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Ribosomal RNA (rRNA) production represents the most active transcription in the cell.
Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to
hundreds of RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA
gene. In this review, we present recent advances in understanding the coupling between
rRNA production and nascent rRNA folding. Mapping of the distribution of Pol I along
ribosomal DNA at nucleotide resolution, using either native elongating transcript
sequencing (NET-Seq) or crosslinking and analysis of cDNAs (CRAC), revealed
frequent Pol I pausing, and CRAC results revealed a direct coupling between pausing
and nascent RNA folding. High density of Pol I per gene imposes topological constraints
that establish a defined pattern of polymerase distribution along the gene, with a persistent
spacing between transcribing enzymes. RNA folding during transcription directly acts as
an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors
elongation in vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I
pausing. We propose that premature termination of transcription, at defined positions, can
control rRNA production in vivo.
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SYNTHESIS OF THE 35S PRIMARY TRANSCRIPT BY POL I

Yeast haploid cells contain between 150 and 200 copies of tandemly repeated rRNA genes while
the diploid human genome contains around 400 copies. Although present at a high copy number
in the genomes, not all rRNA genes are actively transcribed. In budding yeast, only about 50% of
the genes on average are transcribed in exponentially growing cells. Each ribosomal gene unit
spreads over 9.1 kb of DNA and contains two transcribed regions encoding the 35S pre-rRNA,
transcribed by RNA Polymerase I (Pol I), and the 5S rRNA, transcribed by Pol III (Figure 1A).
These transcribed regions are separated by intergenic spacers (IGSs): IGS1 starts at the
transcription termination site of the 35S gene and ends at the 5S rRNA gene terminator and
IGS2 corresponds to the region between the 5S rRNA gene promoter and the promoter of the
next 35S gene (Nomura, 2001). Pol I transcription accounts for almost 60% of total
transcriptional activity in yeast cells (Warner, 1999). This process occurs in the nucleolus
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and results in the synthesis of the 35S pre-rRNA containing the
sequences of three of the four rRNAs composing the mature
ribosome, the 18S, 5.8S and 25S rRNAs. These sequences are
flanked and separated by sequences that are not retained in the

mature ribosomes: respectively the 5′ and 3′ external
transcribed spacers (5′ ETS and 3′ ETS) and the internal
transcribed spacers 1 and 2 (ITS1 and ITS2) (Figure 1A).
This 35S precursor will be co-transcriptionally packaged into

FIGURE 1 |Ribosomal DNA transcription by RNA Pol I. (A)Ribosomal DNA. The rDNA repeats (150–200 copies) are located on chromosome XII. A single repeated
unit is transcribed by RNA polymerase I (Pol I) to synthesize the 35S primary pre-rRNA transcript, which is then processed to produce the mature 18S, 5.8S and 25S
rRNAs (arrow pointing to the right). RNA Polymerase III synthesizes the 5S rRNA (arrow pointing to the left). IGS, intergenic sequence; ETS, external transcribed spacer;
ITS, internal transcribed spacer. (B) RNA Polymerase I. Pol I 3D structure (Darrière et al., 2019). View of the initially transcribing complex model and its four different
subunits - PDB 5W66 (Han et al., 2017). Catalytic amino acids are located in the center of the central cleft. The two main modules are mobile and allow cleft opening and
closure, depending of the transcription step. (C) Transcription initiation. Composition of Pol I pre-initiation complex (see text for details). UAF, Upstream Activating Factor;
TBP, TATA-binding protein; CF, Core Factor. (D) Transcription termination. Pol I termination mechanisms (see text for details).
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pre-ribosomal particles that will undergo a complex
maturation pathway to generate the mature ribosomal
subunits.

TRANSCRIPTION INITIATION AND
TERMINATION

Pol I enzyme in yeast is composed of 14 subunits (global
molecular weight of 590 kDa) including two large subunits,
Rpa190 and Rpa135, jointly forming the active site of the
enzyme (Riva et al., 1987) (Figure 1B). Crystal structure of
yeast Saccharomyces cerevisiae Pol I revealed the interactions
occurring between its 14 subunits: the two large subunits Rpa190
and Rpa135 organize the enzyme in two modules of similar mass
(Engel et al., 2013; Fernández-Tornero et al., 2013). The Pol
I-specific subunits whose role during transcription has been
partially characterized include Rpa43 and Rpa14 subunits in
the stalk, and Rpa34, Rpa49 and Rpa12 subunits associated
with the jaw/lobe module (Figure 1B).

Formation of preinitiation complex (PIC) is presented in
Figure 1C. Pol I promoter contains two sequences required
for efficient transcription initiation: the upstream activating
sequence (UAS) and the core element (CE) (Nomura, 2001;
Boukhgalter et al., 2002). Recruitment of the polymerase to
the promoter to form the PIC relies on four transcription
factors: upstream activating factor (UAF), core factor (CF),
TATA-binding protein (TBP) and the Rrn3 transcription
factor (Keener et al., 1998). UAF is the first complex to
associate with the UAS of the rDNA promoter to initiate PIC
assembly (Steffan et al., 1996). TBP was shown to bind to both CF
and UAF, thus serving as a bridge to position CF downstream of
the UAS. Binding of CF to the CE allows further recruitment of
Pol I stably associated with Rrn3 (Aprikian et al., 2001). Rrn3 is a
highly conserved transcription factor that associates with the
Rpa43-Rpa14 heterodimer of Pol I and interacts with the Rrn6
subunit of the CF. It is therefore a crucial element required for
transcription initiation (Peyroche et al., 2000; Aprikian et al.,
2001). Transcription begins at the transcription start site (TSS)
and Pol I and Rrn3 are released from the PIC upon transcription
initiation. Several structural studies gave new insights into Pol I
promoter recognition and melting, and more broadly into
transcription initiation by yeast Pol I (Blattner et al., 2011;
Engel et al., 2013, 2016; Moreno-Morcillo et al., 2014; Neyer
et al., 2016; Tafur et al., 2016; Han et al., 2017; Sadian et al., 2017;
Smith et al., 2018; Sadian et al., 2019; Tafur et al., 2019; Knutson
et al., 2020). These studies will not be detailed here.

Pol I transcription termination involves pausing induced by a
terminator protein, leading to dissociation of the polymerase and
release of the primary transcript. Paradoxically, termination is
not required for rRNA production since nascent transcript is
released through the endonucleolytic cleavage by Rnt1
(Figure 1D) (Henras et al., 2005). In fission yeast, Reb1
protein interacts with the Rpa12 subunit of Pol I to stimulate
termination (Jaiswal et al., 2016). In budding yeast, 90% of Pol I
transcription termination occurs at a well-defined primary
terminator element (T1) downstream of the 25S rRNA

sequence (Figure 1D). Transcription termination at this site
implicates the DNA-binding factor Nsi1, a Reb1 paralog,
which promotes termination upstream of T1 at a T-rich
element that likely operates as a polymerase release element
(Lang and Reeder, 1993; Merkl et al., 2014; Reiter et al., 2012).
In 10% of the cases, Pol I reads through this first terminator and
stops at a downstream, “fail-safe” terminator (T2) located around
position +250 from the 3′ end of the 25S rRNA sequence (Reeder
et al., 1999). Transcription termination on Pol II-transcribed
genes was shown to involve the 5′-3′ exoribonuclease Rat1
through a mechanism called “torpedo” (West et al., 2004; Luo
et al., 2006; Kim et al., 2004). According to this model, Rat1 binds
and degrades the transcript emerging from the polymerase
following cleavage and release of the pre-mRNA, and given its
high processivity, Rat1 catches up and dissociates Pol II from the
DNA template. In the context of Pol I transcription, Rat1 was
shown to interact with terminator sequences T1 and T2 and to be
required for efficient termination. Its catalytic activity is required
for this function since expression of a catalytically inactive
mutant of Rat1 (Rat1D235A) could not suppress the Pol I
termination defect observed in absence of Rat1. The absence
of both Rat1 and Fob1, bound to the replication fork barrier
(RFB) site (Figure 1D), increases polymerase read-through of T2
and the RFB site, indicating that Fob1 is also partly involved in
termination (El Hage et al., 2008).

POL I SUBUNITS AND TRANS-ACTING
FACTORS INVOLVED IN ELONGATION
DYNAMICS
Transcription elongation properties involve in particular three
Pol I subunits present on the lobe (Figure 1B): Rpa12 and the
heterodimer Rpa34/Rpa49 (Liljelund et al., 1992; Nogi et al., 1993;
Gadal et al., 1997). In absence of Rpa34/Rpa49, Pol I activity is
altered (Huet et al., 1975; Liljelund et al., 1992). Pol I lacking the
Rpa34/Rpa49 subunits does not produce RNA to the same extent
as a wild-type enzyme (Kuhn et al., 2007; Beckouet et al., 2008;
Albert et al., 2011). Furthermore, this heterodimer plays an
important role in transcription by improving the recruitment
of the Rrn3-Pol I complex to the rDNA and by triggering the
release of Rrn3 from elongating Pol I. Indeed, in an rpa49 deletion
strain, Rrn3 is recruited less efficiently at the promoter and fails to
dissociate from elongating polymerases following transcription
initiation (Beckouet et al., 2008). Interestingly, Rpa49 and Rpa34
are important for nucleolar assembly and formation of a property
of actively transcribed rRNA genes called “Pol I caravans” or “Pol
I convoys,” reflecting a spatial proximity between adjacent
polymerases (Albert et al., 2011; Neyer et al., 2016). Rpa12
subunit stabilizes the Rpa49/Rpa34 heterodimer on the
polymerase (Van Mullem et al., 2002; Tafur et al., 2019). In
the absence of Rpa12, Pol I catalytic properties are affected
(Appling et al., 2018; Scull et al., 2021). Furthermore, Pol I
transcription through a linear mono-nucleosomal template was
shown to be defective in the absence of the lobe-binding subunits
(Merkl et al., 2020). Mutations affecting the Rpa135 subunit were
also shown to affect transcription elongation. In particular,
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mutation of the amino acid at position 784 (rpa135-D784G),
suspected to play a role in loading NTP substrates, caused
reduced transcription compared to a wild-type Pol I.
Calculation of Pol I elongation rate in vitro showed that this
Rpa135 mutant is ten times slower than the wild-type polymerase
(Schneider et al., 2007).

In addition to the role of Pol I subunits in transcription
elongation, transcription factor Spt5 in complex with Spt4,
was also shown to be required for efficient Pol I transcription
(Schneider et al., 2006). Immunoprecipitation and mass
spectrometry experiments showed that this complex interacts
directly with multiple Pol I subunits (Rpa49, Rpa34, Rpa135 and
Rpa190), through the NGN and KOW domains of Spt5
(Schneider et al., 2006). Moreover, Spt5 also associates with
the transcription factor Rrn3 and with the 35S rRNA gene
(coding region and promoter) (Viktorovskaya et al., 2011).
Depletion of Spt4 in yeast results in a temperature-sensitive
slow growth phenotype associated with a decreased rRNA
synthesis rate as well as a reduced Pol I elongation efficiency,
also impacting pre-rRNA processing and ribosome assembly
(Schneider et al., 2006). Furthermore, Spt5 mutations suppress
the cold-sensitive phenotype of an rpa49Δ strain. All these data
support a function of the Spt4-Spt5 complex in Pol I transcription
elongation, which remains to be understood at the molecular
level. Another related protein, Spt6, interacts with the Spt4/Spt5
complex and was also proposed to play a role in Pol I
transcription (Swanson and Winston, 1992). Spt6 interacts
with Pol I subunit Rpa43 (Beckouët et al., 2011). It was shown
that Spt6 associates with rDNA and is required for Pol I
transcription since a strain carrying an in-frame deletion allele
of SPT6 (Spt6-1004) showed reduced Pol I occupancy on the
rDNA (Engel et al., 2015). Other factors including Hmo1 also
modulate Pol I elongation properties, but the underlying
mechanisms remain elusive (Albert et al., 2013; Higashino
et al., 2015).

MAPPING POL I POSITION AT
NUCLEOTIDE RESOLUTION TO
INVESTIGATE POL I ELONGATION IN VIVO
In addition to the implication of Pol I subunits and trans-acting
factors, Pol I elongation is also regulated by mechanisms intrinsic
to the transcription process. Elongation is fundamentally
discontinuous, with events of pausing, backtracking and
possible premature termination, which remain to be explored.
Pol I elongation was studied using the native elongating transcript
sequencing (NET-seq) method, based on deep sequencing of the
3′ ends of nascent transcripts associated with the polymerase
(Churchman and Weissman, 2011). This study revealed
hundreds of positions within rDNA that reproducibly induce
pausing (Clarke et al., 2018). Unfortunately, fragments of mature
rRNAs co-purifying with Pol I in the NET-seq procedure could
introduce bias in the analysis. Turowski and co-workers used the
crosslinking and analysis of cDNAs (CRAC) technique to map
the position of Pol I on rDNA during elongation. CRAC consists
in crosslinking Pol I to its associated nascent rRNAs during

elongation in vivo, followed by complex purification, reverse
transcription of associated rRNAs and sequencing of cDNAs
(Turowski et al., 2020). Applied to a population of cells, this
method provides a statistical snapshot of the position of
transcribing Pol I all along the rDNA unit and allows the
determination of areas of the gene in which Pol I is
accumulated (Figure 2A). It is noteworthy that a high
polymerase occupancy reflects a low elongation rate. This
CRAC analysis revealed a massive Pol I enrichment in the 5′
end of rRNA genes. Enrichment of polymerases at the 5′ end of
rRNA genes was previously observed, but to a much lower extent,
using the chromatin spread method developed by Oskar Miller,
allowing a direct observation of Pol I in complex along rDNA
(Miller and Beatty, 1969; Osheim et al., 2009; French et al., 2003).
It was speculated that the high density of polymerases in the
5′ETS region, called “Low Entrainment Region” (LER), results in
polymerases moving more slowly (decreasing Pol I elongation
rate <20%) and being more closely over the initial 2 kb. As an
underlying mechanism, Turowski and collaborators proposed
that in the LER, where Pol I is associated with only short
nascent transcripts, Pol I molecules are able to rotate freely
along DNA grooves during elongation, while they become
progressively unable to do so due to viscous drag 2 kb after
initiation (Figure 2B). Accordingly, polymerase activity in the
LER would not generate torsion in DNA, which allows changes in
the relative positions of adjacent polymerases. This results in
increased freedom for movement, likely increasing the
probability of backtracking events, which would explain the
accumulation of Pol I in the 5′ region of the genes. The high
density of polymerases in the 5′ETS region is also correlated with
the fact that major early pre-rRNA assembly events take place on
the 5′ region of nascent rRNA (Chaker-Margot et al., 2017).

It is important to note that Pol I translocation is based on
Brownian ratchet motion making elongation prone to frequent
backtracking and potentially sensitive to quite modest forces
(Dangkulwanich et al., 2013). Co-transcriptional folding of the
nascent rRNA has direct consequences on elongation by
preventing backtracking, thereby favoring productive
elongation (Turowski et al., 2020). Any co-transcriptional
association with the nascent transcript of trans-acting factors
(UTPs, snoRNPs) should have the same stimulatory effect on
transcription. With up to 200 transcribing Pol I per rRNA gene,
each enzyme is influenced by its neighbors along the template
directly through steric constraints. Indirectly, away of the LER
predicted to occur only in the first 2 kb, torsional constraints on
DNA plays a major role (torsional coupling):

- When the rotation around DNA of the transcribing
polymerases is prevented by viscous drag due to the size and
structure of nascent rRNA, elongation can be described within
the twin-supercoiled domain model: DNA screws into the
polymerase and experiences positive supercoiling downstream
and negative supercoiling upstream (Liu and Wang, 1987).

- When all polymerases transcribe at the same rate, the
negative DNA supercoiling created in the wake of one
translocating polymerase is rapidly cancelled out by the
positive DNA supercoiling created in front of the following
one. The torsional stress between polymerases is alleviated and
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FIGURE 2 | RNA Pol I elongation dynamics. (A) RNA Pol I distribution along rDNA template. Rpa135-CRAC results showing strong Pol I accumulation at 5’ end of
the rRNA gene (Turowski et al., 2020). (B) Elongation dynamics in the Low Entrainment Region. Schematic representation of Pol I elongation dynamics in the LER
(Turowski et al., 2020). Associated with short nascent transcripts, Pol I can easily rotate around rDNA in the 5’ region, leading to free translocation and a higher rate of
backtracking. Beyond the LER, viscous drag limits the rotation of the pre-RNA/Pol I complex around DNA. (C) Premature termination. Model including the
propensity of the elongation complex to dissociate and release rRNA, leading to premature termination. When a Pol I is stalled, a torsional stress occurs that could be
resolved by a premature transcription termination (PTT) event.
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a fast and processive collective translocation is allowed, leading to
polymerase convoys (Lesne et al., 2018; Kim et al., 2019).
Therefore, all polymerases in convoys translocate at the same
rate, their spacing remains constant (Figure 2C). Any change in
the relative positions of transcribing polymerases generates
torsional stress, which will quickly exceed the low stalling
force of the polymerases (Ma et al., 2013; Heberling et al.,
2016; Tantale et al., 2016). Any local modification of Pol I
spacing within rDNA modifies DNA supercoiling, and the
associated increase of local torsional energy generates an
apparent force sufficiently strong to restore the initial distance
between the polymerases and ensures the cohesion of the convoy
(Lesne et al., 2018). Deletion or rapid depletion of topoisomerase
I, results in defective rRNA synthesis (El Hage et al., 2010; Albert
et al., 2019), highlighting the importance of resolving DNA
supercoiling (downstream and upstream of each convoy) for
efficient Pol I transcription elongation.

However, this cooperative long-distance group behavior may
also induce antagonist effects on elongation. It was observed that
promoter shut-off reduces the apparent elongation rate of the
engaged polymerases, which is associated with a significant
increase in premature termination (Kim et al., 2019). It is
rational to suppose that the same effect occurs when
elongating Pol I gets stalled on rDNA, thus leading to
accumulation of negative torsional stress in the wake of the
downstream Pol I (i.e. the nearby Pol I farthest from the
promoter). Pol I stalling is known to increase premature
termination of the paused Pol I and possibly also of the
downstream polymerases (Figure 2C). Such a phenomenon
was previously described as premature termination of
transcription (PTT) for Pol II (Kamieniarz-Gdula and
Proudfoot, 2019).

These premature termination events could also potentially
explain the 5′ bias observed in the Pol I CRAC profile. Pol II is
known to undergo a transition from initiation to elongation
states that is associated with changes of the phosphorylation
status of the C-terminal domain (CTD) of the largest Pol II
subunit (Milligan et al., 2016). It is possible that Pol I
undergoes a similar transition, the 5′ accumulation bias
reflecting a region in which the polymerase has an elevated
probability to terminate prematurely. However, consideration
of premature termination in the model of Turowski and
collaborators, even though it recapitulated the overall
profile, reduced by 30% the total number of polymerases
per transcription unit, which falls below the number of Pol
I molecules per rDNA observed using Miller spreads
(Turowski et al., 2020). Nevertheless, premature termination
of Pol I cannot be excluded and could, at least partially, play a
role in establishing the 5′ bias.

WORKING HYPOTHESIS: POL I
PROCESSIVITY AND PREMATURE
TERMINATION
In order to better understand transcription regulation, Pol I
mutants are of particular interest. We have recently identified

in a genetic screen a super-active Pol I mutant, bearing a single
substitution on the second largest subunit: Rpa135-F301S
allele, hereafter named SuperPol I. This mutant induces an
increase of rRNA production in yeast (Darrière et al., 2019).
The mechanism leading to this increased rRNA production is
not well understood. We proposed that this mutation alleviates
an intrinsic repressive element of the polymerase, leading to
increased processivity during elongation, i.e. the ability of Pol I
to carry out continuous RNA synthesis on the DNA template
without premature termination. This hypothesis is based on
several experimental evidences. First, Miller spreads showed
that the amounts of Pol I engaged in transcription are
comparable in wild-type (WT) and mutant cells, meaning
that the increased production of rRNA is not due to a
major enhancement of Pol I initiation rate (Darrière et al.,
2019). Moreover, in vitro promoter-dependent transcription
assays confirmed that transcription initiation rate is similar
between WT and SuperPol I. On the other hand, a tailed
template assay, measuring elongation rate in vitro, revealed an
increased rRNA production by the SuperPol I, likely due to a
higher processivity (Darrière et al., 2019). Taken together,
these elements suggest that the Rpa135-F301S mutation
induces modifications in the elongation process, and more
precisely on processivity. Premature termination directly
affects processivity and likely influences Pol I distribution
along the DNA template. Importantly, premature
termination can not be measured by CRAC, which relies on
detection of rRNA still bound to Pol I. To demonstrate the
occurrence of premature termination events, defined as a
dissociation of the elongation complex and release of the
nascent rRNA, it will be necessary to correlate Pol I
complex stalling with the production of abortive rRNAs.
This could be achieved by combining Pol I CRAC data,
highlighting precise pause sites, with a mapping of the
corresponding abortive transcripts. Detection of rRNA
species resulting from abortive transcription in differential
amounts in cells expressing the SuperPol I or WT polymerase
should allow to better understand what features of elongating
Pol I lead to premature termination. The increased
processivity of the SuperPol I mutant could likely be the
consequence of a lower occurrence of premature
termination, i.e. a lower production of abortive rRNAs.

CONCLUSION AND PERSPECTIVES

Methods allowing to map at nucleotide resolution Pol I pausing
sites during elongation revealed a key interplay between RNA
folding and elongation rate: formation of rRNA secondary
structures prevents backtracking, hence enhances elongation
rate. With a large amount of co-transcriptional folding of
rRNA, we are now able to study how processing events are
affecting Pol I elongation rate. So far limited to budding yeast,
there is no doubt that some Pol I regulatory mechanisms are
evolutionary conserved, as Pol I elongation rate is limiting for
rRNA synthesis in metazoan cells (Hung et al., 2017). The
understanding of the precise mechanisms of Pol I
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transcription and the implication of each inherent elongation
feature opens wide prospects on health-related areas of research,
particularly to understand a large number of genetic diseases
collectively called ribosomopathies. Pol I inhibition used in
cancer therapy these recent years will also benefit from such
mechanistic breakthroughs (Sulima et al., 2019; Ferreira et al.,
2020; Kampen et al., 2020).
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