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ABSTRACT

Large-scale phenome-wide association studies per-
formed using densely-phenotyped cohorts such as
the UK Biobank (UKB), reveal many statistically ro-
bust gene-phenotype relationships for both clini-
cal and continuous traits. Here, we present Gene-
SCOUT, a tool used to identify genes with simi-
lar continuous trait fingerprints to a gene of in-
terest. A fingerprint reflects the continuous traits
identified to be statistically associated with a gene
of interest based on multiple underlying rare vari-
ant genetic architectures. Similarities between genes
are evaluated by the cosine similarity measure, to
capture concordant effect directionality, elucidating
clusters of genes in a high dimensional space. The
underlying gene-biomarker population-scale asso-
ciation statistics were obtained from a gene-level
rare variant collapsing analysis performed on over
1500 continuous traits using 394 692 UKB participant
exomes, with additional metabolomic trait associa-
tions provided through Nightingale Health’s recent
study of 121 394 of these participants. We demon-
strate that gene similarity estimates from Gene-
SCOUT provide stronger enrichments for clinical
traits compared to existing methods. Furthermore,
we provide a fully interactive web-resource (http:
//genescout.public.cgr.astrazeneca.com) to explore
the pre-calculated exome-wide similarities. This re-
source enables a user to examine the biological rel-
evance of the most similar genes for Gene Ontol-
ogy (GO) enrichment and UKB clinical trait enrich-

ment statistics, as well as a detailed breakdown of
the traits underpinning a given fingerprint.

INTRODUCTION

Large-scale cohorts, such as the UK Biobank (1) that
combine exome sequence data with longitudinal medical
records and biomarkers, offer a unique opportunity to iden-
tify novel gene-phenotype associations. Phenome-wide as-
sociation studies (PheWAS) performed on such densely-
phenotyped cohorts reveal many statistically robust gene-
phenotype relationships (2). Exploiting the associations de-
rived from these analyses, we here develop a tool capable
of elucidating causal gene networks through constructing
similarity scores between genes. Such a tool not only pro-
vides insight into gene variants that share similar pheno-
typic properties but can also be used to suggest alterna-
tive drug targets to those that are otherwise intractable. As
such, we here introduce Gene-SCOUT (Gene-Similarities
from COntinUous Traits) that takes a user-defined gene
and identifies other human genes with a similar continuous
trait fingerprint. A fingerprint represents levels of statisti-
cal associations between genes and continuous traits across
multiple gene-based collapsing models. A range of genetic
architectures (termed ‘qualifying models’) (3) is evaluated
in a population of 394 692 exome sequences with 1419
continuous traits available for each participant and 168
metabolomic traits profiled by Nightingale Health on a sub-
set of ∼120K of the participants (4).

Much of the existing methodology around understanding
gene similarity have relied on ‘semantic similarity’, which
aims to quantify the similarity or distance between pairs
of terms organized in an ontology. Generally, these ap-
proaches have utilised observations from low-level annota-
tions derived from the Gene Ontology database (5,6), for ex-
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ample, GOSim (7) while others like HPOSim (8) are based
on data derived from Human Phenotype Ontology (HPO)
(9). Alternative methods to these ontology based similar-
ity scores leverage, for example, protein-protein interaction
networks such as STRING (10).

Gene-SCOUT differs from previous approaches by re-
lying solely on the association statistics generated from a
large-scale population-based exome sequencing data linked
with continuous trait measurements. We provide empirical
comparisons against GOSim and HPOSim as well as an ad-
ditional method for calculating gene similarities based on
the STRING protein-protein interaction database. To com-
pare the performance of the methods, we obtain 2662 gene
sets spanning a number of resources, including OMIM,
KEGG biological pathways, PanelApp and the aforemen-
tioned UKB PheWAS. We see Gene-SCOUT’s performance
vary depending on the resource, though observe substantial
outperformance against all other methods on OMIM and
UKB PheWAS gene sets, as measured by the overlap of sim-
ilar genes to a given gene set.

We accompany our method with a user-friendly interac-
tive web resource to help explore the resulting similarities
in greater detail. Finally, gene clusters are identified based
on the derived similarity measures. Using this approach, re-
lying solely on cohort association statistics, we are able to
recapitulate known biologically similar genes thereby pro-
viding an opportunity to provide additional insight beyond
the positive controls.

MATERIALS AND METHODS

Datasets

The UK Biobank is a prospective, longitudinal cohort study
of ∼500 000 participants, aged between 40 and 69 years
when recruited between 2006 and 2010 (1). Participant data,
based on questionnaires and assessment visits, includes
health records capturing various phenotypic endpoints and
are periodically updated by the UK Biobank (11). Records
range from blood biomarkers to imaging and accelerome-
ter readings, though the following restricts attention to con-
tinuous traits listed in Supplementary Table S1. Whole ex-
ome sequencing (WES) data for UK Biobank participants
were generated at the Regeneron Genetics Center (RGC)
as part of the UKB-ESC pre-competitive data generation
collaboration between AbbVie, Alnylam Pharmaceuticals,
AstraZeneca, Biogen, Bristol Myers Squibb, Pfizer, Regen-
eron and Takeda with the UK Biobank (12). Genomic
DNA underwent paired-end 75 bp whole exome sequenc-
ing (WES) at Regeneron Pharmaceuticals using the IDT
xGen v1 capture kit on NovaSeq 6000 machines. Details
regarding the AstraZeneca Centre for Genomics Research
Bioinformatics Pipeline and quality control procedures un-
dertaken are described elsewhere (2). In brief, FASTQ files
were aligned to GRCh38 and small variant SNVs and in-
dels called (Illumina DRAGEN Bio-IT Platform Germline
Pipeline v3.0.7), and subsequently annotated (SnpEff v4.3
against Ensembl Build 38.92). Distantly related participants
(kinship coefficient < 0.0884) of European ancestry were se-
lected for gene-based collapsing analyses, reducing the co-
hort from approximately 455 000 to 394 692 samples. Col-
lapsing analyses, that aggregate specific ‘qualifying variants’

(QVs) (3) within a gene, test whether there is a difference
in the proportion of individuals carrying one or more QVs
between cases and controls. Eleven QV models were evalu-
ated to assess the impact of rare genetic variants on human
disease; of these, 10 assess non-synonymous variants (nine
dominant and one recessive model), plus an additional syn-
onymous variant model adopted as an empirical negative
control. In addition to the aforementioned continuous traits
we also include metabolomic data captured across a sub-
set of over 120 000 participants of the UK Biobank cohort
(Supplementary Methods, section 10).

Constructing a gene fingerprint

A unique continuous trait fingerprint was generated for
each of the 18 862 genes considered. The number of genes
was motivated through a previous collapsing analysis of
∼300 000 UKB exomes (2). Each fingerprint was com-
piled from the regression coefficients derived from univari-
ate linear regressions between pairs of genes and continu-
ous traits (1587 in total). Specifically, regressions were es-
timated through regressing normally-transformed contin-
uous traits against the binary indicators (presence or ab-
sence) of a gene carrying at least one QV. Each regression
adjusted for age and sex, and all of these regressions were
repeated for each collapsing model. As gene-trait associa-
tions are available for multiple QV models, signatures were
constructed through the concatenation of regression coef-
ficients across all continuous traits and all QV models (ex-
cluding the synonymous model) to form an extended fea-
ture set (Supplementary Methods, section 3). The following
methodology aims to exploit both the associations and their
accompanying p-values to best capture similarities between
genes.

Exploring similarity methodologies

There are different ways to measure distance or similarity
between pairs of vectors (13–15). Having constructed gene
fingerprints from the association scores and corresponding
P-values for all protein-coding genes there remained a num-
ber of possible ways in which to quantify the similarity be-
tween two fingerprints. A priori, it is unclear what aspect
of the signature is most informative––for example, genes
could be deemed ‘similar’ based on a few informative traits
specific to each gene (perhaps those that are most signifi-
cant or have the highest degree of association), or it may
be beneficial to aggregate the differences in all association
scores, in which case some of this finer detail may be di-
luted amid sample randomness. Also, given that in general
it is possible to recover a notion of similarity from a dis-
tance metric (the closer the distance, the more similar the
vectors) selecting an appropriate distance metric may also
be critical to determining which aspect of the signatures
contribute most to their similarities. Given these variables,
a preliminary investigation was conducted with the objec-
tive of refining the methodology to produce more biologi-
cally meaningful similarities (Supplementary Methods, sec-
tion 3). Improvements to the methodology were guided by a
set of 22 expertly-curated genes (Supplementary Methods,
Appendix) with well understood biological functions that
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were to be used as seed genes. It was then possible to assess
the performance of different methods both quantitatively,
through Gene Ontology and PheWAS enrichment analyses
of reportedly similar genes, and qualitatively, through man-
ual inspection of the reported genes and the relevance of the
top enrichment terms, (Supplementary Figures S3 and S4).

The investigation revealed two crucial insights, firstly,
that the inclusion of a feature selection strategy could con-
siderably enhance the performance of the similarity calcula-
tion (Supplementary Figure S24) and, secondly, that there
was merit in opting for a nonstandard distance function
(Supplementary Figures S24 and S25). A number of dis-
tinct methods were trialed, including normalizing the asso-
ciation statistics by the P-values to exaggerate associations
that were highly significant, sub-setting features that were
significant in either the seed gene or an alternative gene and
sub-setting genes based on only those that shared significant
associations. At each stage, refinements were made based on
the inspection of the most similar genes to the expertly cu-
rated ones, as well as their enrichment for Gene Ontology
terms and PheWAS binary traits (Supplementary Figures
S3 and S4).

Gene similarity calculation

Gene-SCOUT’s similarity calculation was chosen based on
an exploration of different strategies looking to optimize
the biological relevance of the closest genes retrieved to a
set of expertly-curated seed genes. We have tried a range
of distance metrics, which can be largely represented by ei-
ther Euclidean or cosine distance (Supplementary Figure
S2). Eventually, we selected cosine similarity measure due
to its stronger performance in terms of enrichment of sim-
ilar genes on a set of expertly curated genes (Supplemen-
tary Figure S25) and also due to providing a normalized
measure of similarity between vectors, which can aid the in-
terpretability of the similarities. One possible reason for its
superior performance is that the cosine distance better cap-
tures the directionality of two vectors, which can provide an
additional degree of robustness when studying the effect of
genic variation to continuous traits. This is in addition to
other favorable robustness properties of the cosine distance
in high dimensions (Supplementary Appendix 1).

The method rests critically on a tuning parameter, α,
used to threshold the significance of a gene–trait associa-
tion, ensuring only those associations that satisfy a degree
of population-scale statistical robustness are included in the
signatures. We identify an optimal value of this parameter
based on a sensitivity analysis, described subsequently. Hav-
ing chosen its value and proposed a seed gene to identify
other similar genes from, the method proceeds as follows
(Figure 1):

1. Construct the seed gene’s signature:
a. Identify the continuous trait associations that are sig-

nificant at level α for this gene
b. Collect the gene-trait association scores into a vector

z
2. Populate a set of other gene signatures:

a. Each gene must be significantly associated to at least
one trait identified in 1a

b. Collect the gene-trait associations scores into vectors
x1, x2,. . . (one for each gene) using the set of traits in
1a (matching the order of traits in z)

c. Gene-trait associations that are not significant in this
set are set to 0

3. Calculate the cosine similarity between pairs (z, x1),
(z, x2) etc. For two D-dimensional vectors x and y, the
cosine distance is defined as

dcos (x, y) = 1 −
∑D

i=1 xi yi√(∑D
i=1 x2

i

) √(∑D
i=1 y2

i

) (1)

where the distance varies in the interval [0,2], with
dcos (x, y) = 0 if and only if x = y, dcos (x, y) = 1 when
x and y are perpendicular to each other and dcos (x, y) = 2
when x and y are pointing in exactly opposite directions.

A crucial element of the method is the ‘filtering out’ of
any traits that are not significantly associated to the seed
gene (occurring in 1a). Other gene signatures (x1, x2, etc.)
may not share exactly the same set of significantly associ-
ated traits, but due to step 2a there is a guarantee that at
least one trait is significantly associated in both z and x1 for
example. Furthermore, there is no requirement for α to be
set to, for example, genome-wide significance, indeed a sen-
sitivity analysis revealed that a more relaxed threshold was
in fact preferable.

An artefact of the above formulation is that after
accounting for feature selection Sim(A, B) �= Sim(B, A)
where A and B are genes and Sim(·, ·) is the Gene-SCOUT
similarity between them, i.e. the similarity is not symmetric
in its arguments. As such, a symmetric similarity measure
can be provided by

Sim∗ (A, B) = ϕ(Sim(A, B), Sim(B, A))

where ϕ is any function satisfying φ (a, b) = φ(b, a). For
example ϕ could be either min(a, b) or (a + b)/2. We ex-
ploit this symmetrisation further in estimating clusters from
Gene-SCOUT distances.

Sensitivity analysis for thresholding significant gene–trait as-
sociations

Importantly, in order to utilise the vectors of P-values for
associations the user must specify a significance level, α,
which for these purposes we set to α = 1 x 10−5. We per-
form a sensitivity analysis to optimize the P-value thresh-
old used to calculate similarities between genes. The P-value
threshold is used twice in calculating similarities. Firstly, a
candidate list of similar genes is constructed based on those
genes that share at least one significant trait with the seed
gene. It is only these genes that Gene-SCOUT provides sim-
ilarities for. Secondly, based on this set of genes, similarities
are calculated using the cosine similarity, based on features
that are significant in the seed gene. This requires a second
use of the threshold.

To summarise the performance of Gene-SCOUT in eval-
uating similarities that are biologically relevant, we consider
three gene sets, each of which are enriched for separate phe-
notypes. The three gene sets considered were those relating
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Figure 1. Schematic of Gene-SCOUT’s similarity calculation. Each barplot describes a signature specific to a different gene, with bars representing an
association score between a gene and a continuous trait (beta coefficient from linear regression between genotype and continuous trait). Significant asso-
ciations (P < 10–5) are denoted with a brown fill color. Gene-SCOUT finds a subset of genes that share at least one significant association with the seed
gene and calculates the respective similarities using the cosine distance metric. Genes are eventually ranked based on their Gene-SCOUT similarity score
to each seed gene.

to (i) lipoprotein disorders, (ii) diabetes (type I and type II)
and (iii) chronic kidney disease. The choice of these gene sets
was guided by the requirements that, firstly, there must be a
large number of genes known to be associated to a clinically
relevant phenotype. This was measured through ranking the
PheWAS clinical traits according to the number of signifi-
cantly associated genes at 1 × 10−8, for which these gene
sets rank among the top 2% of 17 361 phenotypes captured
among the previously published PheWAS (Supplementary
Methods, section 3). Secondly, to guarantee that a gene’s
signature could be calculated for all genes in the gene set we
required that the diseases could be inferred from a set of rel-
evant continuous traits measured in UKB. A list of all gene
sets and relevant continuous traits as well as a breakdown
of any genes common to multiple sets is provided (Supple-
mentary Methods, Appendix).

We focus the analysis on a single biologically meaningful
PheWAS clinical trait for each gene set and examine how
the average PHRED score changes as a function of the p-
value threshold (Supplementary Figure S5). We see accord-
ing to the median PHRED score that 1 × 10−5 achieves
strong enrichment across each of the three disorders (Sup-
plementary Figure S6), with gene-set enrichment PHRED
scores plateauing or declining at more stringent thresholds.
Increasingly stringent thresholds also reduce the gene-space
from which similarity scores can be constructed. We also
see substantial enrichment for closely related disease pheno-
types at this optimal threshold (Supplementary Figure S7).

Similarities between exome genes in the UKB dataset

Having optimised the similarity methodology, we calculate
similarities between all exome genes based on the UKB
dataset. Importantly, we note that similarities can only be
calculated between genes that share at least one significant
association. As such, given that not all genes in the exome
have at least one significant association at a given signifi-
cance threshold, we restrict similarity estimation to those
genes––2880 (15% of 18 862 genes) – that do (Supplemen-
tary Figure S10). We see that 95% of these have under 25
significant traits (Supplementary Figure S1). As a strict sub-
set of this, approximately 11% of all protein-coding genes
have at least one other gene that is similar to each of them.
The sparsity of similarities is comparable to the sparsity
of significant traits in the exome. We see also that within
features that have at least one significant association there
is a correlation structure (Supplementary Figure S20, Ta-
ble S2). A correlation analysis revealed both that Gene-
SCOUT similarities are robust to the inclusion of correlated
features through simulated data and that for real data the
enrichment analyses are robust to including or excluding
highly correlated features (Supplementary Methods section
4, Supplementary Figures S8 and S9). Furthermore, it is
beneficial to retain features that a user could use to establish
the biological relevance of a resulting similarity, rather than
arbitrarily remove one or more from a set that are highly
correlated with each other.
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Constructing a similarity network using k-nearest neighbor
graphs

To aid exploration of similar genes we construct a network
whereby an edge between two genes is indicative that the
two genes are similar. In particular, the network is con-
structed such that an edge between two genes, A and B, sig-
nifies that B is within the k most similar to A according to
the derived similarities. Such a network is referred to as a
‘k-nearest neighbor graph’ (16) and has been used in other
settings to lower the computational cost of the closely re-
lated ‘k-nearest neighbor’ clustering algorithm (17,18). Due
to the sub-setting technique in the similarity calculation,
where genes must share at least one significant trait with a
seed gene in order for the similarity to be evaluated, some
genes will not have any other genes on which to evaluate
similarities. This is reflected in the network figure, where
only genes that have at least one other gene for evaluat-
ing similarities are included. More explicitly, if for GENE0,
it has genes GENE1, GENE2, . . . , GENE10 that are all in
its close list, then the network figure reflects this through
an edge from GENE0 to GENE1, an edge from GENE0 to
GENE2 etc. It is noted that sometimes there will be edges
in the opposite direction, i.e. for GENE2, GENE0 ranked in
its top k list, however a repeated edge though them is not a
requirement. An edge in either direction is sufficient to aid
exploration.

Clustering and visualization based on similarities

Based on the above formulation, it is possible to provide
pairwise similarities within a set of genes. Having converted
these similarities to distances, it is then possible to use un-
supervised machine learning algorithms to estimate clus-
ters within the gene set, where genes in the same cluster in-
dicate a large Gene-SCOUT similarity. To allow for novel
distance metrics (since some clustering algorithms are re-
stricted to the Euclidean distance only), we focus on the
OPTICS clustering algorithm and demonstrate its superior
performance when testing cluster enrichments over an al-
ternative method––Louvain clustering (19) (Supplementary
Figure S23).

As part of this process, we note that it is also possible to
visualize similarities between genes––irrespective of the di-
mensionality of the original feature space. Similarities are
closely related to distances and for some manifold learn-
ing techniques, e.g. t-distributed stochastic neighbor em-
bedding (t-SNE), they require only a precomputed distance
matrix––i.e. a matrix where element [i, j ] represents the dis-
tance between points i and j . In general, the distance matrix
may or may not represent Euclidean distances, this depends
on the precise application, but for these purposes we ensure
distances reflect similarities between genes as defined above
(Supplementary Figure S22). Importantly, as the input fea-
tures may vary, the similarity of Xi to Xj may not be the
same as the similarity of Xj to Xi . As such a symmetrisa-
tion procedure is required to convert the similarities to dis-
tances that are symmetric in Xi and Xj . We describe this
symmetrisation along with additional subtleties relating to
converting cosine similarities to distances in full in the Sup-
plemental Methods.

As part of the validation of the derived clusters, we ex-
plored whether human paralog genes preferentially cluster
together compared to random sets of genes. For this analy-
sis, we first extracted all sets of human paralog genes from
PANTHER DB (32) and retained those that were assigned
to a cluster based on the OPTICS algorithm (leaving even-
tually a set of 569 seed genes for examination). For each
seed gene, we checked whether it has at least one paralog
belonging to the same Gene-SCOUT derived cluster and
we found 39 such clusters. We repeated the same process
using 569 random seed genes and respective random sets of
genes (of matched size with the real sets of paralog genes)
and cluster co-occurrence was achieved in only five clusters
(median number from 10 random iterations; standard devi-
ation: 3.4). That corresponds to an ∼8-fold enrichment of
cluster co-occurrence for paralog genes compared to ran-
dom ones (OR = 8.3; P-value = 8.4 × 10–8 via Fisher’s exact
test).

Description of benchmarked similarity measures

Three alternative methods for calculating similarities
between protein-coding genes were considered, namely
GOSim, HPOSim and scores derived from protein-protein
interaction networks in StringDB. Both GOSim and
HPOSim require seed genes to be expressed in terms of En-
trez IDs. We therefore use the R package ‘org.Hs.eg.db’ (20)
to map HGNC gene names to the appropriate nomencla-
ture. While GOSim implements an array of similarity mea-
sures between genes, we opt for the feature space embed-
ding approach due to its computational tractability. For
HPOSim, we calculate similarities between genes using the
function ‘getGeneSim’, with the default settings of ‘method
= Resnik’ and ‘combinemethod = funSimMax’, both of
which relate to how similarities are calculated using the un-
derlying ontology of gene annotations.

In general, each method provides coverage of different
parts of the exome. After translating between gene nomen-
clatures and calculating all gene similarities where possible
we see that of the original 18 930 genes registered within
the collapsing analysis, Gene-SCOUT provides similarities
between 2097 of these (11%). Similarly, the coverage of
GOSim, HPOSim and StringDB is 14 028 (74%), 2,785
(15%) and 18 008 (95%) respectively. We note that the Pear-
son’s correlation coefficient between Gene-SCOUT similar-
ities and other methods is under 0.05 when taking the inter-
section of available gene-gene pairs (Supplementary Figure
S26), noting that the intersection is allowed to vary between
two compared methods. This suggests that our proposed
method is capturing similarities that are generally orthog-
onal to the other methods.

Quantifying performance of similarity methods

The performance of Gene-SCOUT (and any other method)
on a particular gene set was calculated as follows. Take an
example gene set from a resource (e.g. all genes associated
with ‘Deafness’ in OMIM), denote this as G. Then for each
gene in G recover the (at most) n most similar genes, en-
suring they do not include the seed gene. This results in
m = si ze(G) sets of similar genes each with length ≤ n.
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We then take the union of all of these m gene sets, denoted
as Hn for a given value of n, and quantify the overlap with
G using Fisher’s exact test. A positive overlap can arise for
example if a seed gene in G appears in one of the remaining
seed genes’ lists.

The contingency table for Fisher’s exact test is con-
structed through considering a reference set of either (i)
2097 genes with Gene-SCOUT similarities or (ii) 18 862
protein-coding genes. For a given reference set, the contin-
gency table counts the number of genes that are positive or
negative for inclusion in G as well as positive or negative for
inclusion in Hn .

External gene sets used for benchmarking

The benchmarking procedure makes extensive use of exter-
nal gene sets to establish how successfully Gene-SCOUT re-
trieves similar genes that are known to be enriched for the
same phenotype. In particular, four resources are included,
namely OMIM (21), KEGG (22), PanelApp (23) and a Phe-
WAS collapsing analysis of UKB exomes (2). OMIM gene
sets were constructed through parsing an OMIM dump (ac-
cessed 19 April 2021). KEGG gene sets comprised 186 gene
sets taken from MSigDB’s canonical pathways. PanelApp
gene sets were extracted through downloading 326 panels
from the PanelApp website and then restricting gene sets to
only those with a ‘GEL status’ of 2 or 3 (i.e. the association
is either amber or green), accessed on 30 November 2021.

Further gene sets were also constructed using the Phe-
WAS collapsing analysis of UKB exome data – as used to
generate the original gene signatures. In this case, however,
binary traits were considered rather than the continuous
ones used to generate the signatures. Each binary pheno-
type association was quantified using Fisher’s exact test p-
values from 11 different collapsing models, including a syn-
onymous model which was subsequently excluded for these
purposes. As such, a single measure of association between
a given gene and phenotype was provided through tak-
ing the minimum P-value over all of these collapsing mod-
els. These summary p-values were then used to construct
three collections of gene sets, where each set corresponded
to a different significance threshold (10−4, 10−5 and 10−8).
For example, given a significance threshold of 10−4, a gene
set ‘Non-insulin-dependent diabetes mellitus’ comprises all
those genes with summary P-value ≤ 10−4 for their associ-
ation significance with that particular binary trait.

Web resource with pre-calculated results

We provide for each input gene a network of closest genes,
similarities, enrichments and gene signatures. Taking LDLR
as an example we describe the outputs of these analyses in
the web resource (Figure 1). Firstly, we are able to explore
the portion of the network that immediately surrounds
LDLR. The red node represents the seed gene (LDLR in this
case) and the blue genes represent its ‘one-hop’ neighbors.
The remaining grey nodes represent ‘two-hop’ neighbors of
LDLR. Finally, for LDLR’s 10 most similar genes we color
the corresponding edge pink and weight the thickness ac-
cording to the strength of the similarity. Furthermore, for
the list of nearest genes reported, we are able to test whether

they are statistically enriched for other biologically relevant
properties. We do this first of all by performing a Gene On-
tology enrichment analysis for biological processes and sec-
ondly for clinical traits studied using the same exome se-
quences in the UK Biobank. More descriptions of the web
resource and details of the enrichment tests are provided in
Supplemental Methods.

Trait finder

Trait finder provides a means to match genes that satisfy
a certain quantitative trait fingerprint as measured by the
direction of significant associations. The user provides two
sets of traits, looking for either positive or negative (sig-
nificant) associations with underlying genotypes, to con-
struct the desired fingerprint. Specifically, each trait is used
to query the entire exome and identify those genes that pos-
itively or negatively associate with it in the event of a vari-
ation in its sequence (with variations being captured by the
qualifying variant models used in this study). The signif-
icance level for Trait finder (unlike the similarity calcula-
tions) can be set by the user.

Genes are scored based on this desired fingerprint. Each
trait in each of the two sets is iterated over and if, for ex-
ample, a gene is positively associated at the given thresh-
old with the trait (and the trait is in the desired positively
associated set), then it scores an additional point. Having
scored each gene based on the traits in each of the sets they
are ranked with highest points representing the most closely
matching fingerprint.

RESULTS

We here leverage the vast scale of the UKB cohort to iden-
tify similarities for each gene based on their phenotypic sig-
natures. The dataset itself expands from the 281 104 sam-
ples studied previously (2), now containing samples from
394 692 individuals and also incorporates metabolomic fea-
tures from a subset of 121 394 individuals. This rich dataset
allows us to quantify the associations between many under-
lying genetic architectures and continuous traits with the
objective of better capturing the ‘macro’ effect of genetic
variation, measuring the association with continuous traits
as driven by rare-variant mutations. For each gene we have
a multi-dimensional vector quantifying these associations
to over 1587 different traits. In order to capture biologically
meaningful similarities between genes we explored different
methodologies and strategies to best exploit both the asso-
ciation scores, and their accompanying P-values (see Mate-
rials and Methods). The latter was instrumental in helping
to improve the statistical robustness of the resulting similar-
ities. Other variables involved in the exploration included
comparing different distance metrics, different ways to fil-
ter out non-significant associations and varying significance
levels. The final methodology was tuned through a sensitiv-
ity analysis using a set of 22 manually curated gene sets as
a gold standard (Supplementary Methods, Appendix).

We apply this optimised methodology across the whole
exome, based on association scores derived from the UKB
dataset. As the calculation relies on genes possessing at
least one significant association across the 1587 traits mea-
sured and 10 collapsing models, we restrict the calculation
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to 2097 of the original 18 862 genes (11%). In the following,
we first illustrate the power of the approach through con-
struction of a gene network and identify clusters driven by
these similarities – genes are assigned to the same cluster if
they share a high degree of similarity. Next, we benchmark
the similarities against competing methods, namely GOSim
(7), HPOSim (8) and a similarity derived from protein-
protein interaction scores using StringDB (10). We con-
clude with an exposition of a publicly available web-utility,
built to both explore and validate Gene-SCOUT similarities
through a user-friendly interface.

Validation of clusters using known gene sets

Similarities were used to cluster genes and map their fin-
gerprints through a 2D projection to visualize the clus-
ters, applicable only to those genes that have at least one
other similar gene. To verify the results of the projection
we exploit three expert-curated gene sets around dyslipi-
demia, diabetes and chronic kidney associated genes. We
plot the low-dimensional projection of Gene-SCOUT sim-
ilarity for genes that have at least one other similar gene
(Figure 2A), showing in addition the location of the genes
that are enriched for each of these disorders (some genes
may be shared across more than one validation set). We ob-
serve a consistent grouping of the gene members of each
gene set, providing a degree of confidence that the similari-
ties are based on biologically meaningful associations. Ad-
ditionally, we observed that human paralog genes, as de-
fined in Panther DB (32), preferentially group into the same
Gene-SCOUT derived clusters compared to random pairs
of genes (Fisher’s exact odds ratio = 8.3, P = 8.4×10–8; see
Materials and Methods).

Biological function of most enriched clusters

Gene clustering is first performed (using the OPTICS al-
gorithm) and then each gene (point) is projected into the
plane (using t-SNE). We see that natural clusters arise (Fig-
ure 2A, Supplementary Figure S12); however, to test the
meaning of these clusters we perform enrichment analyses
on each cluster, investigating the enrichment of a cluster
for both GO terms and PheWAS clinical traits. We eval-
uate the top performing clusters based on the maximum
PHRED score achieved across all traits. Reassuringly, the
top three clusters contain well-established gene-phenotype
relationships (Figure 2B). For example, cluster one demon-
strates enrichment for blood disorders, specifically heredi-
tary spherocytosis, through the clustering of known disease
genes such as ANK1, SLC4A1, SPTA1, SPTB and EPB42.
Cluster two shows enrichment for lipid related disorders,
with ANGPTL3, APOB, HMGCR, NPC1L1 and PCSK9
all well-established disease genes underlying lipoprotein
metabolism. Similarly, cluster three shows strong enrich-
ment for chronic myeloproliferative disease, with CALR,
JAK2 and MPL as established disease genes. An extended
list of clusters and their enrichments with PheWAS clinical
traits shows other meaningful clusters (Supplementary Fig-
ure S13) such as PKD1, PKD2 and CLDN10 sharing a clus-
ter enriched for kidney disorders as an exemplar. To gauge
the uniqueness of the clusters, we extract the top 1,000 most

strongly enriched traits across all clusters and count their
co-occurrence across multiple clusters, varying the signifi-
cance threshold between 10−2 to 10−6 (Supplementary Fig-
ure S28). We see that at the weakest threshold, 81.7% of the
traits are enriched in only one cluster (increasing to 100%
at 10−5 threshold), suggesting that the majority of the clus-
ters capture unique biology between them. Furthermore, we
also provide a negative control through permuting the simi-
larities between genes and then repeating both the clustering
and enrichment analyses based on the permuted similarities
(Supplementary Methods, section 6). We see that restricting
to the top 3 enrichment terms in each cluster, correspond-
ing to approximately the highest 5% of terms, the mean
PHRED score was significantly larger for Gene-SCOUT in
both PheWAS clinical traits and GO terms (P≤ 10−5; Sup-
plementary Figure S14).

Based on the derived similarity scores from Gene-
SCOUT we are able to recover biologically meaningful
clusters, thereby further validating the methodology. Genes
sharing the same cluster are also linked through shar-
ing similar significant associations with continuous traits.
For example, in cluster two, ANGPTL3, APOB, HMGCR,
NPC1L1 and PCSK9 are all known to be related to lipid
metabolism and, as such, it is possible that other genes high-
lighted within this cluster also relate to lipid-related disor-
ders, but may not be as well appreciated yet.

Benchmarking against other similarity scores on over 2500
gene sets

We compare the performance of Gene-SCOUT’s similar-
ity scores to those provided by GOSim (7), HPOSim (8) as
well as StringDB’s protein-protein interaction scores (10).
All benchmarked methods provide a similarity score for a
given seed gene to other genes in the exome, though they
do not necessarily provide similarities for all protein-coding
genes and may cover different parts of the exome (see Ma-
terials and Methods). We therefore focus predominantly on
the portion of the exome for which Gene-SCOUT provides
similarities for.

After an initial benchmarking procedure provided on the
three gene sets described in the sensitivity analysis (Supple-
mentary Figure S29) we extend the scope of the procedure
to accommodate diverse collections of gene sets from mul-
tiple public resources. Each phenotype represents a ground
truth from which it is possible to establish the performance
of a method through checking the relevance of similar genes
to the original gene set. These gene sets were collected from
four different resources – KEGG, OMIM, PanelApp and
UKB PheWAS – leading to over 15 000 initial gene sets. Phe-
notypes in KEGG tend to reflect biological pathways, those
in OMIM are taken from the biomedical literature, Pan-
elApp are ascertained through consensus among experts
and UKB PheWAS are determined through a collapsing
analysis of ∼400 000 exomes. The vast majority of these
gene sets, however, were redundant as we specifically fo-
cus on those with two or more genes between which Gene-
SCOUT can provide similarities for, reducing this figure to
2,662 different gene sets over all of the resources. Perfor-
mance was measured through calculating the overlap of the
‘n’ most similar genes to all other genes in a gene set and
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Figure 2. Gene-SCOUT scores validation using known manually curated gene sets as a gold standard. (A) t-SNE projection of similarities, with known
gene sets (dyslipidemia, diabetes and chronic kidney disease associated genes) as well as top 3 OPTICS-derived clusters overlayed. Genes common to
multiple sets are in black with (*, •, +) denoting membership in (all, dyslipidemia & CKD or dyslipidemia & diabetes) genes sets, respectively. (B) PheWAS
enrichments for top performing clusters extracted with the OPTICS algorithm (clusters are ranked by the highest performing PHRED score).

quantified using Fisher’s exact test (see Materials and Meth-
ods). To evaluate the relative performance of Gene-SCOUT
compared to an alternative method, we compare methods
only on gene sets that satisfy Fisher’s exact P-value ≤ 0.05
for both Gene-SCOUT and an alternative method. This en-
sures only gene sets that reach some minimal level of over-
lap in both methodologies are included, helping to enable a
fairer comparison. We see that the resulting number of gene
sets for a comparison varies depending on the collection
(OMIM, PanelApp etc.), the alternative method (GOSim,
HPOSim etc.) and the value of ‘n’, with the median gene set
size being 51 genes (Supplementary Figure S27).

Of these comparisons, we are then able to observe when
the overlap was stronger in Gene-SCOUT compared to an
alternative method, which we summarise as a fraction of the
number of gene sets. A fraction of >50% indicates that on
average, Gene-SCOUT is more likely to recover meaningful
similarities compared to an alternative method. We see that
in general (Figure 3A), Gene-SCOUT achieves this for gene
sets arising from UKB PheWAS and OMIM phenotypes
and to some extent for gene sets derived from KEGG path-
ways or PanelApp gene panels. To summarize, any compar-
ison with Gene-SCOUT is performed on four different col-
lections of gene sets and with four values of ‘n’, leading to 16
different settings. We saw that Gene-SCOUT outperforms
GOSim, HPOSim and StringDB on 13, 11 and 7 of these
settings, respectively.

We acknowledge a potential limitation of the previous
benchmarking procedure, with regards to potential biases
induced between similarity methods and gene sets serving
as ground truths. In particular HPO (the data-source for

HPOSim) employs data from OMIM, similarly, StringDB
scores are derived using data from KEGG, GO and OMIM.
In terms of UKB PheWAS, the same set of exome samples
were used to estimate Gene-SCOUT similarities and also
to estimate the phenotypic gene sets used to validate them.
This may introduce an undesirable circularity into the val-
idation, with any sample noise potentially affecting both
the continuous trait associations in the signatures and phe-
notype associations used to construct the validation gene
sets––moderated to some extent by the large sample size.
As such, we eliminate any circularities and biases through
splitting the samples into two buckets of ∼200 000 exomes,
stratified by age and sex, to provide an unbiased validation.
The first bucket was used to estimate Gene-SCOUT simi-
larities while the second was used to identify gene sets to
test against (see Materials and Methods). We do not alter
other settings relating to how similarities are calculated in
the process––e.g. the significance level used to determine rel-
evant features in Gene-SCOUT. We see that Gene-SCOUT
performs almost uniformly stronger compared to all other
methods on this independent data set (Figure 3B). Here,
we perform comparisons using 12 different settings: three
PheWAS significance thresholds (10−4, 10−5 and 10−8) and
four values of ‘n’. Gene-SCOUT outperforms the alterna-
tive methods in 11, 12 and 12 of these settings (GOSim,
HPOSim & StringDB, respectively). Also, it is noted that
the seemingly stronger performance of Gene-SCOUT when
similarities are estimated using fewer UKB exomes (Fig-
ure 3A and B) may in part be attributed to the fact that
Gene-SCOUT’s feature selection is potentially more strin-
gent when using the same significance threshold on fewer
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Figure 3. Comparison of Gene-SCOUT with alternative methods across different collections of gene sets. Bars represent the fraction of the gene sets
Gene-SCOUT outperformed an alternative method (or collection of methods). Vertical ranges capture the performance while varying the ‘n closest’ genes
in {5, 10, 20, 50}. (A) Gene sets provided by four different resources (*the same UKB cohort was used to obtain gene sets and estimate Gene-SCOUT
similarities). (B) Gene sets derived from only PheWAS collapsing analysis of UKB data. Samples were randomly split into two subsets, one to estimate the
Gene-SCOUT similarities and one to establish gene sets used in validation, thereby eliminating any risk of circularity.

samples, thereby increasing the genetic signal. This occurs
at the cost of supplying similarities between a smaller num-
ber of genes (1695 compared to 2097 previously), as a more
stringent threshold used in feature selection causes fewer
genes to have any significant quantitative traits, and fewer
still sharing the same ones. Finally, we are able to manu-
ally inspect the phenotypes that Gene-SCOUT attains the
best performance over other methods (Supplementary Ta-
ble S3), where we see strong performance on many lipid-
and blood-related disorders.

Web-utility

We accompany our method with a rich web-resource capa-
ble of exploring the gene similarities. Similarities between
genes have been pre-computed and all associated results are
accessible through the web app. As a result, the resource
provides a user-friendly interface for querying similarities
across the whole exome, explore the enrichment of groups
of similar genes for PheWAS and/or Gene Ontology terms
and extract the continuous trait fingerprint underpinning
each similarity association (Figure 4, Supplementary Fig-
ures S15 and S16).

The user provides a gene name based on HGNC nomen-
clature (24), after which the results page displays informa-
tion related to genes that are similar to the input gene. Based
on the ranked list of (at most) 10 genes plus the seed gene
we are able to perform a number of additional analyses.
Firstly, we are able to construct a network of neighboring
genes. The network provides a visual representation of genes
that are close to each other. We utilize a k-nearest neigh-
bor graph (see Methods) to construct the network with k =
10, chosen based on a robustness analysis (Supplementary
Methods, Supplementary Figure S18 and S19) and inspec-
tion of the distribution of number of similar genes to each

seed gene (Supplementary Figure S11). Secondly, based on
this list of nearest genes, we are able to quantitatively ver-
ify whether that collection of genes is enriched for estab-
lished biological processes and/or clinical traits studied in
the UK Biobank. In the former case, we utilise the auto-
mated Gene Ontology enrichment provided by the GOA-
Tools (25) package to test whether the list of closest genes
is enriched for various biological processes. For the latter,
we perform Fisher’s exact test between genes that are sig-
nificant for a given clinical trait and the list of nearest genes
(Supplementary Methods). We repeat this for all previously
studied clinical traits in the UK Biobank (2), thereby con-
structing a P-value score measuring the overlap between
close genes and those that are enriched for a given clinical
trait. Finally, we display the raw vector of significant asso-
ciations and the charts that show the associations that are
significant in both the seed gene and the gene that is close
to it. As such, the user can manually inspect which continu-
ous trait associations gave rise to the measure of similarity
between any two genes, providing an additional degree of
interpretability.

One of the main utilities of the web resource is in offer-
ing tractable alternatives to potentially intractable targets.
We explore this through leveraging druggability annotation
data from the PHAROS druggability resource (26) and the
druggable genome work (27). We identify a set of 413 of
Gene-SCOUT genes for which there is no supporting evi-
dence of tractability (denoted as ‘Tdark’ by PHAROS) and
use these as seed genes in Gene-SCOUT. We then compile a
list of 416 likely tractable genes from the union of PHAROS
(‘Tclin’ and ‘Tchem’) and the druggable genome (‘Tier 1’).
We see that over 50% of Gene-SCOUT genes annotated as
difficult-to-drug retained at least one other druggable target
gene within the closest 10 most similar genes (Supplemen-
tary Figure S21).
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Figure 4. Screenshot of web-resource for Gene-SCOUT pre-calculated results. (A) Seed gene. (B) Gene network – this is populated through considering
the (at most) 10 closest genes to each other gene (an edge in the network implies one of the genes was in the 10 closest for the other). The network only
shows the ‘two-hop’ neighbors to the seed gene. (C) Table of genes closest to seed gene, ranked by Gene-SCOUT similarities. (D) Plot of most similar genes
to seed gene.

Trait finder

In addition to this gene-specific information, we provide
a tool to retrieve a list of genes that closely match a de-
sired continuous trait fingerprint, where we consider only
the directionalities of significant associations to construct
the fingerprint (see Materials and Methods). In this way,
it is possible to rank genes that most closely satisfy a de-
sired continuous trait profile (Supplementary Figure S17).
For example, clinicians and other researchers may wish to
find genes that when mutated are negatively associated with
a set of particular continuous traits while being positively
associated with an alternative set. We refer to this tool as
‘Trait finder’ and comprises a separate section of the web
resource.

We illustrate the technique, with the following example, il-
lustrating Trait Finder (Figure 5A) in two example configu-
rations. The first (Figure 5B) considers positive and negative
traits as Glucose and LDL direct, respectively. It can be see
that GCK, GIGYF1 and HNF1A can all be matched to this
particular signature. Such a result is consistent with recent
findings, noting that GIGYF1 mutations are associated with
an increased risk of Type II Diabetes and produce protec-
tive effects in terms of hypocholesterolemia (28). Another
setting (Figure 5C), comprising of Vitamin D as a positive
trait and two negative traits (total cholines and LDL direct)
reveals three matching genes again––ANGPTL3, APOB
and PCSK9, all of which are known to be associated with
cholesterol levels.
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Figure 5. Schematic workflow of Gene-SCOUT’s Trait finder utility. (A) Traits are first selected by the user based on their direction of association. A
subset of genes is then identified that are significant in one or more of these traits. Finally, these genes are ranked so that genes with the most number of
positive association with ‘Positive traits’ (and/or negative association for ‘Negative traits’) appear towards the top. (B) Example gene signatures returned
by Trait Finder, using Glucose and LDL direct as the positive and negative traits. Three genes satisfied all these conditions (GCK, GIGYF1, HNF1A) at
a significance level of 10−4 with a subset of each of their signatures shown (the matching traits plus a selection of other traits that were also significant at
the same value). (C) The same process though with different positive (Vitamin D) and negative traits (Total Cholines, LDL direct) returns three matching
genes: ANGPTL3, APOB and PCSK9. Signature coefficients are capped between –1 and 1 to aid with visualisation.
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DISCUSSION

Estimating similarities between genes based on their fin-
gerprint for biomarkers and other continuous traits can
not only facilitate identifying alternative targets for less
tractable index genes, but also provide a deeper understand-
ing of the shared biomarker fingerprints for proof of mech-
anism and alike experimental medicine studies (29). Gene-
SCOUT uses ∼400K exomes from the UK Biobank to de-
velop a unique continuous trait fingerprint for each gene in
the exome. Using this fingerprint, it computes similarities
with all other genes in the exome based on statistical rela-
tionships with continuous traits. We demonstrated that gene
similarity estimations from Gene-SCOUT provide stronger
enrichments for clinical traits in comparison to other ex-
isting methods. We provide a web-resource capable of ex-
ploring the similarities calculated from this dataset, where
the user is able to examine the biological relevance of the re-
portedly close genes in terms of GO enrichment and clinical
trait enrichment analyses. The user is also able to explore the
similarities through a fully interactive gene network, known
as a k-nearest neighbor graph. We provide the user with a
detailed breakdown of the traits used to construct each fin-
gerprint. In parallel to this, we also offer functionality that
lets the user visualise the similarities through a nonlinear
projection and perform automated clustering of the genes
based on the derived similarities, with ontology and trait-
specific enrichments also provided for each cluster. Finally,
we have introduced additional functionality (‘Trait finder’)
that allows the user to search for genes that satisfy a certain
user-defined fingerprint, as specified by the associations and
their direction of effects for a set of continuous traits.

Further methodological extensions to the current ap-
proach could involve incorporating gene ontology and
interactome-based similarity measures while also formulat-
ing it within a supervised machine learning framework to
learn an optimal distance function between pairs of genes
(30,31) based on an expert curated truth dataset.
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Gene-SCOUT results are provided in a fully interactive web
resource with pre-calculated gene similarities and networks,
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