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Abstract: The present work investigated the dynamic changes in stressed volume (Vs) and other
determinants of venous return using a porcine model of hyperdynamic septic shock. Septicemia was
induced in 10 anesthetized swine, and fluid challenges were started after the diagnosis of sepsis-
induced arterial hypotension and/or tissue hypoperfusion. Norepinephrine infusion targeting a
mean arterial pressure (MAP) of 65 mmHg was started after three consecutive fluid challenges. After
septic shock was confirmed, norepinephrine infusion was discontinued, and the animals were left
untreated until cardiac arrest occurred. Baseline Vs decreased by 7% for each mmHg decrease in
MAP during progression of septic shock. Mean circulatory filling pressure (Pmcf) analogue (Pmca),
right atrial pressure, resistance to venous return, and efficiency of the heart decreased with time
(p < 0.001 for all). Fluid challenges did not improve hemodynamics, but noradrenaline increased
Vs from 107 mL to 257 mL (140%) and MAP from 45 mmHg to 66 mmHg (47%). Baseline Pmca
and post-cardiac arrest Pmcf did not differ significantly (14.3 ± 1.23 mmHg vs. 14.75 ± 1.5 mmHg,
p = 0.24), but the difference between pre-arrest Pmca and post-cardiac arrest Pmcf was statistically
significant (9.5 ± 0.57 mmHg vs. 14.75 ± 1.5 mmHg, p < 0.001). In conclusion, the baseline Vs
decreased by 7% for each mmHg decrease in MAP during progression of hyperdynamic septic shock.
Significant changes were also observed in other determinants of venous return. A new physiological
intravascular volume existing at zero transmural distending pressure was identified, termed as the
rest volume (Vr).

Keywords: septic shock; venous return; mean circulatory filling pressure; stressed volume;
unstressed volume; rest volume; cardiovascular dynamics; hemodynamics; anesthesiology; intensive
care medicine

1. Introduction

The traditional management of shock focuses on the regulation of left ventricular
cardiac output (CO). However, it is the venous return theory that provides an understanding
of the circulation, emphasizing that CO is associated with, and regulated by, the amount
of blood returning to the heart. In general, venous return occurs because of a pressure
gradient between the periphery and the right atrium. As a matter of fact, not all the blood
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leaving the venous system returns to the heart at the same time because the largest quantity
remains within the veins to regulate venous return [1]; therefore, approximately 30% of the
total blood volume (TBV) represents stressed volume (Vs, i.e., the volume in blood vessels
when transmural distending pressure (Ptm) is above zero), while the remaining 70% is
unstressed volume (Vu), i.e., the volume in blood vessels when Ptm equals zero.

The modification of the venous system that occurs in sepsis is poorly understood.
Experimental studies have indicated a diverse pathophysiology with biphasic hemody-
namic responses and/or hyperdynamic hypotensive circulatory states [2–4], suggesting
a disproportionate impairment in peripheral vasoregulation [5]. Sepsis increases venous
capacitance and decreases systemic vascular resistance (SVR), leading to cardiovascular
compromise and tissue hypoperfusion. In septic shock, the TBV status is unchanged,
but the progressive vasodilation shifts a portion of the Vs to Vu, which decreases mean
circulatory filling pressure (Pmcf) and venous return [6].

The use of the Vs:Vu ratio introduced novel strategies for fluid resuscitation and
vasopressor administration. Nevertheless, the current recommendations on sepsis and
septic shock have failed to reach hemodynamic goals [7]. After decades of research, it seems
that the optimal management requires a basic understanding of the underlying evolving
pathophysiology and an individualized, physiology-guided strategy [8]. An important
asset to this would be the comprehension of Vs:Vu ratio changes during progression of the
condition. In the present study, we aimed to elucidate this topic in greater detail. To this
end, we investigated the dynamic changes in Vs and other determinants of venous return
during progression and resuscitation of hyperdynamic septic shock in an experimental
swine model.

2. Materials and Methods
2.1. Extrapolation Model of Calculation of Stressed Volume

An extrapolation model was created to assess circulatory volumes in steady-state and
pathophysiological conditions using 20-kg Landrace–Large White swine. As the animals’
baseline hemodynamics closely resemble human hemodynamics [9,10], we accepted that
30% of their TBV represents Vs and the remaining 70% is Vu [11–14]. The TBV of the
Landrace–Large White swine is 7% of the total body weight, i.e., 1400 mL for a 20 kg animal,
and therefore, their baseline Vs is 420 mL.

We have recently shown that the blood volume that has to be removed from the 20-kg
swine to induce cardiac arrest is ≈860 mL [15]. This volume includes the Vs and the Vu that
converts to Vs during hemorrhage [14,16]. Considering that the Vs is 420 mL, the blood
volume mobilized from the splanchnic and other compliant veins to maintain Ptm > 0, and
thus Vs and venous return, in the 20-kg swine during hemorrhage is 440 mL [15]. Although
in severe hypovolemia the homeostatic mechanisms involved in hemodynamics and CO
regulation may empty the splanchnic reservoir [17], the remaining 540 mL of the 1400 mL
of blood in our animals was volume that was not mobilized from the venous pool, probably
due to depletion of sympathoadrenal system reserves or splanchnic sequestration, or
mobilization could have occurred only with the use of exogenous vasopressor. This volume
can be characterized as the “rest volume” (Vr), i.e., the volume that cannot be mobilized
without the use of an external vasopressor or without decreasing arterial and/or venous
resistance. The Vs and the Vu (i.e., the volume that can be converted to Vs or Vr) constitute
the potential total circulating blood volume (Vc). In our model, the following apply:

Total blood volume (mL) = Vc + Vr = (Vs + Vu) + Vr (1)

and
Steady state: Vs = 420 mL, Vu = 440 mL, Vr = 540 mL (TBV = 1400 mL).
During hemorrhage: Vs = 420 mL + 440 mL from Vu (to maintain Ptm > 0), Vr = 540 mL.
Hypovolemic cardiac arrest: 860 mL removed and Vr = 540 mL (Ptm ≈ 0).
In summary, in the hemorrhagic model, the Vs (420 mL in the 20-kg swine with TBV

1400 mL) was related to a MAP of 88.4 mmHg, while the Vr (540 mL) was the blood vol-
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ume at MAP 30 mmHg (cardiac arrest) [15]. The Vs, Vu, and Vr during hemorrhage are
depicted in Figure S1. The extrapolation of the aforementioned baseline data from the
hemorrhagic model to animals of the same age, weight, TBV, and baseline hemodynam-
ics [9,15] allows the study of circulatory volumes in other experimental conditions using
linear regression analysis.

2.2. Experimental Model
2.2.1. Ethics Approval

Taking into consideration the principles of 3R, i.e., Replacement, Reduction, and Re-
finement, which represent a responsible approach for performing more humane animal
research [18], we conducted a post hoc analysis of high-quality hemodynamic data derived
from a previous study investigating resuscitation in hyperdynamic septic shock [9]. The
original protocol was approved by the General Directorate of Veterinary Services (license
No. 26, 10 January 2012) according to the national legislation regarding ethical and ex-
perimental procedures. These procedures conformed to the guidelines from Directive
2010/63/EU of the European Parliament on the protection of animals used for scientific
purposes or the current National Institutes of Health guidelines. The manuscript adheres to
the applicable ARRIVE 2.0 and Minimum Quality Threshold in Pre-Clinical Sepsis Studies
(MQTiPSS) guidelines [19,20].

2.2.2. Study Objectives

The primary objective was to assess the dynamic changes in Vs and other determinants
of venous return during progression and resuscitation of hyperdynamic septic shock.
Secondary objective was to measure Pmcf after sepsis-induced cardiac arrest.

2.2.3. Origin and Source of the Animals

This analysis included 10 healthy female Landrace–Large White piglets aged 19–21 weeks
with average weight of 20 ± 1 kg, all purchased from the same breeder (Validakis, Koropi,
Greece). One week prior to the experiments, the animals were transported to the research
facility (Experimental-Research Center Elpen, European Ref Number EL 09 BIO 03) and
were acclimatized to laboratory conditions, as previously described [10]. The day before the
experimentation, the animals were fasted, but access to water was ad libitum. All animals
received anesthetic and surgical procedures in compliance with the Guide for the Care and
Use of Laboratory Animals [21].

2.2.4. Animal Preparation

The animals were premedicated with intramuscular ketamine hydrochloride (Merial,
Lyon, France), 10 mg·kg−1, midazolam (Roche, Athens, Greece), 0.5 mg·kg−1, and atropine
sulphate (Demo, Athens, Greece), 0.05 mg·kg−1, and were subsequently transported to
the operation research facility. Intravascular access was obtained through the auricular
veins, and induction of anesthesia was achieved with an intravenous bolus dose of propofol
(Diprivan 1% w/v; AstraZeneca, Luton, United Kingdom), 2 mg·kg−1, and fentanyl (Janssen
Pharmaceutica, Beerse, Belgium), 2 µg·kg−1. While breathing spontaneously, the animals
were intubated with a size 6.0 mm cuffed endotracheal tube, which was secured on the
lower jaw. Successful intubation was ascertained by auscultation of both lungs while
ventilated with a self-inflating bag.

The animals were then immobilized in the supine position on the operating table and
were volume-controlled ventilated (tidal volume 10 mg·kg−1, inspiratory-to-expiratory
time ratio 1:2, positive end-expiratory pressure 0 cm H20, fraction of inspired oxygen 0.21;
Siare Alpha-Delta Lung Ventilator; Siare s.r.l. Hospital Supplies, Bologna, Italy) [22]. Ad-
ditional amounts of 1 mg·kg−1 propofol, 0.15 mg·kg−1 cis-atracurium, and 4 µg·kg−1

fentanyl were administered intravenously to ascertain synchrony with the ventilator.
Amounts of propofol 0.1 mg·kg−1·min−1, cis-atracurium 20 µg·kg−1·min−1, and fentanyl
0.6 µg·kg−1·min−1 were administered to maintain adequate anesthetic depth, assessed by
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the jaw tone, throughout the study [9,10,22]. Normocapnia was achieved using continuous
monitoring of end-tidal carbon dioxide (ETCO2, Tonocap TC-200-22-01; Engstrom Division,
Instrumentarium Corp, Helsinki, Finland), and the respiratory rate was adjusted to main-
tain ETCO2 35–40 mmHg. Pulse oximetry was monitored throughout the experiment. Body
temperature was monitored by a rectal temperature probe and was maintained between
38.5 ◦C and 39.5 ◦C with a heating blanket [22].

Electrocardiographic monitoring was used using leads I, II, III, aVR, aVL, and aVF,
which were connected to a monitor (Mennen Medical, Envoy; Papapostolou, Athens,
Greece) that electronically calculated the heart rate. For measurement of the aortic pressures,
an arterial catheter (model 6523, USCI CR, Bart; Papapostolou, Athens, Greece) was inserted
and moved forward into the descending aorta after surgical preparation of the right internal
carotid artery. A FloTrac sensor kit was connected to the arterial line and coupled to a
Vigileo monitor (FloTrac/Vigileo; Edwards Lifescience, Irvine, CA, USA). Then, the internal
jugular vein was cannulated, and a Swan–Ganz catheter (Opticath 5.5F, 75 cm; Abbott,
Ladakis, Athens, Greece) was inserted into the right atrium. Intravascular catheters were
zeroed to ambient pressure at the phlebostatic axis, and measurements initiated after
the systems’ dynamic response was confirmed with fast-flush tests. These allowed the
recording of systolic (SAP), diastolic (DAP), and mean (MAP) arterial pressure, and CO,
SVR, and right atrial pressure (PRA). Arterial blood gases were measured on a blood
gas analyzer (IRMA SL Blood Analysis System, Part 436301; Diametrics Medical Inc.,
Roseville, MN, USA). Baseline data were collected after allowing each animal to stabilize
for 30 min.

2.2.5. Preparation of Bacterial Suspensions

We used bacterial suspensions in normal saline with a concentration of approximately
1 × 108 cfu·mL−1 and therefore 0.5 McFarland turbidity [9]. The strains (lipopolysaccharide
Escherichia coli (E. coli) ATCC 25922) were derived from the Microbiology Laboratory of the
Aretaieion University Hospital in Athens, Greece, and stored at −70 ◦C in 50% glycerol
solution. Each vial contained 5 × 108 cfu·mL−1 bacteria in logarithmic phase. Two days
prior to the experimental procedure, the vials were allowed to defrost at room temperature
and then cultured in blood agar plates. They were incubated at 37 ◦C for 14 h and then
recultured every 14 h. At the middle of the logarithmic phase, the colonies were skimmed
from the surface and suspended in 12.5 mL of sterile normal saline that was equally
divided into four tubes (3.125 mL each). The 12.5 mL were removed from a sterile normal
saline bottle of 100 mL. In each tube, we created a bacterial suspension with a turbidity of
4 McFarland. Then, the suspensions were reinfused back in the 100 mL bottle of normal
saline. After vigorous shaking (vortex) we removed 3 mL from the 100 mL and counted the
turbidity. If it was 0.5 McFarland, the suspension was accepted. The turbidity was measured
with a spectrophotometer at a wavelength of 580 nm (Densicheck Plus Biomerieux). The
suspensions were stored at 4 ◦C for 6–8 h and were left at room temperature 30 min prior
to the infusion.

2.2.6. Experimental Procedure

After baseline data were collected, septicemia was induced by an intravenous infusion
of a bolus of 20 mL of bacterial suspension over two minutes, followed by a continuous infu-
sion (1 mL·kg−1·h−1; 1 mL = 108 cfu) during the rest of the experiment (Figure 1) [9]. Hemo-
dynamic measurements were obtained every one hour after inoculation and sepsis was
documented by the presence of systemic manifestations. The definitions of sepsis and septic
shock were based on the 2012 Surviving Sepsis Campaign Guidelines, and septic shock was
defined as sepsis-induced hypotension persisting despite adequate fluid resuscitation [23].



J. Pers. Med. 2022, 12, 724 5 of 16

J. Pers. Med. 2022, 12, 724 5 of 16 
 

 

definitions of sepsis and septic shock were based on the 2012 Surviving Sepsis Campaign 

Guidelines, and septic shock was defined as sepsis-induced hypotension persisting 

despite adequate fluid resuscitation [23]. 

 

Figure 1. Experimental protocol outline. 

Fluid challenges of 10 mL·kg−1 isotonic sodium chloride were started with the 

diagnosis of sepsis-induced arterial hypotension and/or tissue hypoperfusion (lactate > 1 

mmol·L−1) [23]. Particular attention was paid to infuse the fluid challenges over 20–30 min 

and not faster in order to prevent an artificial stress response [9]. Norepinephrine infusion 

of 0.01–3 μg·kg−1·min−1 targeting a MAP of 65 mmHg was started after three consecutive 

fluid challenges without improvement in MAP. When MAP ≥ 65 mmHg, septic shock was 

confirmed and norepinephrine infusion was discontinued [9,23]. No other fluids, 

vasopressors, or inotropes were used, and no other adjustments were performed despite 

further deterioration, and all animals were left untreated until cardiac arrest occurred. 

2.2.7. Calculation of Baseline Mean Circulatory Filling Pressure Analogue and Related 

Variables 

Mean circulatory filling pressure analog (Pmca) was calculated from running 

hemodynamic data to assess the effective circulating volume and the driving pressure for 

venous return. The methods of the Pmca algorithm have been described in detail before 

[24–28]. Briefly, based on a Guytonian model of the systemic circulation [CO = VR = (Pmcf 

− PRA)/RVR], an analogue of Pmcf can be derived using the mathematical model Pmca = (a 

× PRA) + (b × MAP) + (c × CO), where PRA is right atrial pressure and RVR is resistance to 

venous return [29,30]. In this formula, a and b are dimensionless constants (a + b = 1). 

Assuming a veno-arterial compliance ratio of 24:1, a = 0.96 and b = 0.04, reflecting the 

contribution of venous and arterial compartments, and c resembles arteriovenous 

resistance and is based on a formula including age, height, and weight [27,30,31]: 

𝑐 =  
0.038 (94.17 +  0.193 ×  age)

4.5 (0.99age − 15) 0.007184 ·  (height0.725) (weight0.425)
 (2) 

In addition, the following variables were determined: (1) pressure gradient for 

venous return (PGVR) was defined as the pressure difference between Pmca and PRA [PGVR 

= Pmca − PRA]; (2) resistance to venous return was defined as the ratio of the pressure 

difference between Pmca and PRA and CO [RVR = (Pmca − PRA)/CO], a formula that is used 

to describe venous return during transient states of imbalances (Pmca is the average 

pressure in the systemic circulation, and RVR is the resistance encountered by the heart) 

[32,33]; and (3) efficiency of the heart (Eh) was defined as the ratio of the pressure 

Figure 1. Experimental protocol outline.

Fluid challenges of 10 mL·kg−1 isotonic sodium chloride were started with the diagnosis of
sepsis-induced arterial hypotension and/or tissue hypoperfusion (lactate > 1 mmol·L−1) [23].
Particular attention was paid to infuse the fluid challenges over 20–30 min and not
faster in order to prevent an artificial stress response [9]. Norepinephrine infusion of
0.01–3 µg·kg−1·min−1 targeting a MAP of 65 mmHg was started after three consecutive
fluid challenges without improvement in MAP. When MAP ≥ 65 mmHg, septic shock
was confirmed and norepinephrine infusion was discontinued [9,23]. No other fluids,
vasopressors, or inotropes were used, and no other adjustments were performed despite
further deterioration, and all animals were left untreated until cardiac arrest occurred.

2.2.7. Calculation of Baseline Mean Circulatory Filling Pressure Analogue and
Related Variables

Mean circulatory filling pressure analog (Pmca) was calculated from running hemody-
namic data to assess the effective circulating volume and the driving pressure for venous re-
turn. The methods of the Pmca algorithm have been described in detail before [24–28]. Briefly,
based on a Guytonian model of the systemic circulation [CO = VR = (Pmcf − PRA)/RVR],
an analogue of Pmcf can be derived using the mathematical model Pmca = (a × PRA) +
(b × MAP) + (c × CO), where PRA is right atrial pressure and RVR is resistance to venous
return [29,30]. In this formula, a and b are dimensionless constants (a + b = 1). Assuming a
veno-arterial compliance ratio of 24:1, a = 0.96 and b = 0.04, reflecting the contribution of
venous and arterial compartments, and c resembles arteriovenous resistance and is based
on a formula including age, height, and weight [27,30,31]:

c =
0.038 (94.17 + 0.193 × age)

4.5
(
0.99age−15

)
0.007184 ·

(
height0.725

) (
weight0.425

) (2)

In addition, the following variables were determined: (1) pressure gradient for
venous return (PGVR) was defined as the pressure difference between Pmca and PRA
[PGVR = Pmca − PRA]; (2) resistance to venous return was defined as the ratio of the pres-
sure difference between Pmca and PRA and CO [RVR = (Pmca − PRA)/CO], a formula
that is used to describe venous return during transient states of imbalances (Pmca is the
average pressure in the systemic circulation, and RVR is the resistance encountered by the
heart) [32,33]; and (3) efficiency of the heart (Eh) was defined as the ratio of the pressure
difference between Pmca and PRA and Pmca [Eh = (Pmca – PRA)/Pmca]. This equation
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was proposed for the measurement of heart performance. During the cardiac stop ejection,
PRA is equal to the Pmca, and Eh approaches zero [27,34].

2.2.8. Analysis of the Dynamic Changes in Stressed Volume during Progression of
Septic Shock

So as to assess Vs during septic shock, we used our extrapolation model in swine of
the same age, weight, TBV, and baseline hemodynamics. The baseline Vs value and the
hourly MAP values during progression of hyperdynamic septic shock were separately
determined on a line plot. Using extrapolation lines and linear regression of MAP − Vs
relationship, we estimated the hourly decrease in Vs considering that the total volume
status was unchanged.

2.2.9. Calculation of Mean Circulatory Filling Pressure during Cardiac Arrest

Significant changes in vasomotor tone occur after the onset of cardiac arrest. The arte-
rial pressure falls and the venous pressure rises until they almost reach equilibrium [35,36].
Thus, the measurement of Pmcf must be made within the first few seconds after ar-
rest [35,37]. However, the hypotension-induced baroreflex withdrawal maintains an ante-
grade and pulmonary blood flow that may continue for more than 30–60 s [37]. As Pmcf
may vary among individuals, the maximum flow could be better assessed if the time of
arrest is more than 20 s [14,38]. Therefore, we initially measured Pmcf using the equilibrium
mean PRA between 5 and 7.5 s after the onset of cardiac arrest, before the reflex response
had significantly altered the measured plateau pressure [36,39,40]. Then, we continued
measuring Pmcf every 10 s until 1 min post-cardiac arrest, provided that the measured
plateau pressure was not significantly altered. In this study, Pmcf was measured at six time
points (5–7.5 s, 15–17.5 s, 25–27.5 s, 35–37.5 s, 45–47.5 s, and 55–57.5 s post-cardiac arrest).

As arteries are much less compliant than veins, transfer of the remaining arterial
volume sufficient to equalize pressures throughout the vasculature could not significantly
increase Pmcf or affect measurements in our study [39]. In this context, a plateau was
considered adequate to allow accurate measurement if mean PRA rose by less than one
mmHg over the period from 5 to 7.5 s after the onset of cardiac arrest [39]. In the present
study, all animals had adequate plateau and were included for further analysis.

2.2.10. Statistical Analysis

Statistical analysis was performed using R v4.1. Pearson’s method was used to corre-
late hemodynamic measurements with Pmca at baseline. Repeated-measures ANOVA was
used to assess differences between groups. Linear mixed effects (LME) models were used
when needed to assess coefficients additionally to p-values. The different subjects (swine)
were included as random factor. p-values less than 0.05 were deemed significant.

3. Results
3.1. Progression of Sepsis and Septic Shock

Sepsis progressively evolved with time, and hyperdynamic septic shock was evident
after the second hour from induction of septicemia. The progression of sepsis had a
significant effect on hemodynamic (Table 1) and metabolic variables (Table S1).
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Table 1. Hemodynamic changes in animals during progression of sepsis and septic shock.

Baseline 1 h 2 h 3 h 4 h 5 h 6 h p-Value

Heart rate (beat·min−1) 127.2 (14.23) 137.4 (12.19) 137 (19.09) 134.6 (18.63) 142.7
(18.03)

123.5
(14.94)

129.1
(15.56) 0.135

MAP (mmHg) 88.4 (20.94) 78.8 (20.35) 59.6 (13.50) 48.6 (13.81) 48.6 (15.94) 42.7 (12.26) 33.2 (3.36) <0.001
CO (L·min−1) 6.4 (0.34) 6.9 (0.22) 7.4 (0.25) 8 (0.11) 8.6 (0.19) 8.7 (0.41) 10.1 (0.53) <0.001

SVR (dynes·sec·cm−5) 1012.7 (61.24) 827.5 (42.79) 585.3 (18.06) 443.4 (11.99) 416.2
(14.16)

346.2
(16.98)

244.6
(17.78) <0.001

PRA (mmHg) 7.3 (1.16) 6.6 (0.84) 5.5 (0.71) 4.1 (0.74) 4 (0.67) 4.9 (0.32) 2.4 (0.52) <0.001
Pmca (mmHg) 14.3 (1.23) 13.5 (0.85) 11.9 (0.74) 10.5 (0.71) 10.8 (0.64) 11.5 (0.38) 9.5 (0.57) <0.001
PGVR (mmHg) 6.9 (0.16) 6.9 (0.11) 6.4 (0.18) 6.4 (0.08) 6.8 (0.12) 6.6 (0.24) 7.1 (0.3) 0.934

RVR (mmHg·min·L−1) 1.1 (0.03) 1 (0.02) 0.87 (0.01) 0.8 (0.01) 0.79 (0.01) 0.75 (0.01) 0.7 (0.01) <0.001
Eh 0.49 (0.04) 0.52 (0.03) 0.54 (0.03) 0.61 (0.04) 0.63 (0.04) 0.57 (0.02) 0.75 (0.04) <0.001

Vs (mL) 420 350 214 136 136 93 ≈0 <0.001

Values are expressed as mean (SD). MAP, mean arterial pressure; CO, cardiac output; SVR, systemic vascular
resistance; PRA, right atrial pressure; Pmca, mean circulatory filling pressure analog; PGVR, pressure gradient for
venous return; RVR, resistance to venous return; Eh, efficiency of the heart.

3.2. Dynamic Changes in Stressed Volume during Progression of Septic Shock

The dynamic changes in Vs during progression of septic shock are depicted in Figure 2.
A 7% decrease in Vs was observed for each mmHg decrease in MAP during progression of
sepsis and septic shock (Figure 3).
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Figure 3. Three-dimensional surface plot showing the functional relationship between stressed
volume, mean arterial pressure, and cardiac output during progression of hyperdynamic septic
shock. The decrease in stressed volume was the result of progressive vasodilation and was not
affected by changes in cardiac output, which increased in an effort to maintain tissue perfusion
during progression of shock. Vs, stressed volume; MAP, mean arterial pressure; CO, cardiac output.

3.3. Changes in Mean Circulatory Filling Pressure Analogue and Other Determinants of Venous
Return during Septic Shock

Mean circulatory filling pressure analogue decreased with time (p < 0.001), along with
PRA (p < 0.001) and RVR (p < 0.001). The PGVR also decreased, but the difference between
time points was not statistically significant (p = 0.934). In addition, a statistically significant
decrease in Eh was observed with time (p < 0.001).

3.4. Effects of Fluid Challenges and Noradrenaline on Determinants of Venous Return

In total, 30 mL·kg−1 were administered within the first three hours from diagnosis
of septic shock. The infusion of the first 50 mL of isotonic sodium chloride increased
MAP from 61 mmHg to 64 mmHg (5%) and Vs from 221 mL to 243 mL (10%). However,
neither this nor the subsequent amount of isotonic sodium chloride significantly affected
hemodynamics, implying an increase in Vu and Vr (Table 2, Figure 4).

Table 2. Effect of fluid challenges on hemodynamic variables.

2 h (100 mL) 3 h (300 mL) 4 h (200 mL)

Before After Before After Before After p-Value

Heart rate
(beat·min−1) 140 (15) 126 (7) 138 (4) 137 (6) 148 (12) 148 (9) 1

MAP (mmHg) 61 (11) 64 (6) 46 (5) 46 (6) 45 (7) 45 (4) 1
CO (L·min−1) 7.1 (2) 7.3 (2) 7.9 (2) 8 (2) 8.5 (2) 8.6 (2) 0.79

SVR (dynes·sec·cm−5) 629 (14) 642 (8) 424 (16) 420 (11) 386 (24) 381 (17) 0.98
PRA (mmHg) 5.2 (0.2) 5.4 (0.5) 4.1 (0.3) 4 (0.2) 4 (0.4) 4 (0.5) 1

Pmca (mmHg) 11.6 (0.4) 12 (0.3) 10.4 (0.8) 10.3 (0.2) 10.6 (0.3) 10.6 (0.3) 1
PGVR (mmHg) 6.4 (0.5) 6.6 (0.2) 6.3 (0.2) 6.3 (0.3) 6.6 (0.3) 6.6 (0.1) 1

RVR (mmHg·min·L−1) 0.9 (0.1) 0.9 (0.2) 0.8 (0.2) 0.8 (0.3) 0.8 (0.2) 0.8 (0.2) 1
Eh 0.55 (0.02) 0.55 (0.03) 0.61 (0.01) 0.61 (0.01) 0.62 (0.01) 0.62 (0.01) 1

Vs (mL) 221 243 119 119 119 119 0.962

Values are expressed as mean (SD). MAP, mean arterial pressure; CO, cardiac output; SVR, systemic vascular
resistance; PRA, right atrial pressure; Pmca, mean circulatory filling pressure analog; PGVR, pressure gradient for
venous return; RVR, resistance to venous return; Eh, efficiency of the heart.
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Figure 4. Effect of fluid challenge and noradrenaline on stressed volume. After infusion of 50 mL
of isotonic sodium chloride, MAP increased from 61 mmHg to 64 mmHg and Vs increased from
221 mL to 243 mL (VFL). After noradrenaline infusion, MAP increased from 45 mmHg to 66 mmHg
and Vs increased from 107 mL (Vs’) to 257 mL (VNOR). MAP, mean arterial pressure; Vs, stressed
volume before fluid infusion; VFL, stressed volume after fluid infusion; Vs’, stressed volume before
noradrenaline infusion; VNOR, stressed volume after noradrenaline infusion.

On the contrary, noradrenaline increased Vs from 107 mL to 257 mL (140%) and MAP
from 45 mmHg to 66 mmHg (47%). In addition, most systemic hemodynamic variables
and determinants of venous return significantly improved after the onset of noradrenaline
infusion (Table 3, Figure 4).

Table 3. Effect of noradrenaline on hemodynamic variables.

Before After p-Value

Heart rate (beat·min−1) 147 (8) 119 (9) <0.001
MAP (mmHg) 45 (5) 66 (1) <0.001
CO (L·min−1) 8 (2) 8.6 (2) 0.510

SVR (dynes·sec·cm−5) 410 (11) 572 (9) <0.001
PRA (mmHg) 4 (0.2) 4.5 (0.1) <0.001

Pmca (mmHg) 10.3 (0.3) 11.9 (0.2) <0.001
PGVR (mmHg) 6.3 (0.1) 7.4 (0.1) <0.001

RVR (mmHg·min·L−1) 0.8 (0.2) 0.9 (0.1) 0.174
Eh 0.61 (0.01) 0.62 (0.01) 0.826

Vs (mL) 107 257 <0.001
Values are expressed as mean (SD). MAP, mean arterial pressure; CO, cardiac output; SVR, systemic vascular
resistance; PRA, right atrial pressure; Pmca, mean circulatory filling pressure analog; PGVR, pressure gradient for
venous return; RVR, resistance to venous return; Eh, efficiency of the heart.

3.5. Measurement of Mean Circulatory Filling Pressure after Cardiac Arrest

Post-cardiac arrest Pmcf was 14.75 ± 1.5 mmHg. The change in Pmcf during the first
minute after cardiac arrest is depicted in Table S2. Baseline Pmca and post-cardiac arrest
Pmcf did not differ significantly (14.3 ± 1.23 mmHg vs. 14.75 ± 1.5 mmHg, p = 0.24),
but the difference between pre-arrest Pmca and post-cardiac arrest Pmcf was statistically
significant (9.5 ± 0.57 mmHg vs. 14.75 ± 1.5 mmHg, p < 0.001).

4. Discussion

The aim of this experimental study was to investigate the dynamic changes in Vs and
other determinants of venous return during progression and resuscitation of hyperdynamic
septic shock in a swine model that closely resembles human hemodynamics. The main find-
ings of the present analysis are: (1) the baseline Vs was estimated at 420 mL and decreased
by 7% for each mmHg decrease in MAP during progression of septic shock; (2) we revealed
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a new physiological volume existing at Ptm ≈ 0, the Vr, which has important physiological
significance and cannot be mobilized without the use of an external vasopressor or without
decreasing arterial and/or venous resistance; (3) during septic shock, Pmca, PRA, RVR, and
Eh significantly decreased with time, while PGVR also decreased but did not reach statistical
significance; (4) fluid challenges (in total 30 mL·kg−1) did not improve systemic param-
eters or determinants of venous return, while the infusion of noradrenaline significantly
improved hemodynamics except for CO, Eh, and RVR; and (5) post-cardiac arrest Pmcf did
not differ significantly from baseline Pmca, but the difference between pre-arrest Pmca
and post-cardiac arrest Pmcf was statistically significant. The present study investigated
for the first time the dynamic changes in intravascular volumes and venous return during
progression of sepsis to hyperdynamic septic shock and cardiac arrest, providing novel
insights into the evolution of cardiovascular dynamics during the condition.

4.1. Estimation and Dynamic Changes in Stressed Volume

The evidence on Vs estimation in healthy state and sepsis is limited. Ogilvie et al.
reported mean Vs values of 812 mL (43% of TBV), 952 mL (50% of TBV), and 1148 mL (60%
of TBV) for three different ways of inducing circulatory arrest [37]. A model-based compu-
tation method of Vs from a preload reduction maneuver reported an average Vs of 486 mL
(22.4% of TBV) in swine [41]. Studies in dogs using the capacity vessel pressure–volume
relationship demonstrated Vs ranging between 322–653 mL (15–45% of TBV) [42–44]. In
humans, Vs was determined by extrapolating the mean systemic filling pressure (Pmsf,
i.e., Pmcf excluding the cardiopulmonary compartment)–volume curve to zero pressure
intercept after inspiratory holds and arm stop-flow maneuvers and was estimated to be
1265 mL (≈30% of the predicted TBV) [45]. In another study with postoperative cardiac
surgery patients, Vs was estimated with inspiratory hold maneuvers at 1677 mL (26% of
TBV) [46]. The differences in Vs can be explained by the physiological characteristics of
species and the method used for its estimation.

In the present experimental study, Vs was estimated at 420 mL and had decreased by
17% after 60 min from the onset of sepsis (no fluid challenges up to this time point), and
by 50% after 120 min from the onset of sepsis (100 mL of isotonic sodium chloride had
been infused but did not affect Vs). Murphy et al. used a three-chambered cardiovascular
system model to identify Vs in swine and reported that it decreased by 29% after 30–40 min
from the infusion of E. coli endotoxin [47]. However, 500 mL of saline solution had been
administered before endotoxin infusion. Additionally, in a canine model of E. coli endotoxin
shock, Uemura et al. reported a decrease in Vs of 50% after the end of 60 min endotoxin
infusion [48]. In either case, it is important to remember that Vs and Vu are virtual values,
not separated, and they change their names and function depending on Ptm at every
moment [11]. Nevertheless, the aforementioned data suggest that research on the dynamic
changes in Vs may lead to distinct shock phenotypes requiring distinct hemodynamic
management. Considering the close resemblance between the Landrace–Large White swine
and human hemodynamics, this species seems suitable for studying venous return and its
determinants in steady and shock states [9,15,49,50].

4.2. Conceptual Approach and Characteristics of Rest Volume

One of the most significant findings to emerge from this study is the identification
of Vr as the volume that cannot be mobilized/converted without the use of an external
vasopressor or without decreasing arterial and/or venous resistance, e.g., by decreasing the
dose of pure α-adrenergic agonists, such as phenylephrine. The utilization of Vr in research
and clinical practice is extremely intriguing and helpful. Brengelmann has proposed the
same term for the volume (Vu) beyond which further addition (in volume) would result in
stretching of the vessel walls (distending volume or Vs) [51]. However, our analyses show
that Vr is different from Vu, although they both exist at Ptm ≈ 0. In normal conditions, Vu
can be mobilized, if required, but Vr cannot be without external intervention. In particular,
Vr seems to have dual main functions at the steady state, i.e., to prevent an increase in
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venous resistance and maintain critical closing pressure, which is the pressure below which
small vessels collapse and effective capillary blood flow ceases. As critical closing pressure
is related to vascular tone, the Vr exerts the peripheral venous pressure required to sustain
a vasomotor reflex, resulting in the maintenance of critical closing pressure [52,53]. Indeed,
there is evidence showing that profound arterial hypotension during prolonged septic
shock may be associated with a drastic increase in venous resistance, especially within the
distal part of the splanchnic vasculature [11,54,55]. The aforementioned characteristics of Vr
mandate that it should not be iatrogenically deranged or should be only minimally affected,
even in patients with shock. A severe derangement of Vr could explain the devastating
effects of exogenous adrenergic agonists, especially when administered in hypovolemic
individuals and/or at high doses.

In our animals, the evolving vasoplegia decreased Vs until cardiac arrest occurred
(Vs = 0 mL, Vu = 860 mL, Vr = 540 mL). In severe septic shock with low Vs, the use of
exogenous vasopressors may not be sufficient to completely convert the increased amount
of Vu (baseline Vu plus the converted part of Vs) to Vs, implying an increase in Vr (baseline
Vr plus part of Vu that is not converted to Vs) and thus a lower Vc. In such a case, increasing
vasopressor doses will result in arterial vasoconstriction, increased exit resistance from the
arterial compartment, and decreased capillary perfusion [11,56]. In clinical practice, this
may be the appropriate time along the pathophysiologic continuum of sepsis/septic shock
at which fluid infusion will improve Vs, CO, and tissue perfusion.

Based on the aforementioned characteristics of Vr, a drug that stimulates both the α-
and β-adrenergic receptors is expected to more effectively maintain systemic hemodynam-
ics than one that activates either α- or β-adrenergic receptors [17]. Indeed, administration
of norepinephrine causes arterial and venous constriction and dilatation of the splanchnic
vasculature (decreasing splanchnic sequestration at low to moderate doses), which enhance
the conversion of Vu to Vs and facilitate flow through the splanchnic system [11,57], and
therefore can improve venous return in patients with septic shock [58].

4.3. Dynamic Changes in Mean Circulatory Filling Pressure and Other Determinants of
Venous Return

Accurate data on Pmcf in septic patients are also scarce. A meta-analysis investi-
gating the effects of vasopressor-induced hemodynamic changes in adults with shock
reported that vasopressor infusion increased Pmsf analogue (Pmsa) from 16 ± 3.3 mmHg to
18 ± 3.4 mmHg, but had variable effects on central venous pressure, Eh, and CO [59]. Guar-
racino et al. estimated Pmsa in septic shock patients at admission and after resuscitation
with fluid and norepinephrine at 13.0 ± 1.4 mmHg and 15.2 ± 1.8 mmHg, respectively, with
a PGVR of 6.2 ± 0.8 mmHg [60]. In both Guarracino’s study and our own, fluid resuscitation
probably caused hemodilution that decreased and/or prevented an increase in RVR [61–65].
In another study using inspiratory hold maneuvers in septic patients, Pmsf was found to
be 26–33 mmHg, depending on the rate of norepinephrine infusion [57]. In the latter study,
however, inspiratory holds may have overestimated zero-flow measurements [33]. Of
note, Lee et al. investigated the hemodynamic changes in splenectomized dogs after E. coli
endotoxin infusion and reported an increase in CO concomitantly with a decrease in MAP
and Pmsa; however, volume loading (20 mL·kg−1) significantly increased Pmsa above
baseline values [31]. The improvement in Pmsa can be explained by the pre-endotoxin
splenectomy, which prevents volume loss in canine models [65,66]. In the present study,
only the first 50 mL of isotonic sodium chloride had a slight effect on MAP, CO, Pmca, and
PGVR (RVR and Eh did not change), but neither these nor the total amount of administered
fluids (30 mL·kg−1) significantly improved hemodynamics. In addition, post-cardiac arrest
Pmcf was 14.75 ± 1.5 mmHg in our animals, which was similar to their baseline Pmca,
but significantly higher than the Pmca value before the onset of cardiac arrest, implying
an increase in Vu and Vr. In humans, Pmcf measured one minute after death from sep-
tic shock was 12.7 ± 5.7 mmHg [67], which is similar to our post-cardiac arrest value.
Despite the reported inadequacies in calculating Pmca [37], our findings support its use
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as a functional hemodynamic monitoring variable to track changes in Pmcf over time,
coupling it with other functional hemodynamic parameters in the normal state and septic
shock [31,68]. Most especially, the difference between the pre-arrest Pmca and post-cardiac
arrest (equilibrium) Pmcf in the present study further strengthens the importance of Vr
and its characteristics in the healthy state and disease state, as previously discussed in
this section.

4.4. Clinical Implications

Although the clinical and pathophysiological understanding of septic shock has pro-
gressed in the previous decades, many questions still exist. Fluid resuscitation in septic
shock is an effective intervention to increase venous return; however, timely fluid resusci-
tation is critical, and many patients do not respond to treatment [69–71]. Administration
of fluids is based on the available static and dynamic methods, yet it may also result
in overtreatment and organ injury. On the other hand, vasopressor administration can
improve systemic hemodynamics, but may not always improve tissue perfusion and may
result in adverse effects as well.

The present study revealed the hourly decrease in Vs during hyperdynamic septic
shock, which increases our understanding of sepsis-induced vasoplegia. As the currently
available methods for assessing fluid responsiveness have limitations [72–75], the use of
Vs may further support the assessment of the procedure in patients with septic shock.
Moreover, our findings can aid in the decision to start vasopressor support according to
the decrease in vasomotor tone, a common characteristic of sepsis-related hypotension.
Assessment of Vs can be also helpful in starting vasopressors simultaneously with fluids or
following a very limited fluid resuscitation, which can improve Pmcf/Pmca, venous return,
and CO, and decrease net fluid balance, incidence of complications, and mortality [76–80].

In addition, our analysis identified a new circulatory volume, the Vr. This volume
cannot be mobilized/converted without the use of an external vasopressor or without
decreasing arterial and/or venous resistance. The Vr seems to have a dual function, i.e.,
to prevent an increase in venous resistance and maintain critical closing pressure. These
findings suggest that fluid management and administration of vasopressors in patients
with shock should be considered only if they do not affect or minimally affect the Vr. The Vr
seems extremely important for maintaining hemodynamic homeostasis both in the steady
state and disease state.

The present study provides a deeper physiological understanding of hyperdynamic
septic shock and new information on how to optimize fluid administration and the use of
vasoactive drugs within an individualized treatment strategy. Furthermore, our findings
may help in identifying novel phenotypes of septic shock patients.

4.5. Strengths and Limitations

The major strength of this experimental study was the resemblance of the hemody-
namic and biochemical/metabolic changes during hyperdynamic septic shock between
Landrace–Large White swine and humans [9,81]. We acknowledge that this experiment
was performed on 10 healthy normovolemic swine and that the use of anesthetics may
have affected their response to stress. Nevertheless, the hemodynamic changes during the
progression of septic shock were robust. In addition, the present post hoc analysis included
only female Landrace–Large White piglets. Furthermore, we did not address the effect of
pulsatility on Pmca. However, the oscillations in PRA during the cardiac cycle and vascular
buffering minimize this effect [32,33].

5. Conclusions

The baseline Vs was estimated at 420 mL and decreased by 7% for each mmHg decrease
in MAP during progression of hyperdynamic septic shock. Significant changes were also
observed in other determinants of venous return. A new physiological intravascular volume
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existing at Ptm ≈ 0 was identified, termed as Vr, which cannot be mobilized/converted
without vasopressor support or without decreasing arterial and/or venous resistance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1. Figure S1: Total blood volume in a 20-kg swine; Table S1: Metabolic
changes in animals during progression of sepsis and septic shock; Table S2: Mean circulatory filling
pressure after cardiac arrest.
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