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Numerical analysis 
of a second‑grade fuzzy hybrid 
nanofluid flow and heat transfer 
over a permeable stretching/
shrinking sheet
Muhammad Nadeem1, Imran Siddique1*, Jan Awrejcewicz2 & Muhammad Bilal3

In this work, the heat transfer features and stagnation point flow of Magnetohydrodynamics (MHD) 
hybrid second-grade nanofluid through a convectively heated permeable shrinking/stretching sheet 
is reported. The purpose of the present investigation is to consider hybrid nanofluids comprising 
of Alumina (Al

2
O
3
) and Copper (Cu) nanoparticles within the Sodium Alginate (SA) as a host fluid 

for boosting the heat transfer rate. Also, the effects of free convection, viscous dissipation, heat 
source/sink, and nonlinear thermal radiation are considered. The converted nonlinear coupled fuzzy 
differential equations (FDEs) with the help of triangular fuzzy numbers (TFNs) are solved using the 
numerical scheme bvp4c. The numerical results are acquired for various engineering parameters 
to study the Nusselt number, skin friction coefficient, velocity, and temperature distribution 
through figures and tables. For the validation, the current numerical results were found to be good 
as compared to existing results in limiting cases. It is also inspected by this work that with the 
enhancement of the volume fraction of nanoparticles, the heat transfer rate also increases. So, it 
may be taken as a fuzzy parameter for a better understanding of fuzzy variables. For the comparison, 
the volume fraction of nanofluids and hybrid nanofluid are said to be TFN [0, 0.1, 0.2]. In the end, 
we can see that fuzzy triangular membership functions (MFs) have not only helped to overcome the 
computational cost but also given better accuracy than the existent results. Finding from fuzzy MFs, 
the performance of hybrid nanofluids is better than nanofluids.

List of symbols
x, y	� Cartesian coordinates
u, v	� Velocity components
B0	� Uniform Magnetic field
g	� Acceleration due to gravity
α2	� Second grade fluid parameter
T	� Temperature
Tw , T∞	� Reference and ambient temperature
Q0	� Heat absorption/generation coefficient
qr	� Heat source of radiativity
ρhnf 	� Density of hybrid nanofluid
ρf 	� Density of fluid
µhnf 	� Dynamic viscosity of hybrid nanofluid
µf 	� Dynamic viscosity of the fluid
η	� Similarity variable
ψ	� Stream function
β	� Shrinking/stretching rate parameter
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M	� Magnetic parameter
θw	� Temperature ratio parameter
Ec	� Eckert number
K	� Dimensionless Second-grade fluid parameter
Pr	� Prandtl number
f ′(η, γ )	� Fuzzy velocity profile
Nux	� Nusselt number
Rex	� Local Reynold number
σhnf 	� Electrical conductivity of hybrid nanofluid
σf 	� Electrical conductivity of the fluid
αhnf 	� Thermal diffusivity of hybrid nanofluid
(βT )hnf 	� Thermal expansion coefficient of hybrid nanofluid
H	� Dimensionless heat absorption/generation coefficient
Nr	� Thermal radiation parameter
s	� Rate of mass transfer parameter
f (η)	� Normal component of the flow
θ(η)	� Dimensionless temperature
s1	� Solid nanoparticles of Al2O3

s2	� Solid nanoparticles of Cu
Gr	� Grashof number
(

ρcp
)

hnf
	� Heat capacity of hybrid nanofluid

(

ρcp
)

f
	� Heat capacity of hybrid flui

khnf 	� Thermal conductivity of the hybrid nanofluid
kf 	� Thermal conductivity of the hybrid fluid
φ1	� Volume fraction of alumina
φ2	� Volume fraction of copper
νf 	� Kinematic viscosity of fluid
νhnf 	� Kinematic viscosity of hybrid nanofluid
γ	� Level or cut technique
µ�(η)	� Membership function
θ(η, γ )	� Fuzzy temperature profile
Cfx	� Skin-friction coefficient

In heat transfer mechanisms, energy-saving is a fundamental problem in different advanced industrial and 
technological applications. Over many decades, conservative fluids, for example, polymeric solutions, biofluids, 
glycols, water, tri-ethylene refrigerants, ethylene, oils, and lubricants, are used as heat transfer fluids. They have a 
limited capability to transfer heat due to their lower thermal conductivity. But, nanofluid, which is the mixture of 
nano-sized particles of size 1–100 nm and host fluids, have higher thermal conductivity, consequently enhancing 
the heat transfer rate. Choi and Eastman1 firstly had done several experiments to establish this new revolution-
ary idea. Adding more than one kind of nanoparticles in the host fluid makes them more advantageous, as, in a 
single fluid, we can have many physical properties according to our needs. In comparison to nano and regular 
fluids, hybrid nanofluids have better thermo-physical properties and a faster heat transfer rate. The influence 
of thermal radiation and natural convective flow on a third-grade fuzzy nanofluid flow between two upright 
surfaces was analyzed numerically by Nadeem et al.2. Siddique et al.3 studied the heat transfer and Couette flow 
on a third-grade fuzzy nanofluid under a fuzzy environment across an inclined plane. The Powell–Eyring hybrid 
nanofluid flow, convective heat transfer, and the generation of volumetric entropy on a radially horizontal perme-
able stretching surface were presented by Aziz et al.4. Cattaneo-Christov influences on Carreau nanofluid were 
investigated by Farooq et al.5. Several articles on hybrid nanofluids, owing to their importance and usefulness, 
can be seen in the literature6–10.

MHD is the study of the combination of electromagnetism and fluid mechanics, i.e., the behavior of magnetic 
field on electrically conducting fluid which can control the rate of heat transfer, and flow in a system. Currently, 
the study of MHD flow has attracted the attention of a large number of scientists due to its significance in 
numerous industrial and engineering practical applications, such as magnetic mixers, nuclear reactors, chemical 
reactions, plasma flows, MHD power generators, petroleum industries, metal casting, metallurgical processes 
and boundary layer control in aerodynamics. Alfven11 was the one who coined the term MHD. Nadeem et al.12 
used the triangle MF to address the uncertainty in MHD and ohmic heating on a third-grade fluid in an inclined 
channel in a fuzzy environment. In the presence of heat production, thermal radiation, and nanoparticle struc-
ture, Saqib et al.13 examined the MHD flow of a hybrid Ferro-nanofluid. The hybrid nanofluid effect on MHD 
boundary layer flow for viscous fluids was studied by Gul et al.14. Refs.15–19 can provide further information 
regarding the MHD flow studies.

The well-known fact that many engineers and researchers are attracted to study the non-Newtonian fluids 
because of their practical applications in many industrial and engineering units such as chemical industry, lubri-
cation, plastics processing, practical biomedical applications, and mining industry, etc. In our study, the fluid 
model used for the heat transfer and flow purpose is a sub-category of non-Newtonian fluid named a second-
grade fluid. This fluid model describes the shear thickening and shear thinning effects and normal stress effects 
for the steady flow. The thermodynamic study of second-grade fluid was achieved by Fosdick and Rajagopal20 
and Dunn and Rajagopal21. Haq et al.22 studied the MHD and Darcy’s law effects on the second-grade fluid flow 
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through a vertical infinite flat plate using Laplace transform (LT). Vajravelu and Rollins23 inspected the MHD flow 
of a second-grade liquid over a stretching surface. Also, the flow of a second-grade fluid over a stretching sheet 
was deliberated by Vajravelu and Roper24. Hayat et al.25 scrutinized the flow behaviours of thermophoresis, MHD, 
and convective heat transfer of second-grade fluid over an exponentially stretching sheet. In another article, Hayat 
et al.26 examined the flow properties of second-grade nanofluid through a non-linear stretching sheet. The heat 
transfer, mixed convective and thermal radiation flow of second-grade fluid over an exponentially stretching sheet 
analyzed by Ramzan et al.27. Khan and Rahman28 studied the modified second-grade fluid flow over a nonlinear 
isothermal stretching sheet. Imtiaz et al.29 scrutinized the magnetic field effect, chemical reaction, and thermal 
radiation of a second-grade fluid over a curved surface. Zuhra et al.30 considered the effect of heat transfer and 
boundary layer flow of a second-grade fluid over a stretching sheet through the porous medium. The effect of 
MHD and heat transfer flow of a second-grade hybrid nanofluid flow through an absorbent shrinking/stretching 
sheet was investigated by Roy and Pop31.

In dynamical systems, different kind of fuzziness or uncertainties happens, related to the measurement of 
errors, material properties, environmental factors, incomplete knowledge, dimensional tolerances, comparison, 
engineering parameters, initial and boundary conditions, etc. This fuzziness or uncertainties will undoubtedly 
affect the dynamic systems, and this might change the result because of the dynamic responses. In fluid dynam-
ics, the engineering parameters and the heat transfer parameters like the volume fraction of nanoparticles exist 
in the governing equations. These are neither measured exactly nor their specific nominal values. So, in actual 
practice, these values are fuzzy or uncertain because their given information is incomplete, vague, or imprecise. 
In this situation, fuzzy sets theory (FST) is a useful tool for the phenomena under consideration, and it is more 
accurate than assuming physical difficulties. For more precisely, the FDEs play a significant role in reducing the 
uncertainty and proper way to describe the physical problem which arises in uncertain heat transfer parameters, 
initial and boundary conditions. In 1965, Zadeh32 had given an alternate idea of set theory which is named FST, 
and this approach handles the imprecise or uncertain information. The notion of fuzzy number (FN) was pre-
sented by Chang and Zadeh33. Further, these numbers were generalized by Dubois and Prade34. Different types 
of FNs can be categories in triangular, trapezoidal, and Gaussian fuzzy numbers. Here we consider TFNs for 
the sake of completeness. In 1987 Seikkala35 introduced the concept of fuzzy differentiability. Later on, Kaleva36 
presented fuzzy differentiation and integration. Kandel and Byatt37 introduced the FDEs in 1987. FDEs on the 
nth order differential equation with fuzzy initial conditions were applied by Buckley and Feuring38,39. FDE 
was utilized by Abdi and Allahviranloo40 to solve the fuzzy Poisson’s equation with fuzzy Dirichlet boundary 
conditions using the fuzzy finite difference method (FFDM). With the use of double parametric FN, Almutairi 
et al.41 derived the numerical solution of the fuzzy wave equation. Salahsour et al.42 studied the fuzzy logistic 
equation and alley effect using FDE with the help of TFNs. Shehu and Zhao43 introduced the homotopy analysis 
Shehu transform method for the fractional and integral order derivatives using FDEs. Biswal et al.44 studied the 
natural convection of third-grade nanofluid flow between the two parallel plates using HPM in a fuzzy environ-
ment. The volume fraction of nanoparticles is considered as a triangular fuzzy number and also shows that the 
fuzzy result is better than a crisp result. Borah et al.45 deliberated the magnetic flow of second-grade fluid in a 
fuzzy environment using fractional derivatives Caputo-Fabrizio and Atangana-Baleanu. The non-dimensional 
governing equations are converted into fuzzified governing equations with the help of the Zadeh extension 
principle and TFN. Later on, Barhoi et al.46 studied the impact of second-order slip and magnetic flow on the 
viscous fluid model through a permeable shrinking sheet under the fuzzy environment. Also, various investi-
gators have applied FST to obtain good results in the field of science and engineering. Such as the Fuzzy HIV 
model47, Predator–prey model48, Growth model49, Population dynamics model50, Application of fuzzy Laplace 
transform51, Fuzzy Integro-differential equation52, Giving up smoking model53, Fuzzy chemostat model54, Fuzzy 
dengue virus model55, fuzzy fractional PDEs56, Fuzzy epidemic model57, Uncertain conjugate heat transfer58 and 
Transient heat transfer problem59.

Nanofluids and hybrid nanofluids are very significant in heat transfer applications when compared with 
traditional fluids. The maximum existing literature is concerned with the distribution of the solid nanomateri-
als in the Newtonian fluids and very few articles are available about the solid nanomaterial’s distribution in the 
non-Newtonian fluids. The present work aims to investigate the heat transfer features and flow of a hybrid special 
second-grade nanofluid through a convectively permeable shrinking/extending sheet for the stable dispersion of 
the solid nanomaterials Al2O3 + Cu with Sodium Alginate as a host fluid. The novelty of this work is listed below,

•	 The nonlinear thermal radiation, viscous dissipation, and heat source/sink are involved in the heat equation.
•	 The addition of magnetic flux in the flow of the region is very important in controlling the dynamic behavior 

in the production process.
•	 The fuzzy differential equations are formed to calculate the epistemic uncertain dispersal volume fraction 

of nanomaterials. So, the volume fractions of nanoparticles consider as fuzzy numbers or triangular fuzzy 
numbers with the help of the γ - cut technique, and γ - cut is discussed through the fuzzy triangular mem-
bership functions.

•	 For the comparison between nanofluids and hybrid nanofluids, we used fuzzy triangular membership func-
tions.

Problem formulations
An incompressible steady two-dimensional,ilaminar,iboundary-layer and stagnationipointiflow of a non-Newto-
nian electrically conducting second-gradeihybridinanofluid Al2O3 + Cu/SA is studied over a convectivelyiheated 
permeable shrinking/stretchingisheet with nonlinearithermal radiationiand viscousidissipation. In Fig. 1, the 
flow is examined in the region of y > 0. vw is the mass flux velocity, B0 is a constantimagnetic fieldinormal to the 
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sheet, T∞ is the ambient temperature and the temperature of the sheet is Tw . Also, assumedithat the sheetimoves 
with a velocity uw(x) = ax dependingion a < 0 or a > 0 for shrinking or stretching sheets respectively. The 
physicaliproperties of the thermaliconductivity, heat capacity, and viscosity of the host fluid along with nano-
materials vary significantly.

The physical flow problem and governing equations for a specific sort of second-grade hybrid nanofluid were 
considered by the researchers18,31.

where u0 = bx with b as a constant, is the freeistreamivelocity in outsideiof theiboundary.
The appropriate initial and boundaryiconditions of theiproblem are

Thermo-physical features of the hybrid nanofluids are exposed in the following equation31:

(1)
∂v

∂y
= −

∂u

∂x
,

(2)v
∂u

∂y
+ u

∂u

∂x
= ue

∂ue

∂x
+

2α2

ρhnf

∂u

∂y

∂2u

∂x∂y
+

µhnf

ρhnf

∂2u

∂y2
−

σhnf

ρhnf
B20(−ue + u)+ g(βT )hnf (T − T∞),

(3)
u
∂T

∂x
+ v

∂T

∂y
= αhnf

∂2T

∂y2
+

Q0

(ρcP)hnf
(T − T∞)−

1

(ρcP)hnf

∂qr

∂y
+

µhnf

(ρcP)hnf

(

∂u

∂y

)2

+
α2

(ρcP)hnf

∂u

∂y

{

∂

∂y

(

u
∂u

∂x
+ v

∂u

∂y

)}

,

(4)
v = vw , u = uw(x), T = Tw at y = 0,

u = ue(x), T = T∞ as y → ∞.

(5)αhnf =
khnf

(ρcP)hnf
,µnf = µf (1− φ1)

−2.5(1− φ2)
−2.5,

(6)ρhnf =
[

(1− φ2)
{

ρf (1− φ1)+ ρs1φ1
}

+ ρs2φ2
]

,

(7)
(

ρCρ

)

hnf
=

[

(

ρCρ

)

f
(1− φ1)+

(

ρCρ

)

s1
φ1

]

(1− φ2),

(8)
khnf

knf
=

2knf − 2φ1
(

ks1 − knf
)

+ ks1

2knf + φ1
(

ks1 − knf
)

+ ks1
,

knf

kf
=

2kf − 2φ2
(

ks2 − kf
)

+ ks2

2kf + φ2
(

ks2 − kf
)

+ ks2
,

(9)(βT )hnf = φ2(βT )s2 + (1− φ2)

[

(1− φ1)(βT )f + φ1(βT )s1

]

,

Figure 1.   Flow Problem.
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where Al2O3 and Cu are nanoparticles having the volume fractions φ1 and φ2 respectively. Also s1 and s2 denote 
the Al2O3 and Cu solid nanoparticles, respectively. The thermophysical properties of SA, Copper and Aluminum 
oxide are shown in Table 1.

Now, introducing the suitable similarity variables31 for non-dimensionalizing the governing equations.

Using Eq. (11) into Eqs. (1), (2), and (3). Equation (1) is equivalently satisfied, while the remaining got the 
following form:

along with the boundary conditions

where,   σr = σhnf
/

σf , µr = µhnf

/

µf , (βT )r = (βT )hnf

/

(βT )f , ρr = ρhnf
/

ρf , αhnf = khnf

/

(ρcP)hnf , 

αr = αhnf
/

αf , (ρcP)r = (ρcP)hnf

/

(ρcP)f , Gr = (Tw − T∞)g(βT )f

/

bx2, M = σf B
2
0

/

bρf ,  K = bα2
/

µf , 

Pr = vf
/

αf ,  H = Q0

/

b(ρcP)f ,  θw = Tw

/

T∞,  Nr = 16σ ∗T3
∞

/

3kf k
∗vf , Ec = (bx)2

/

(

ρcp
)

f
(Tw − T∞),  

β = a
/

b  the velocity ratio parameter, vw(x) = −s
√

bvf   and s is the rate of mass transfer through the permeable 
sheet.

The skin-friction coefficient Cfx and the Nusselt number Nux are two important physical quantities of inter-
est defined as

Using Eq. (11) into Eqs. (15) and (16), we have

where Rex = xuw
/

vf  is the local Reynolds number.

Fuzzy analysis
Definition 2.1  32: “A fuzzy set is defined as the set of ordered pairs such that � =

{(

η,µ�(η)
)

: η ∈ X,µ�(η)

∈ [0, 1]}, where X is the universal set, µ�(η) is the MF or membership level of � and mapping defined as 
µ�(η) : X → [0, 1]. Also, the values of µ�(η) varies from 0 to 1. If µ�(η) = 0 means that η does not belong to 
the fuzzy set, however, µ�(η) = 1 implies that η relates to the fuzzy set and if 0 < µ�(η) < 1 which means that 
the membership level of η is uncertain.”

(10)σhnf =

[

σs2(1+ 2φ2)+ 2σbf (1− φ2)

σs2(1− φ2)+ σbf (2+ φ2)

]

σbf , σbf =

[

σs1(1+ 2φ1)+ 2σf (1− φ1)

σs1(1− φ1)+ σf (2+ φ1)

]

σf ,

(11)η =

√

b
/

νf y, ψ =

√

bνf xf (η), T = T∞ + (Tw − T∞)θ(η), u =
∂ψ

∂y
, v = −

∂ψ

∂x
.

(12)
µr

ρr
f ′′′ + ff ′′ −

(

f ′
)2

+
2K

ρr

(

f ′′
)2

−
σr

ρr
M
(

f ′ − 1
)

+ (βT )rGrθ + 1 = 0,

(13)
αrθ

′′ + Pr f θ ′ +
PrHθ

(ρcP)r
+

Nrθ ′′

(ρcP)r
{1+ θ(θw − 1)}3 +

3Nr
(

θ ′
)2

(ρcP)r
(θw − 1){1+ θ(θw − 1)}2

+
f ′′PrEc

(ρcP)r

[

K
(

f ′f ′′ − ff ′′′
)

+ µr f
′′
]

= 0,

(14)
f = s, f ′ = β , θ = 1 at η = 0,

f ′ = 1, θ = 0 as η → ∞,

(15)Cfx =
1

ρf u2e

[

µhnf
∂u

∂y
+ α2

{

2
∂u

∂y

∂u

∂x
+ u

∂2u

∂x∂y

}]

y=0

.

(16)Nux =
x

kf (Tw − T∞)

[

−khnf
∂T

∂y
−

16σ ∗T3
∞

3k∗
∂T

∂y

]

y=0

.

(17)Re
1/2
x Cfx =

(

µr + Kf ′(0)
)

f ′′(0) and Re
−1/2
x Nux = −(kr + Nr)θ ′(0),

Table 1.   Thermo-physical properties of base fluid and nanoparticles14,31.

Physical properties ρ
(

kg/m3
)

ρcp(J/kgK) k(W/mK) βT × 10−5(1/K) σ(�/m)−1

SA 989 4175 0.6376 99 2.6× 10−4

Al2O3 3970 765 40 0.85 3.69× 107

Cu 8933 385 401 1.67 5.96× 107
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Definition 2.2  32,35: The γ - cut or γ - level of a fuzzy set �, is a crisp set Uγ and defined by Uγ =
{

η/µ�(η) ≥ γ
}

, 
where 0 ≤ γ ≤ 1.

Definition 2.3  33: The fuzzy set � defined on the universal set of real number R, is said to be a FN, which satis-
fies the following properties:

(i)µ�(η) is piecewise continuous. (ii) � is convex. (iii) � is normal i.e., ∃ y0 ∈ R such that µ�(η) = 1. (iv) 
Support of � must be bounded.

Definition 2.4  34,35: Let � = (χ1,χ2,χ3) with MF µ�(η) is called a MF of TFN if

The MF is the building block of FST and fuzziness in an FST is defined by its MF. They have different shapes such 
that triangular, Gaussian, and trapezoidal. The x-axis indicates the universe of discourse, while the y-axis shows 
the degrees of membership in the [0,1] interval. The MF of TFN with peak (or center) χ2, left width χ2 − χ1 > 0, 
right width χ3 − χ2 > 0 and these TFNs are transformed into interval numbers through γ - cut approach, is 
written as � =

[

f
′

1(η; γ ), f
′

2(η; γ )

]

= [χ1 + (χ2 − χ1)γ , χ3 − (χ3 − χ2)γ ], where 0 ≤ γ ≤ 1. A TFN 
� = (χ1,χ2,χ3) and γ - cut of MF see in Fig. 2. An arbitrary TFN satisfies the following conditions:

(i) f ′1(η; γ ) is an increasing function on [0,1]. (ii) f ′2(η; γ ) is a decreasing function on [0,1]. (iii) 
f
′

1(η; γ ) ≤ f
′

2(η; γ ) on [0, 1]. (iv) f ′1(η; γ ) and f ′2(η; γ ) are bounded on left continuous and right continu-
ous at [0, 1] respectively. (v) If f ′1(η; γ ) = f

′

2(η; γ ) = f
′
(η) where f ′(η, 1) becomes crisp at γ - cut = 1 and 

frequently used in the fuzzy physical analysis.
Uγ must be closed interval for every 0 ≤ γ ≤ 1 also γ , is called level of credibility or presumption. MF or 

grade is also named as the grade of possibility or grade of credibility for a given number. So, the triangular fuzzy 
uncertainty is defined as f ′1(η; γ ) (lower bound), f ′(η, 1) (most belief value) and f ′2(η; γ ) (upper bound).

Definition 2.5  35–40: Let I be a real interval. A mapping ũ : I → F is called a fuzzy process, defined as 

f
′

(η; γ ) =

[

f
′

1(η; γ ), f
′

2(η; γ )

]

, η ∈ I and γ ∈ [0, 1]. The derivative df
′

(η; γ )

dη ∈ F of a fuzzy process f
′

(η; γ ) is 

defined by df
′

(η; γ )

dη =

[

df
′

1 (η; γ )

dη ,
df

′

2 (η; γ )

dη

]

.

Definition 2.6  35–40: Let I ⊆ R, f
′

(η, γ ) be a fuzzy valued function define on I. Let f
′

(η; γ ) =

[

f
′

1(η; γ ), f
′

2(η; γ )

]

 

for all γ-cut. Assume that f ′1(η; γ ) and f ′2(η; γ ) have continuous derivatives or differentiable, for all η ∈ I and 

γ then 
[

df
′

(η; γ )

dη

]

γ

=

[

df
′

1 (η; γ )

dη ,
df

′

2 (η; γ )

dη

]

γ

. Similarly, we can define higher-order ordinary derivatives in the same 

way. A FN by an ordered pair of functions 
[

df
′

(η; γ )

dη

]

γ

, satisfy the following conditions:

µ�(η) =























η − χ1

χ2 − χ1
for η ∈ [χ1, χ2],

η − χ3

χ2 − χ3
for η ∈ [χ2, χ3],

0, otherwise.

Figure 2.   Membership functions of a TFN.
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(i) df
′

1 (η; γ )

dη  and df
′

2 (η; γ )

dη  are continuous on [0, 1]. (ii) df
′

1 (η; γ )

dη  is an increasing function on [0, 1]. (iii)df
′

2 (η; γ )

dη  

is a decreasing function on [0, 1]. (iv) df
′

1 (η; γ )

dη ≤
df

′

2 (η; γ )

dη  on [0, 1]. (v) If df
′

1 (η; γ )

dη =
df

′

2 (η; γ )

dη =
df

′
(η)

dη , where 

f
′
(η, 1) becomes a crisp at γ - cut = 1.

Formulation of the crisp problem into the fuzzy problem using FDEs
First, we will go over some fuzzy basics before comparing nanofluid and hybrid nanofluid. The velocity and 
temperature are affected by the small change in the value of the volume fraction of nanoparticles. Some research-
ers take the volume fraction of nanoparticles in the range of [0.01–0.04], so the flow rate and heat transfer of 
the nanofluid just depends on these values. Thus, uncertainty arises due to the fixed crisp values of the volume 
fractions of nanoparticles. Since φ1 and φ2 represents the volume fraction of Al2O3 and Cu respectively, so it is 
better to handle a complicated problem in a fuzzy environment by taking both volume fractions as FN. In this 
investigation, the volume fractions of nanoparticles are considered as FNs or TFNs and the TFNs are converted 
into γ - cut techniques as exposed in Table 2. 

The TFN defines the variation of FN at each γ - cut. The TFNs are used to describe the triangular MFs of the 
FNs which is ranging from 0 to 1 see Fig. 2. These specified ranges are generally used to build up the current 
problem. The FNs contain left monotonically non-decreasing and right monotonically non-increasing functions 
respectively, which make the triangular shape. Our purpose is to establish a comparison of nanofluid and hybrid 
nanofluid through the triangular MF.

For the fuzzy solution, the governing coupled non-linear differential Eqs. (12)–(14) can be converted into 
FDEs using γ - cut the approach that controls the fuzzy solution. So according to the Definition 2.5 and Defini-
tion 2.6 we have

along with the boundary conditions

According to the definition of FDEs, the fuzzy velocity profile can be written as f ′(η, γ )
=

[

f ′1(η, γ ), f
′
2(η, γ )

]

, 0 ≤ γ ≤ 1. Here, f ′1(η, γ ) is lower bound and f ′2(η, γ ) is an upper bound of fuzzy velocity 
profiles. Similarly, the fuzzy temperature profiles are θ(η, γ ) = [θ1(η, γ ), θ2(η, γ )], 0 ≤ γ ≤ 1.

Results and discussion
In this portion, the significant features of the flow and heat transfer are achieved using second-grade hybrid 
nanofluids ( Al2O3 + Cu/SA ) passing over a permeable shrinking/stretching sheet. The numerical solutions of 
non-dimensional governing coupled highly non-linear differential equations are obtained via a built-in numerical 
technique bvp4c. The numerical results are examined through figures and in the tabular forms for the various 
values of control dimensionless parameters such as buoyancy ratio parameter (Gr), second-grade fluid parameter 
(K), heat source or sink parameter (H), magnetic parameter (M), rate of mass transfer parameter (s), thermal 
radiation parameter (Nr), Prandtl number (Pr), temperature ratio parameter (θw), Eckert number (Ec), velocity 
ratio parameter (β), and volume fraction of hybrid nanoparticles (φ1, φ2) . The skin-friction coefficient Cfx and 
the Nusselt number Nux are also calculated and discussed. Table 3 shows a comparison of the results obtained 
by the current method with those got by Naganthran et al.16 Roy and Pop30 and Bhattacharyya7. The table shows 
that the current solutions give a good agreement.

(18)
µr

ρr

d3f (η, γ )

dη3
+ f (η, γ )

d2f (η, γ )

dη2
+

2K

ρr

(

d2f (η, γ )

dη2

)2

−

(

df (η, γ )

dη

)2

−
σr

ρr
M

(

df (η, γ )

dη
− 1

)

+1+ (βT )rGrθ(η, γ ) = 0,

(19)

αrθ
′′(η, γ )+ Pr f (η, γ )θ ′(η, γ )+

PrHθ(η, γ )

(ρcP)r
+

Nrθ ′′(η, γ )

(ρcP)r
{1+ (θw − 1)θ(η, γ )}3

+
3Nr

(

θ ′(η, γ )
)2

(ρcP)r
(θw − 1){1+ (θw − 1)θ(η, γ )}2 +

f ′′(η, γ )PrEc

(ρcP)r

×
[

µr f
′′(η, γ )+ K

(

f ′(η, γ )f ′′(η, γ )− f ′′′(η, γ )f (η, γ )
)]

= 0,

(20)
f ′(η, γ ) = β , f (η, γ ) = s, θ(η, γ ) = 1, at η = 0,

f ′(η, γ ) = 1, θ(η, γ ) = 0, as η → ∞.

Table 2.   TFNs of fuzzy nanoparticles of volume fraction.

Fuzzy numbers Crisp value TFN γ - cut approach

φ1 (Al2O3) [0.01–0.04] [0, 0.1, 0.2] [0.1γ , 0.2− 0.1γ ], γ ∈ [0, 1]

φ2 (Cu) [0.01–0.04] [0, 0.1, 0.2] [0.1γ , 0.2− 0.1γ ], γ ∈ [0, 1]
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Figure 3 reports the influence of magnetic parameter (M) on the velocity and temperature fields of the hybrid 
nanofluid for the shrinking sheet case. As the values of M increases, the temperature of the nanofluid decreases 
and the velocity upsurges. Physically, the momentum boundary layer becomes thinner whereas the thermal 
boundary layer becomes denser because of the increase in the magnetic field intensity. It’s because a higher 
applied magnetic field causes flow velocity to increase by reducing collisions between nanoparticles. Further, 
the heat energy is discharged into the effective hybrid nanofluid due to the presence of viscous dissipation and 
heat source impacts. The influences of the second-grade fluid parameter (K) on velocity and temperature fields 
are portrayed in Fig. 4. As the value of K is increased, a notable increase in the velocity field while a decrease 
in the temperature field in the flow region is observed. The reason is that a considerable decrease in boundary-
layer thicknesses due to the larger normal stress expends the force to the adjacent particles because they are 

Table 3.   Comparison of f ′′(0) for various values of K = 0, Gr = 0, H = 0, Nr = 0,Ec = 0, M = 0 and s = 0.

β Naganthran et al.16 Bhattacharyya7 Roy and Pop31 Present

−1.15 1.0822311 1.0822316 1.0822083 1.0822081

−1.20 0.9324733 0.9324728 0.9324443 0.9324442

−1.2465 0.5842759 0.5842915 0.5836674 0.5836661

−1.24657 0.5745397 0.5745268 0.5727295 0.5727290

Figure 3.   Influence of M on velocity f ′(η) and temperature θ(η) profiles.

Figure 4.   Influence of K on velocity f ′(η) and temperature θ(η) profiles.
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enforced to move quickly. Variations of hybrid nanofluid velocity and temperature fields for various values of 
the suction parameter (s) in the boundary-layer are presented in Fig. 5. The velocity of the hybrid nanofluid 
rises while the temperature profile of the hybrid nanofluid falls when s is elevated. The suction of the hybrid 
nanofluid creates a vacuum, which necessitates raising the velocity of the hybrid nanofluid. The heat emitted 
from the sheet owing to fluid movement flows faster to lower the temperature. The influence of the buoyancy 
force parameter (Gr) on the velocity and temperature profiles is depicted in Fig. 6. When Gr is boosted, the veloc-
ity field in the flow zone increases while the temperature field in the flow area declines. The large values of Gr 
enable the hybrid nanofluid to move faster in the boundary layer. The thermodynamic changes observed in the 
temperature field for the different values of Eckert number (viscous dissipation effect) (Ec) is shown in Fig. 7. The 
thermal profile is enhanced for the several values of Ec in the flow section. Physically, the presence of frictional 
heating forces (viscous dissipation effect) in the hybrid nanofluid is converted to heat energy and therefore, the 
temperature profile increases in the boundary-layer region of the shrinking sheet. The combined impact of the 
heat sink (H < 0) or source (H > 0) parameter on the temperature field is exhibited in Fig. 8. When the heat 
sink parameter is numerically escalated, the temperature profile drops, but the temperature field increases when 
the heat source value is upsurged. Adding a substantial quantity of heat energy to the hybrid nanofluid during 
this operation raises the temperature field in the boundary layer region close to the shrinking sheet. Figure 9 
describes the effect of the thermal radiation parameter (Nr) on the temperature profile. It can be seen that the 
temperature field declines in the region 0 ≤ η < 2.25 and it increases in the region 2.25 < η ≤ 4.5 as Nr is raised. 
Physically, the radiative component accelerates the motion of small particles, causing random migrating particles 
to collide and the resulting frictional energy to be converted to thermal energy. Ordinary nanofluids have a little 

Figure 5.   Influence of s on velocity f ′(η) and temperature θ(η) profiles.

Figure 6.   Influence of Gr on velocity f ′(η) and temperature θ(η) profiles.
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lower temperature than hybrid nanofluids. Figure 10 illustrates the impact of the temperature ratio parameter 
(θw) on the temperature field. It can be observed that when θw is increased then there is a notable increase in the 
temperature profile. A linear thermal radiation phenomenon is achieved by considering θw = 1. Physically, the 
higher θw implies a remarkable difference between the wall and ambient temperature. The thermal boundary 
layer thickness improves as a result of the temperature change. The temperature of a hybrid nanofluid is higher 
than that of a regular nanofluid.

The impression of the volume fraction of nanoparticles (φ1) on the velocity and temperature fields is portrayed 
in Fig. 11. When φ1 increases, it can be noted that there is a fall in the velocity field while the temperature field 
upsurges for the hybrid nanofluid. Physically, for the higher volume fraction φ1 , the momentum and thermal 
boundary layer become denser owing to the presence of ( Al2O3 + Cu ) hybrid nanoparticles into the customary 
fluid which produces more resistance, and as a resultant, the velocity declines, and hence the temperature of 
the fluid escalates. Figure 12 shows the result of the nanoparticles volume fraction (Cu) φ2 on the velocity and 
temperature fields. It is detected that when φ2 is increased, the velocity and temperature fields augmented gradu-
ally. Physically, the density of hybrid nanofluid decreases owing to the higher values of φ2, which thus enhances 
the velocity and temperature. Accordingly, the intermolecular forces between the particles of hybrid nanofluids 
become weaker, and consequently, the hybrid nanofluid velocity accelerates.

Now, we discuss the comparison of nanofluid and hybrid nanofluid through the triangular MF. The volume 
fraction of nanoparticles φ1 and φ2 are considered to be TFNs (see Table 2) to build up the proposed problem 
using γ - cut approach (0 ≤ γ ≤ 1) . The temperature (Eq. 14) and velocity (Eq. 17) equations are assumed to 

Figure 7.   Influence of Ec on temperature θ(η) profile.

Figure 8.   Influence of H on temperature θ(η) profile.
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be FDEs. These are converted into lower and upper bounds with the help of γ - cut technique and solved by 
employing the numerical technique bvp4c.

Figure 13 represents the comparison of nanofluids Al2O3/SA (φ1), Cu/SA (φ2), and Al2O3 + Cu/SA hybrid 
nanofluid through the MFs of fuzzy temperature profile for different values of η. In these figures, we have exam-
ined three different cases. Blue-dashed lines represent the case when φ1 is taken as TFN and φ2 = 0 . Black lines 
show the variation of φ2 whereas φ1 = 0 . In the third case, hybrid nanofluid is reflected with both φ1 and φ2 
non-zero. Also, the horizontal axis shows the fuzzy temperature profile for varying η, while the vertical axis shows 
the membership values of fuzzy temperature profile for varying γ - cut. It is observed that the hybrid nanofluid 
Al2O3 + Cu/SA is better when compared with nanofluid Al2O3/SA or Cu/SA.  As the temperature difference 
in the case of hybrid nanofluid is more prominent than the other two. The collective thermal conductivities of 
Al2O3 and Cu are added in a hybrid nanofluid that allows passing the maximum heat transfer rate. Cu/SA shows 
superior heat transfer rate when compared with Al2O3/SA nanofluid as the thermal conductivity of Cu is greater 
than Al2O3. The same three cases (of Fig. 13) are discussed in Fig. 14 for the fuzzy velocity profile against η. 
Also, it has been observed that the fuzzy velocity of Cu/SA nanofluid is maximum as compared to Al2O3/SA or 
hybrid nanofluid.

The outcome of numerical values of several physical parameters on skin-friction coefficient and Nusselt 
number of hybrids nanofluid are organized in Table 4. It may be perceived that skin friction is enhanced over 
the surface of a permeable shrinking/stretching sheet for the larger numerical values of rate of mass transfer, 
heat source or sink parameter, Prandtl number, second-grade fluid parameter, magnetic parameter, the volume 

Figure 9.   Influence of Nr on temperature θ(η) profile.

Figure 10.   Influence of θw on temperature θ(η) profile.
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fraction of hybrid nanoparticles φ1 and φ2 while it reduced for the higher values velocity ratio parameter, buoy-
ancy ratio parameter, Eckert number, thermal radiation parameter, and temperature ratio parameter. Also, if 
more hybrid nanoparticles are added, then the skin friction gets heightened. When an orthogonal magnetic field 
is applied to a hybrid nanofluid flowing over a sheet, the metallic nanoparticles are dragged, which raises the 
skin fraction. The next column of Table 4 exhibits the effect of the same engineering parameters on the Nux (heat 
transfer rate over the surface of a permeable shrinking/stretching sheet). When the velocity ratio parameter, rate 
of mass transfer, buoyancy ratio parameter, thermal radiation parameter, heat source or sink parameter, Prandtl 
number, φ1 and φ2 are enhanced, then the rate of heat transfer improves whereas, it declines for the larger values 
of the temperature ratio parameter, magnetic parameter, second-grade fluid parameter, and Eckert number. 
Furthermore, when compared to regular fluids, the hybrid nanofluids are upsurge the heat transfer rate.

Figure 11.   Influence of φ1 on velocity f ′(η) and temperature θ(η) profiles.

Figure 12.   Influence of φ2 on velocity f ′(η) and temperature θ(η) profiles.
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Conclusions
In this work, theistagnation-pointiflow of aisecond-gradeihybridinanofluid ( Al2O3 + Cu/SA ) through a convec-
tively heated permeable extending or shrinking sheet with heat sink or source, viscousidissipation, and nonlinear 
thermal radiation is studied. A numerical scheme bvp4c assists us to achieve the solution of the dimension-
less mathematical equations. The effect of involved control parametersion velocityiand temperatureiprofiles is 
represented through figures. The Nusseltinumber and the skin frictionicoefficient are numerically expressed 
in a tabular form. The volumeifraction of Al2O3 and Cu nanoparticles are taken as TFNs and discussed. The 
nonlinear coupled ODEs are converted into FDEs and then numerically solved by using the bvp4c scheme. For 
the authentication, present work is in good agreement as compared to existing work. A comparison of nano-
fluid with hybrid nanofluid through the triangular fuzzy membership functions is discussed. The important key 
outcomes are provided below.

•	 A rise in nanoparticle volume fraction φ1 and φ2 results in an increment in theithermal boundaryilayer and 
a decline in the velocity profile.

•	 The temperatureiprofile diminishes and velocityiprofile improves for the larger values of rate of massitransfer 
parameter, second-gradeifluidiparameter, and buoyancyiratio parameter.

Figure 13.   Comparison of Al2O3/SA, Cu/SA and Al2O3 + Cu/SA hybrid nanofluid for varying of η.
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•	 The heat transfer rate raises for higherivalues of nonlinearithermal radiationiparameter, temperatureiratio 
parameter, and Eckertinumber.

•	 When the heatisource or sinkiparameter is enhanced, the temperature profile is magnified, while when the 
heatisource orisinkiparameter is diminished, theitemperature profile reduces.

•	 Theiskinifrictionicoefficient enhances when heatisource or sinkiparameter, rate of mass transfer parameter, 
second-grade fluid parameter, φ1 and φ2 increases and declines when buoyancyiratioiparameter, thermalira-
diationiparameter, velocity ratioiparameter, and temperature ratioiparameter increase.

•	 The Nusseltinumberienhances with growing values of thermal radiationiparameter, buoyancy ratio param-
eter, φ1 and φ2 while diminishes with risingivalues ofitemperature ratioiparameter, magnetic parameter, and 
second-grade fluid parameter.

•	 Through triangular fuzzy MFs, it is witnessed that the Al2O3 + Cu/SA hybrid nanofluids are highly capable 
to boost the heat transfer rate as compared to Al2O3/SA and Cu/SA nanofluids.

The cited scientific contribution might aid in the advancement of extrusion processes, heat transfer enhance-
ment, biotechnology, and nanotechnology. The simulations given in this paper may be expanded to three-
dimensional flows with various flow properties such as nanofluids, activation energy, Joule heating, thermal 
radiation, and entropy formation. Furthermore, for such specified accelerated surfaces issues, a variety of numeri-
cal techniques can be used.

Figure 14.   Comparison of Al2O3/SA, Cu/SA and Al2O3 + Cu/SA hybrid nanofluid for varying of η.
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