
images, and also color normalization to correct for uneven scene brightness among the images.

Laser point detection and scale determination.  The distribution of the distance in pixels between detected laser 
points is shown as a box plot and kernel density estimate in Fig. 1A,B. The distributions are given for each OFOS 
deployment. The average laser separation distance across all images was 860 pixels. The deployment at station 
063 contained more than 50% of images with laser distance below the average, which made them visually darker 

Figure 1.   Distribution of detected laser point separation distance in pixels. These are grouped by dive station 
and represented as (A) box plot with whiskers, and (B) normalized kernel density estimate. (C) Distribution of 
image scale in pixels/centimeter obtained by scaling the detected laser distance by known distance.
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since they were recorded from a higher altitude. The distribution of all image scales in pixels/centimeter (px/cm) 
is shown in Fig. 1C, and shows a gaussian distribution centered around the mean scale of 22 px/cm.

Illumination drop‑off correction and contrast enhancement..  Illumination drop-off caused the edges of the origi-
nal images to appear darker than their center regions (Fig. 2A). Applying the z-score normalization resulted in 
uniform scene illumination that reduced the dark image edges (Fig. 2B). The z-score normalization of images 
follows the gray world assumption, in which neutral gray is assumed to be the average reflected color of a scene 
with a good distribution of colors28. The effect of this was that corrected images exhibit a light olive to brownish 
appearance. A plot of the mean intensity for each RGB channel is shown for both the original images (Fig. 2C) 
and the corrected images (Fig. 2D) from OFOS dive 126. Compared to the original images, the mean intensity 
curves generated from the light drop-off corrected images show strong synchronization.

The contrast enhancement transformation applied to the light drop-off corrected images qualitatively revealed 
more visual detail. Figure 3A shows examples of light drop-off corrected images with their corresponding color 
histograms as insets, whereas Fig. 3B shows the same images after the contrast enhancement transformation. 
Qualitatively, the intensity histograms of the light drop-off corrected images occupy a narrow range of intensity 
values. In contrast, the intensity histograms of contrast enhanced images are spread out to utilize the full range 
of available intensity values. Quantitatively, the entropies of the intensity histograms for the contrast enhanced 
photos are by a factor of 2 greater than those for the light cone corrected photos. This implies that the pixel values 
of the contrast enhanced images have a more uniform distribution, which improves their global contrast, and 
likely makes the images easier to interpret.

Color normalization.  Figure 4A shows the reference image used for the color normalization; it was chosen as 
the image that was acquired closest to the seafloor, and therefore it also has the maximum resolution in pix-
els/centimeter (see details in the supplementary information). The empirical cumulative distribution function 
(ECDF) for the reference image is shown in Fig. 4B. The color normalization transformation converts the ECDF 
of all images to match that of the reference image. Figure 4C shows three examples of contrast enhanced images, 
with their corresponding ECDF drawn as insets. When compared to the reference image, the ECDF for the 
contrast enhanced photos are shifted left, which indicates that their overall brightness values are low. Figure 4D 

Figure 2.   Comparison between sets of (A) original images and (B) images corrected for illumination drop-off. 
(C) Mean intensity plots calculated for each R, G, B channel in original images and, (D) corrected images from 
OFOS dive 126. Note the altered scale on the y axis between (C) and (D).
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shows the results of the same images after color normalization by histogram matching the reference ECDF; we 
point out that these color normalized images have already been transformed to a consistent spatial resolution (in 
pixel/cm), and then center cropped to represent a standard spatial footprint of 1.6 square meters on the seabed 
(see details in “Image enhancements” section). From this figure, the resulting ECDF of the color normalized 
images are identical to the reference distribution. Qualitatively, this transformation results in normalized photos 
which have a good overall scene brightness.

Seafloor classification assessment.  This section presents results of the quantitative assessment aimed 
at evaluating the performance for both the supervised and unsupervised classifiers on the test set images. Also 
provided are the results of the PCA projection of all classified images onto a two-dimensional feature space, 
which can be used to visualize how semantically similar images group together in the feature space. For example, 
whereas images of large sized Mn-nodules group together on the upper region of this feature space, images of 
densely distributed Mn-nodules group together on the left.

Performance evaluation of the fine‑tuned Inception V3 classifier.  The confusion matrix used to evaluate the 
performance of the supervised classifier is shown in Fig. 5A. The off-diagonal elements of the matrix tabulate 
the number of misclassifications made by the supervised classifier when it made predictions on the test images. 
These test images comprised 12.2% of the labeled images (612 in total), since the other 7% was used as valida-
tion set during hyper-parameters tuning. The matrix shows that some of the test images labeled as Seafloor A 
were wrongly predicted to belong to Seafloor B. This could be because in some images of Seafloor A the sedi-
ment blanket cover over the Mn-nodules was not complete (not high enough), and some that were only partly 
Mn-nodules are still visible; this caused them to be misclassified as Seafloor B. The same reasoning also explains 
the confusion between Seafloor A and Seafloor D, depending on the general distribution of Mn-nodules (small 
patches as in Seafloor B or homogenous distribution of large Mn-nodules (Seafloor D).

Figure 3.   Comparison between sets of (A) images corrected for illumination drop-off and, (B) adaptive 
histogram equalized images. Also shown as insets are the intensity histograms showing the distribution of the 
pixel values for each RGB channel.
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Figure 5B shows the development of the learning curves used to track the progress of model training after 
every iteration step. The shape of the cross-entropy loss curve decreases with every iteration, and converges with 
a final loss value of 0.09. On the other hand, the shape of the accuracy curve rises steadily with each iteration 
until model convergence.

F1 score was used as the accuracy metric to evaluate the performance of the fine-tuned Inception V3 classifier; 
it provides the harmonic mean of precision and recall, and ranges between a worst score of 0 to the best score 
value of 1. Using this approach, the F1 score of our fine-tuned classifier was found to be 0.93.

Figure 4.   (A) Reference image used for color normalization and, (B) The Empirical Cumulative Distribution 
Function for the reference image. (C) Comparison between adaptive histogram equalized images and, (D) color 
normalized and rescaled center cropped images.
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Figure 5C shows the distribution of prediction confidence scores for each of the seafloor classes. The predic-
tion confidence was greater than 0.6 in more than 80% of the images, for all four classes. Figure 5D shows three 
example images for each of the four seafloor classes as predicted by the fine-tuned Inception V3 classifier.

Performance evaluation of sampling strategies used in fitting k‑means classifiers.  Figure 6 shows the results of 
the comparison of the four training set sampling strategies. As mentioned, each strategy was evaluated based on 
the time it took from generating the training images to fitting a k-means classifier, and also on the quality of the 
resulting clusters. Random sampling was the quickest with a time-to-fit of 0.12 s. Stratified cluster-based sam-
pling resulted in the best quality of clusters, with an absolute silhouette score of 0.4. Spatially uniform sampling 
was the slowest with a time-to-fit of 7 s, despite the quality of its clusters being equal to both random sampling 
and probabilistic weighted resampling. The optimal sampling strategy was chosen as stratified cluster-based 
sampling. This is because it achieved the highest silhouette score of 0.4, and was only 1.7 s slower than the second 
fastest strategy of the probabilistic resampling.

Treating the Inception V3 classification results as ground truths, the Fowlkes-Mallows Index (FMI) was used 
to quantify the success of our k-means classifier in successfully defining clusters that are similar to the ground 
truth set of classes. The FMI is the geometric mean of the precision and recall that makes no assumption about 
the cluster structure29,30. Using this approach, we obtained an FMI score of 0.5, which indicates good similarity 
in the classification accuracies.

Figure 7 shows the PCA projection of all the images color coded by the results of both unsupervised and 
supervised classification. The class boundaries of the unsupervised classifier are abrupt and well-defined. On 
the other hand, the supervised classifier results in fuzzy class boundaries, which is the case in reality since the 
transition between classes is subtle. Overall, the two classifiers generate results that agree with a Cohen’s kappa 
coefficient of 0.6.

Figure 8 shows the PCA projection of all the images without color coding, in which semantically similar 
images (e.g., those with large Mn-nodules) can be seen to group together in the feature space.

Spatial distribution of seafloor classes.  This section puts the image-based classification results into 
geographic perspective, by mapping out the distribution of the seafloor classes spatially within both the German 
and Belgian working areas.

Figure 5.   (A) Confusion matrix for supervised classifier performance evaluation. (B) Loss and accuracy curves 
used to monitor progress of model training. (C) Distribution of prediction confidence scores for each seafloor 
class. (D) Examples of classifier predictions for each seafloor class.
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Figure 6.   Performance evaluation of unsupervised classifiers fit using training data generated using each 
sampling strategies.

Figure 7.   PCA projection of all images onto feature space color coded by results of (A) unsupervised 
classification and, (B) supervised classification.
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The spatial distribution of the seafloor classes for both German and Belgian contract areas is shown in Fig. 9, 
by color-coding the image locations along the deployment tracks based on the supervised Inception V3 clas-
sification results. The northern half of the Belgian area comprises dense nodule covered seafloor (Seafloor C), 
intermingled with patches of larger nodules of Seafloor D at local elevations. Seafloor D becomes the dominant 
class in the depressions in the northern part of the area, and along the two tracks in the southern part. Very few 
instances of Seafloor class A and B exist in the Belgian area.

The German contract area typically comprises Seafloor B in the northern part, and a mix of Seafloor B and D 
in the southern part. The German area does not contain a significant amount of Seafloor C, highlighting that the 
Mn-nodules are generally smaller compared to the Belgian area. The occurrences of instances of Seafloor A are 
clearly correlated to the locations of the dredge experiment conducted in the German area. In Fig. 10, pre- and 
post-dredge deployment tracks are shown, along with example images. After the dredge experiment, the propor-
tion of Seafloor A increased by over 30%, caused by the sediment turnover/ploughing and subsequent settling 
of the suspended sediment onto Mn-nodules after a certain time (see also31). In order to allow easy visualization 
of the impact of the dredge experiment, only the post-dredge track that has a corresponding pre-dredge track is 
shown in Fig. 10. The other two post-dredge tracks also fit with the occurrences from Seafloor A.

Discussion
For structuring the discussion for clarity, we briefly summarize what has been presented above, and make relevant 
connections to various aspects. In general, it can be said that recent developments in both underwater imaging 
technologies and hydro-acoustics have allowed marine researchers to characterize and ground-truth seabed 
substrate classes32–34. In this paper, we present an Automated and Integrated Seafloor Classification Workflow 
(AI-SCW), which includes a module that automatically detects laser points from images, and uses them for scale 
determination. This is then used to correct for illumination artefacts, and to color normalize images recorded 
at different times during different camera deployments. This generates a visually homogenous image data set 
that can be used as training datasets for the automated classification. To this end, the workflow also includes a 
module for semi-automatic labeling, which reduces the manual effort required to annotate images needed for 
training classification models. Both supervised Inception V3 and unsupervised k-means classifiers have been 
trained, and their classification results compared. The Inception V3 classifier is trained using semi-automatically 
generated labels, while the k-means classifier is trained using a subset of unlabeled images (those have been gen-
erated using a stratified cluster-based sampling strategy). When the results of both the Inception V3 and k-means 
classifiers were compared, they showed a good agreement, with a Cohen’s kappa coefficient of 0.6. Below, the 
various aspects of AI-SCW workflow are first discussed in detail. Finally, we discuss the spatial distribution of 
the derived seafloor classes in the context of terrain and backscatter properties of the seafloor.

As part of the laser point detection workflow, the subtraction of the red channel from the linear combination 
of blue and green channels worked very well, producing an intermediate image with very high values around 
the laser points and very low values elsewhere; the intensity maxima of this intermediate image contained the 
three lasers. We observed that the linear combination had to be scaled by a coefficient to reduce the effect of the 
correlation among the RGB channels. After some iterations, we found that coefficient values between 0 and 1 
produced good results (true positives), and in particular, a coefficient value of 0.2 produced the best results for 
this dataset. This value may differ when the workflow is applied in other datasets e.g., depending on the light-
ing condition, depth, type of device recording the images etc. We further observed that detections based on the 
contrast enhanced images resulted in many false laser spot detections. This is because the contrast enhancement 
transformation reduced the intensity of the red laser points, by adaptively equalizing the distribution of intensity 
values in local image tiles. The laser point detection accuracy increased significantly when the detection was 
done on the original photos. This is because the lasers are targeted towards the center of the field of view of the 

Figure 8.   PCA projection of all images onto feature space without color coding. Semantically similar images 
(e.g., those with large Mn-nodules) can be seen to group together.
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camera, a region that was already well illuminated by the artificial light source; which made the red laser points 
prominent and easy to detect. In addition, since the mask used to filter the intensity maxima coordinates was the 
same for all images, it allowed us to implement the laser point detection workflow concurrently across all CPU 
cores. This increased the processing speed by up to 3 times, compared to a sequential implementation. When 
compared to the DELPHI system implemented in a previous study5, our implementation relies on manually hand 
labeled information from just one single example image, compared to the DELPHI system that iteratively uses 
70 manually annotated images. As our dataset specifically comprised three laser points projected from a camera 
altitude of between 1 to 4 m, future research could improve this laser point detection workflow to accommodate 
other possible scenarios e.g., where there are fewer than three laser points visible in the image.

Our semi-automated approach for generating the labeled training set to be used for fine tuning the supervised 
Inception V3 classifier was both straight forward and quick to execute. The semi-automation involved some 
manual annotation of example images by a human analyst, followed by an automated nearest neighbor sampling 
of additional training images in the feature space. This set-up was used to explicitly include domain knowledge 
during the labeled training data generation process. Incorporation of domain knowledge was important because 
nearest neighbor sampling only makes sense when semantically similar images are mapped close together in 
feature space. In our case, domain knowledge was incorporated by encoding texture and entropy into the feature 

Figure 9.   Maps of deployment tracks in both the German (BGR) and Belgian (GSR) contract areas. The 
deployment tracks are color coded by supervised classification results, and overlaid on our gridded multibeam 
bathymetric dataset. The boundaries of polymetallic nodule exploration areas were sourced from International 
Seabed Authority (https://​www.​isa.​org.​jm), while the base map in the overview map was sourced from GEBCO 
(https://​www.​gebco.​net/).

https://www.isa.org.jm
https://www.gebco.net/


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15338  | https://doi.org/10.1038/s41598-022-19070-2

www.nature.com/scientificreports/

vectors that represent the images in feature space, because the seabed in our working area was mostly charac-
terized by Mn-nodules that appear as irregular blobs of black pixels in the image. The use of texture features to 
encode seabed characteristics has been reported in previous studies, which found that they adequately reveal 
subtle variation in seabed characteristics19–21. In addition, domain knowledge was incorporated by interactively 
choosing example images that are uniformly distributed in the two-dimensional PCA-projected feature space; 
this reduced the class imbalance in the sample training set. We emphasize that the above-described feature 
space was only used for generating labeled training data, after which deep learning was employed for supervised 
classification. Focusing on supervised classification, we observed that the Inception V3 model, which was fine-
tuned using the semi-automatically generated labeled dataset achieved a good classification performance. This 
can be attributed to the ability of deep learning architectures to extract useful abstract features during training, 
as pointed out e.g. by35. Achieving such a good performance using a handful of human-labeled examples partly 
addresses the bottleneck of manual annotation of large data sets. Therefore, our approach contributes towards 
making the adoption of state-of-the art computer vision models into image based marine studies much easier.

When exploring the results of the unsupervised classification in the PCA-projected feature space, we observed 
that the inter-cluster separation distance was small. This observation is typical for images of the deep-sea, where 
the variation in seabed characteristics is subtle over kilometer scale, as was also pointed out in previous studies 
such as36. Our comparison of the four strategies for selecting the appropriate training data for fitting an unsuper-
vised classifier showed that with such images, random sampling may be the ideal approach for generating this 
training data set, if quick computation is most important. Despite the speed, however, random sampling may 
cause imbalance in the training data, since samples will be disproportionately drawn from regions of the feature 
space that are over-represented. This is likely to occur e.g., when images are collected in the largely homogenous 
abyssal Mn-nodule plains with only infrequent regions of no (sediment covered) nodules or other rare seabed 
characteristics. In a previous study, Prati et al.37 also corroborate this relationship between random sampling 
and class imbalance. Furthermore, training a classifier using imbalanced data may result in poor generalization 
performance, as was also pointed out by38. When the metric of interest is not speed but quality of the resulting 
clusters, our experiment showed that stratified cluster-based sampling is a better approach. This becomes evident 

Figure 10.   Deployment tracks in the German contract area (BGR), which show the seafloor classification 
results before and after the dredge experiments. The dredge experiment increased the proportion of sediment-
covered seabed (Seafloor A) by 30%. For context, the ‘before’ track is shown in gray overlaid as background in 
the bottom panel. For clarity, only one observation track is shown from after the dredge experiment.
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as it resulted in the highest absolute silhouette score, while being only 2 s slower than random sampling. The high 
silhouette score implies that of all the other methods we compared, the stratified cluster-based sampling approach 
resulted in clusters that are clearly distinguished from each other. This is because the approach incorporates an 
over-clustering step that first partitions the entire entropy-defined feature space, which allows samples to be 
drawn uniformly across all regions of the feature space, naturally reducing class imbalance. Data from a more 
heterogenous seafloor like in shallow water environments may not exhibit a similar feature space distribution, 
and therefore a different sampling strategy may be required that needs to be tested in future studies.

Visualizing the unsupervised seafloor classification results of the k-means clustering in feature space showed 
abrupt inter-class boundaries. This is an artifact of the k-means objective function that results in convex clusters 
with well-defined boundaries, as was also pointed out in a previous study by39. In the literature, there have been 
attempts to explicitly introduce fuzzy class boundaries in seafloor classification e.g.40. Others such as41 attempted 
to customize k-means by modifying its objective function using least-squares criterion to implicitly introduce 
fuzziness. However, the authors clearly point out that these fuzzy clustering approaches are very sensitive to clus-
ter size imbalance, and can result in clusters whose semantic meaning is hard to interpret. In our supervised case 
of the Inception V3, the boundaries were logically fuzzy in the PCA-projected space because the convolutional 
neural network outputs a set of probabilities. This allows the model to make soft classification by assigning each 
image a likelihood of belonging to each of the classes using a confidence score. Despite these general differences, 
our quantitative assessment of both the supervised Inception V3 and unsupervised k-means classification results 
indicate a good agreement, with a Cohen’s kappa coefficient of 0.6. McHugh42 also quantified the extent to which 
two different classifiers assign the same score to a variable using the Cohen’s kappa statistic. From these assess-
ments, it can be concluded that a fast, preliminary seafloor classification while at sea may be performed with 
unsupervised methods. The main advantage of using k-means is the low computing power needed, which never-
theless produces reasonable classification results. Supervised methods which require GPU computing resources 
may be better executed for seafloor classifications as part of a detailed habitat characterization in a second step. 
They are better suited to pick out subtle transitions between classes, which is usually the case in reality.

Regarding the geospatial distribution of seafloor classes and their correlation with bathymetry, the visu-
alization of our seafloor classes in map view makes it obvious that their spatial distribution is not random/
homogenous but clustered. In the Belgian area, the dense Mn-nodules (Seafloor C) and large sized Mn-nodules 
(Seafloor D) occupy 94% of the OFOS-inspected area at about 4500 m water depth. The German contract area 
pre-dominantly contains sparsely distributed Mn-nodules (Seafloor B) in the North, while the south comprises a 
mixture of both Seafloor B and Seafloor D. Overall, 96% of sparsely distributed Mn-nodules make up the seafloor 
in the German area at water depths of approximately 4100 m. The seafloor class D with big Mn-nodules lies in 
deeper regions of the seafloor with rugged terrain, whereas sparsely distributed nodules occupy shallower regions 
of the seafloor with flat terrain (please see further details in the supplementary information). This is consistent 
with the findings of prior studies, which showed that a higher number of Mn-nodules occur in areas with a rug-
ged seafloor than flat plains e.g.,41,43,44. At the site of the dredge experiment, stretches of sediment covered, or 
dredged/ploughed seabed (Seafloor A) appears after the experiment; the proportion of sediment covered seabed 
increased by 30% (see Fig. 10).

Comparing our approaches to related works, our color normalization approach based on automatically 
detected laser points introduced a simple yet novel workflow, which significantly reduced the underwater illu-
mination artifacts on our images. Similar to previous works e.g. by24, our approach rescaled and normalized the 
color of each image depending on its altitude above the seafloor: images recorded farther from the seafloor were 
transformed more than those close to the seafloor. In contrast, however, our approach was different since we did 
not have access to the altitude of each image, and therefore we implemented a novel approach that infers them 
from automatically detected laser points. Furthermore, our approach uses histogram matching to correct for 
uneven scene brightness among the photos, which is simple, parallelizable, and does not even require knowledge 
of parameters required for reconstruction of the path of light rays through the water column e.g. as demanded 
by physics-based approaches24,45,46, or photogrammetric structure from-motion47 and simultaneous localization 
and mapping (SLAM)48,49. Moreover, performing color normalization on the raw images improved the accuracy 
of seafloor classification; this is similar to observations by previous works such as by24,45. Particularly in our case, 
the raw images acquired at varying altitude were not directly comparable; these images represent regions of the 
seafloor with varying spatial foot print and scene brightness. With respect to generating annotations for training 
classifier, our semi-automated labeling approach greatly reduces human effort similar to previous works by11,50,51. 
However, our approach is novel because it allows for the incorporation of domain knowledge through feature 
space engineering, rather than only relying on similarity in geographic space and spatial auto correlation e.g. as 
proposed by52. Regarding optical image-based seafloor classification, our results revealed seabed substrate classes 
that had semantic meaning, similar to previous works by20,21,24,25,53,54. However, our workflow is novel since we 
implement both supervised (Inception V3) and unsupervised (k-means) classifiers, and we further demonstrate 
that both of them show a good overall agreement in seafloor classification accuracy. Thus, our study provides an 
unsupervised seafloor classification workflow that can be used at sea where computers are not very powerful, as 
well a supervised workflow that is suitable for office settings where there is access to computers with increased 
memory and GPU hardware.

Conclusion and recommendations for future research
This study contributes to the current understanding of image-based deep seabed classification, and its novelty 
can be summarized as follows: First, we implement a new approach that automatically detects laser points from 
a sequence of underwater images. This is useful for calculating scale, which allows marine researchers who make 
measurements on the images to convert from pixel units to real world metric units e.g., meters. The scale also 
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allows the scientists to infer the height above the seafloor from which the image was acquired, which is useful for 
determining the spatial footprint of the image; Second, we implement a semi-automated approach that drasti-
cally reduces the required human effort during image labeling. This is useful for marine scientists who routinely 
work with large volumes of underwater images, since it reduces the burden and fatigue of generating manual 
annotations, while still allowing them to train high-accuracy classification models (e.g., convolutional neural 
networks, random forests etc.) that automatically analyze the images and subsequently classify the seafloor into 
habitat types; Third, we propose stratified cluster-based sampling as good strategy for generating a subset of 
images to be used for training an unsupervised classifier. When faced with huge volumes of images following an 
expedition, this proposed sampling strategy is useful to help marine scientists when deciding how to generate a 
training set that fits in standard computer memory, while simultaneously being class balanced and not requiring 
specialized hardware such as GPU.

Although we propose stratified cluster-based sampling as the optimal unsupervised classifier, this conclu-
sion is specific to underwater photos recorded in the deep-sea abyssal plains, for which the seafloor is mostly 
homogenous. This may not hold in shallower depths with heterogenous seafloor characteristics, and future 
research could address this by extending our AI-SCW feature extraction module to investigate e.g., if color 
differences could be useful in classifying seafloor covered by other substrate classes such as seagrass, rocks and 
sand. In addition, future research could explore the possibility of embedding automated image-based workflows 
such as AI-SCW onto the data acquisition software of ROV/UAV. This would enable real time on-the-fly image 
analysis, which provides significant savings in time and post processing effort for applications such as seabed 
classification, megabenthic fauna detection as well as the quantification of crusts and nodules; these are ongoing 
developments at GEOMAR and other centers.

As a concluding remark, this study comprehensively presents a set of methods that together form an auto-
mated workflow for image-based seafloor classification and mapping. These include: automated laser point 
detection; semi-automated image annotation; as well as supervised and unsupervised seafloor classification. 
The applicability of these methods is demonstrated using a case study involving seafloor images from Mn-
nodule covered deep seabed areas of the Clarion Clipperton Zone in the Central Pacific Ocean. In so doing, we 
clearly demonstrate potential ways of incorporating recent advances in machine learning and computer vision 
into marine research, especially for purposes of generating actionable insights from the huge volumes of opti-
cal underwater imagery, which are nowadays recorded during scientific expeditions by imaging systems such 
as AUV, ROV and OFOS. We believe that these insights significantly contribute towards the broader aim of 
understanding our marine ecosystems, which in turn enables appropriate measures to be established for their 
management and sustainable use.

Materials and methods
Working area.  As a case study, AI-SCW was applied to an underwater image dataset recorded during an 
expedition to the German and Belgian contract areas for manganese nodule (Mn-nodule) mining, at the Clarion 
Clipperton Zone (CCZ) in the central Pacific Ocean. The expedition was part of the second phase of the JPI-
Oceans project MiningImpact, and was executed on board the German research vessel SONNE during cruise 
SO268. The project aimed at assessing how potential mining of polymetallic nodules on the seafloor would 
impact the deep-sea environment. A total of 12 video investigations were performed in two different contract 
areas (Table 1). Within the German contract area, a small-scale sediment plume experiment was conducted, 
using a chain dredge to observe the re-depositioning of plume sediments before and after the disturbance. Three 
camera deployments were conducted to photograph the seafloor after the dredge experiment, while one deploy-
ment was conducted before the experiment for comparison55.

Setup of the image acquisition system.  The underwater images were acquired using an Ocean Floor Observa-
tion System (OFOS), which was towed at a speed of 0.5 knots at 1 to 4 m above the seafloor. It comprised a steel 
frame equipped with both still and video cameras. The still images were recorded using a Canon EOS 5D Mark 
IV camera with a 24 mm lens, whereas video was recorded using the HD-SDI camera with 64° × 40° view. These 
two cameras were spaced 50 cm apart and directed vertically towards the seafloor alongside two strobe lights 
(Sea&Sea YS-250), four LED lights (SeaLite Sphere), three lasers spaced 40 cm apart, one altimeter and one 
USBL system for tracking the position of the OFOS. Whereas the video camera recorded continuously, the still 
camera took an image once every 10 s. Both cameras had a dome port that did not alter the field of view as long 
as the lens was centered properly within the dome. Camera calibration was done by photographing a camera 
calibration target on deck before the actual deployment. Further details regarding the image acquisition set up 
can be found on page 65 of the SO268 cruise report55.

Image dataset.  The image dataset comprised 40,678 underwater still images, which were recorded during the 
12 deployments of the towed Ocean Floor Observation System (OFOS). The respective data are published on 
PANGAEA56, and can be accessed online (https://​doi.​panga​ea.​de/​10.​1594/​PANGA​EA.​935856). In addition to 
the PANGAEA dataset, the images can also be accessed upon request as services through the BIIGLE portal 
(https://​annot​ate.​geomar.​de/​proje​cts/​44). BIIGLE is an online image annotation platform, specifically developed 
to facilitate the annotation of benthic fauna from underwater images57. The OFOS deployments were conducted 
in an average water depth of 4,280 m, covering a track length of 92.5 km in total. After acquisition, the images 
were georeferenced by matching each image’s acquisition time in UTC to the USBL navigation data. Three laser 
pointers in a triangular configuration are used for scaling. Light is provided through several lights focusing on 
the central area below the OFOS frame illuminating the field of view of the vertically downward looking camera. 

https://doi.pangaea.de/10.1594/PANGAEA.935856
https://annotate.geomar.de/projects/44
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Detailed information about these images and their acquisition can be found in the SO268 cruise report55. Table 1  
provides an overview of the OFOS deployments during the expedition.

Software and APIs.  AI-SCW has been implemented using the Python programming language. Some of 
the major libraries used include scikit-image, scikit-learn, TensorFlow and pandas. Supplementary Table S1 pro-
vides a complete list of all the specific python libraries used in AI-SCW as well as a brief description of their use. 
In addition, the specific python scripts used in implementing each component of AI-SCW is shown in supple-
mentary Table S2. All of these scripts can be found online in this public Gitlab repository (https://​git.​geomar.​de/​
open-​source/​AI-​SCW), where the complete source code files for the AI-SCW project are open source. Alongside 
the source code files, a detailed guide for setting up the programming environment and executing the respective 
scripts for each component of AI-SCW is provided.

Image enhancements.  Scale determination by laser point detection.  Three laser points projected onto the 
seafloor and photographed in each image are used to determine the image scale. This scale is useful for marine 
scientists who rely on measurements made on the images, since it forms the basis for the conversion from pixel 
units to real world units. The scale is calculated as a ratio between the distance separating the three laser points 
(in pixel units) and their calibrated distance measured in real world units (centimeters). Manually annotating 
the laser points from thousands of images is laborious and non-scalable. This provides the primary motivation 
for automating the laser point detection. Below, we describe an approach for automatically detecting lasers from 
each image, and using these detections to calculate the scale for each corresponding image.

Each image I of the data set consists of three-color channels (I(R), I(G), I(B)) and each of these channels has 
a pixel width w = 4480 and pixel height h = 6720. One training image with well visible laser points is manually 
selected and annotated. The annotations provide an estimate for the pixel coordinates of laser points in all images. 
This is done by creating a mask Mlp as triangle which connects the three annotated laser points. To allow for vari-
ability in laser point coordinates caused by varying OFOS altitude, a buffer is added around Mlp. This buffer is 
chosen as 250 pixels in our implementation. It was determined by randomly checking different images of varying 
altitudes to evaluate if laser points indeed fall within the buffered mask. The three annotated laser points provide 
the average pair-wise distance dlp between laser points in pixel units.

To detect the red laser points in an image I, first a linear combination of its color channels is used to generate 
a laser signal image I(LS):

Equation 1 was derived from the observation that since the pixels around the laser points were bright red 
in color (high values in the red color channel), it follows logically that the blue and green color channels had 
low values in the same region of the image. Therefore, subtracting a linear combination of blue and green color 
channels from the red color channel would result in an intermediate image, which has very high values around 
the laser points and very low values elsewhere.

(1)I(LS) = I(R) − 0.2(I(B) + I(G))

Table 1.   Overview of the OFOS deployments in the Clarion Clipperton Zone during cruise SO268.

Station Contract area Depth (m)
Approx. track length 
(km)

Approx. bottom time 
(h)

Number of pictures 
taken at the seafloor

SO268-1_21-1_
OFOS02 German 4538 9.2 11.0 3921

SO268-1_30-1_
OFOS03 German 4070 10.7 12.0 4981

SO268-2_100-1_
OFOS05

German Dredge 
(before) 4247 5.0 8.6 2749

SO268-2_117-1_
OFOS06 German 4109 7.7 8.5 2956

SO268-2_126-1_
OFOS07 German Dredge (after) 4117 8.8 10.0 3492

SO268-2_160-1_
OFOS11 German Dredge (after) 4115 11.0 10.0 3526

SO268-2_164-1_
OFOS12 German Dredge (after) 4118 5.0 9.0 3075

SO268-2_177-1_
OFOS13 German 4127 7.3 9.5 3414

SO268-1_63-1_
OFOS04 Belgian 4478 10.5 12.5 4532

SO268-2_128-1_
OFOS08 Belgian 4486 5.5 8.0 2749

SO268-2_147-1_
OFOS09 Belgian 4519 5.8 8.0 2981

SO268-2_153-1_
OFOS10 Belgian 4522 6.0 8.0 2302

https://git.geomar.de/open-source/AI-SCW
https://git.geomar.de/open-source/AI-SCW
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Therefore, laser points of I then are among the intensity maxima in I(LS). These maxima are determined by a 
local peak-finding algorithm58. This algorithm is set to return maxima with a minimum pixel distance of dlp. The 
laser point coordinates lpi for I are then chosen as those three or less maxima that fall within the mask Mlp. An 
example of the subsequent steps of the laser point detection workflow is shown in Fig. 11.

The image scale s of I is computed by dividing the average of the pair-wise laser point distances di (i = 0,..,|lp|) 
by the known real-world distance of the laser pointers of 40 cm:

Illumination and color normalization.  Since tasks such as image-based seafloor classification depend on the 
visual quality of the images, illumination and color normalization needs to be applied before any automated clas-
sification can start. This is necessary to heuristically remove attenuation, scattering and altitude effects caused 
by the water, the artificial light and the vertical movement of the OFOS. In this paper, illumination and color 
normalization was done in three processing steps: First, z-score normalization was applied to remove illumina-
tion drop-off towards the corners/edges of each image. Second, adaptive histogram equalization was applied to 
maximize contrast in each image. Finally, histogram matching using a reference image with the maximum reso-
lution was applied to correct for uneven brightness among the images by equalizing their intensity distribution. 
The detailed mathematical formalisms for each of the three processing steps can be found in the supplementary 
materials, and also in the user guide in the GitLab repository. An example image processed through each of the 
three steps of illumination and color normalization is shown in Fig. 12.

Standardizing the spatial image footprint.  To ensure that each image represented an equal area on the seafloor 
in square meters, the color normalized images were transformed to a consistent spatial resolution (pixel/cm).

To achieve this, first, the median scale ScM was obtained from the set Sc comprising image scales of all the 
N images as:

The scaling factor Fi for an image indexed by i was then calculated as the ratio between its image scale Si 
and SM:

This scaling factor was used to resize and resample each image using third order spline interpolation. The 
rescaled images were then center cropped to a standard size of width = 2240 and height = 3360, which corresponds 
to a spatial footprint of approximately 1.6 m2 in each image (here 21.6 pixel/cm).

Seafloor classification.  The automation of image-based seafloor classification is done by training a clas-
sifier using a subset of images. During training, the classifier learns a function that maps the training images to 
their corresponding labels. After training, the classifier is then used in inference mode to predict the seafloor 
class label for all remaining images. Below, we present both supervised and unsupervised seafloor classifier 
approaches implemented in AI-SCW using the python scripts indicated in supplementary Table S2.

Supervised seafloor classification.  Semi‑automated image labeling.  Supervised classification relies on labeled 
images to train a classifier. However, the generation of these labeled images requires expert annotators to manu-
ally inspect a large number of images and assign a label to each image. This is very time consuming and is also 

(2)s =

∑|lp|
i=1 di

|lp| ∗ 40
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Figure 11.   Progression of laser point detection. The local maxima of the laser signal image I(LS) contain 
potential laser points (shown in blue). The desired laser point coordinates (shown in red) fall within the buffered 
mask Mlp.
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not scalable given the large number of images collected during each camera deployment. Therefore, a semi-
automated labelling approach was implemented in AI-SCW to reduce the effort required from the human anno-
tator. This was done by first grouping semantically similar images within the feature space. Nearest neighbor 
sampling was then used to automatically sample images that fall in the neighborhood of manually annotated 
example images. The feature space was defined by 6-dimensional feature vectors, each of which encoded texture 
and entropy feature information extracted from the images. The motivation for choosing these features was their 
ability to describe the Mn-nodule covered seafloor of the CCZ; Mn-nodules appear on the images as irregular 
blobs of dark pixels. With other images and seafloor characteristics, potentially other features may give better 
discrimination results, and these features would need to be identified first. Feature extractors such as Resnet-5059 
that are pre-trained on terrestrial image datasets did not yield a semantically meaningful feature space for our 
images. This is because Resnet-50 and other models require further fine-tuning using underwater images.

In detail, texture features were generated by converting each image to gray scale, and extracting its connected 
components. Connected components are pixels with similar intensity that are connected to each other. In each 
image, the properties of these connected components were measured, aggregated and concatenated to form the 
texture properties vector. These properties included median size of convex hull; upper quantile of the area in 
pixels; total area of the components in pixels; density and total count of components. In addition, local entropy60 
was extracted to reveal the subtle intensity variations within the neighborhood of each pixel. The total entropy 
was appended to the texture properties vector to form the final 6-dimensional feature vector. A data matrix X was 
then generated by stacking together the feature vectors extracted from all the images as row vectors, after which 
it was standardized column wise by removing the mean and scaling to unit variance. Linear Kernel Principal 
Component Analysis61 was applied to the this data matrix X to linearly project each feature vector to a 2-dimen-
sional feature space for visualization purposes. The human analyst inspected this feature space, and chose 50 
uniformly distributed example images for hand labeling. The set of labeled images T(labeled) was then automatically 
generated by sampling 100 nearest neighbors around each hand labeled image. The sampling size was chosen 
to ensure that the set of labeled images was at least 10% of the total image dataset. In particular for this study, 
the 5000 sampled images corresponded to 12.5% of the entire image dataset comprising 40,211 images. This 
semi-automated labeling was only possible because the feature space mapped similar images close to each other.

Using this workflow, it was possible to label each image as belonging to one of four seafloor classes (see 
Fig. 5D). Class Seafloor A comprised images showing seabed with no or only few Mn-nodules; this class also con-
tains seafloor dredge marks and turned-over sediment similar to ploughing impacts; Class Seafloor B comprised 
Mn-nodule patches that partly cover the seabed; class Seafloor C comprised Mn-nodules densely distributed 
per unit area; and class Seafloor D comprised Mn-nodules that were qualitatively large sized relative to those in 
classes Seafloor B and C.

Fine‑tuning inception V3 supervised classification.  A training set comprising 80% of the labeled images T(labeled) 
was used to fine-tune an instance of the Inception V3 classifier27. This classifier is a convolutional neural network 
pre-trained on ImageNet62. The fine-tuning was done on a GeForce RTX 2080 Ti graphics card, and comprised 
200 iterations. Each iteration involved gradient computations in the forward pass, and network weight updates 

Figure 12.   Example showing the color normalization transformations positioned counterclockwise. The 
transformation progresses from original image I to illumination drop-off corrected image I(IL) to histogram 
equalized image I(HE) and finally to the color normalized image I(IN).



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15338  | https://doi.org/10.1038/s41598-022-19070-2

www.nature.com/scientificreports/

in the backward pass. The weights of the Inception V3’s convolutional base were frozen to prevent them from 
being updated during the fine tuning; the weights that were updated were those of a 1024-dimensional fully 
connected layer and the final 4-dimensional classification head that were attached to the convolutional base. 
The cross-entropy loss and accuracy curves were used to track the training progress, which took approximately 
4 hours. Upon convergence, the fine-tuned classifier performance was measured using both F1 accuracy metric 
and a confusion matrix; as an example, the element of the matrix at position (A, B) would represent the count of 
test set images that belong to class A, but which were wrongly predicted as belonging to class B. In addition, the 
distribution over classifier confidence scores for each class was used to visually assess the classifier performance. 
The figures for the confusion matrix and distribution over scores are shown in Fig. 5A,C.

Unsupervised seafloor classification.  Training data generation strategies.  Unsupervised classification groups 
similar images in feature space into clusters. This has the benefit of requiring no hand labeling. However, a subset 
of images is required as training examples to fit the unsupervised classifier. This is because executing the clas-
sification has a direct implication for the needed computer memory and execution time, and scales at least quad-
ratic to the number of samples63. Therefore, four sampling strategies were evaluated with the aim of identifying 
the optimal method for sampling a representative training set comprising n = 5000 images. The sample size n was 
chosen to correspond to the same number of images, as was done in the semi-automated labeled image genera-
tion mentioned above (12.5% of the dataset). In addition, entropy was extracted from each image and chosen as 
a feature in two sampling strategies. This is because the variation in the content of the images used here is mostly 
in terms of distribution of Mn-nodules, which was assumed to be well captured by entropy. Also, entropy is fairly 
computationally cheap to extract, which was convenient for an evaluation experiment. Other seafloor images 
might require and work better with another image feature.

First, random sampling was used to generate the training set T(random) by assigning each image an equal likeli-
hood of being drawn. Second, spatially uniform sampling was used to uniformly sample the geographic extent 
of the working area. The training set T(spatial) was generated by binning the geographic coordinates representing 
each image into n bins, and drawing an image randomly from each bin. Third, stratified cluster-based sampling 
used k-means clustering to stratify the images based on their entropy features. The training set T(stratified) compris-
ing n images was generated by uniformly sampling each stratum. Finally, probabilistic weighted re-sampling 
was used to reduce imbalance by oversampling the under-represented regions of a probability density function 
(pdf). The pdf was generated by fitting a one-dimensional gaussian mixtures model using the entropy features 
extracted from all images as datapoints. The assumption is that these datapoints were drawn from a probability 
distribution comprising a mixture of a finite number of gaussians (20 in this case). The pdf was then generated 
by inferring the parameters of this probability distribution during model fitting. The training set T(probabilistic) 
was then generated by weighted random sampling, where each image was assigned a weight equal to its density 
under the inverted version of the pdf.

Training k‑means classifier for each training data generation strategy.  The feature vectors for each training set 
in 
{

T(random),T(spatial),T(stratified),T(probabilistic)
}

 were retrieved from the data matrix X, and used to separately 
fit a k-means classifier. The optimum number of clusters was determined by computing the silhouette score64 for 
distinct number of clusters ranging between 2 and 20. The number of clusters that resulted in the highest score 
was chosen as the optimum.

Determination of the optimal training data generation strategy.  Each training data generation strategy was 
evaluated based on two metrics. These include time-to-fit, and the quality of the resulting clusters. The silhouette 
score metric was used to quantify the quality of clusters by measuring how dense the elements in each cluster are 
relative to other clusters. Time-to-fit was measured in number of seconds it took the used computer to sample 
the training data and fit the classifier until convergence. The sampling strategy corresponding to the classifier 
that resulted in the highest silhouette score and a comparable short computation time was chosen as the optimal 
strategy.

Mapping the spatial distribution of seafloor classes.  The georeferenced coordinates of each image 
were used to visualize each photo location along the OFOS tow-tracks, color coded by the corresponding sea-
floor class A to D. The seafloor classification maps for the German and Belgian license area were generated sepa-
rately. In addition, maps were also generated for the German contract area, showing the seafloor classes before 
and after the dredge experiment.

Data availability
The datasets presented in this study can be found online in PANGAEA through the following link https://​doi.​
panga​ea.​de/​10.​1594/​PANGA​EA.​935856. Intermediate data generated during the analysis is also provided in 
the supplementary materials as an excel file. To request the data used in this study, please contact Prof. Dr. Jens 
Greinert using the email address jgreinert@geomar.de.
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