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Purpose: Glioblastoma (GBM) is one of the most aggressive brain tumors with high
mortality, and tumor-derived exosomes provide new insight into the mechanisms of GBM
tumorigenesis, metastasis and therapeutic resistance. We aimed to establish an
exosome-derived competitive endogenous RNA (ceRNA) network for constructing a
prognostic model for GBM.

Methods: We obtained the expression profiles of long noncoding RNAs (lncRNAs),
miRNAs, and mRNAs from the GEO and TCGA databases and identified differentially
expressed RNAs in GBM to construct a ceRNA network. By performing lasso and
multivariate Cox regression analyses, we identified optimal prognosis-related differentially
expressed lncRNAs (DElncRNAs) and generated a risk score model termed the exosomal
lncRNA (exo-lncRNA) signature. The exo-lncRNA signature was subsequently validated in
the CGGA GBM cohort. Finally, a novel prognostic nomogram was constructed based on
the exo-lncRNA signature and clinicopathological parameters and validated in the CGGA
external cohort. Based on the ceRNA hypothesis, oncocers were identified based on
highly positive correlations between lncRNAs and mRNAs mediated by the same
miRNAs. Furthermore, regression analyses were performed to assess correlations
between the expression abundances of lncRNAs in tumors and exosomes.

Results: A total of 45 DElncRNAs, six DEmiRNAs, and 38 DEmRNAs were identified, and
an exosome-derived ceRNA network was built. Three optimal prognostic-related
DElncRNAs, HOTAIR (HR=0.341, P<0.001), SOX21-AS1 (HR=0.30, P<0.001), and
STEAP3-AS1 (HR=2.47, P<0.001), were included to construct the exo-lncRNA
signature, which was further proven to be an independent prognostic factor. The novel
prognostic nomogram was constructed based on the exo-lncRNA signature, patient age,
pharmacotherapy, radiotherapy, IDH mutation status, and MGMT promoter status, with a
March 2021 | Volume 11 | Article 5535941

https://www.frontiersin.org/articles/10.3389/fonc.2021.553594/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.553594/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.553594/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.553594/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.553594/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xingbingemail@aliyun.com
https://doi.org/10.3389/fonc.2021.553594
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.553594
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.553594&domain=pdf&date_stamp=2021-03-05


Wang et al. Prognostic CeRNA Network for Glioblastoma

Frontiers in Oncology | www.frontiersin.org
concordance index of 0.878. ROC and calibration plots both suggested that the
nomogram had beneficial discrimination and predictive abilities. A total of 11 pairs of
prognostic oncocers were identified. Regression analysis suggested excellent
consistency of the expression abundance of the three exosomal lncRNAs between
exosomes and tumor tissues.

Conclusions: Exosomal lncRNAs may serve as promising prognostic predictors and
therapeutic targets. The prognostic nomogram based on the exo-lncRNA signature might
provide an intuitive method for individualized survival prediction and facilitate better
treatment strategies.
Keywords: glioblastoma, exosome, liquid biopsy, ceRNA, prognostic model
INTRODUCTION

Glioma is one of the most aggressive brain tumors, and it has
received considerable attention due to its relatively high
incidence, poor prognosis and significant impact on quality of
life. Glioblastoma (GBM, WHO Grade IV) is the most common
type of glioma, accounting for 56.6% of all glioma cases, and has
an average annual incidence of 3.21 per 100,000 people in the
United States (1). GBM remains difficult to treat, with a median
survival of 12-15 months regardless of aggressive surgical
resection, radiotherapy or concomitant chemotherapy, and the
5-year survival rate is reported to be only 5.6% (1, 2). In recent
years, an increasing number of molecularly targeted therapies
have emerged but have not achieved satisfactory outcomes due to
the complex pathogenesis and molecular heterogeneity of GBM.
More studies are needed to explore the mechanism involved and
to identify biomarkers to predict prognosis and therapeutic
outcomes of GBM.

Exosomes are nanosized (30-150 nm) extracellular vesicles
released by various cell types and are present in the blood and
other body fluids, allowing for noninvasive analyses in real time
(3, 4). It is recognized that exosomes can regulate the bioactivity
of the recipient cell by transferring molecular and genetic cargo,
including proteins, lipids, and small RNAs (3). Recent studies
have highlighted the role of exosomes in tumors, including
tumor progression, metastasis, establishment of the tumor
microenvironment, and drug resistance (5–7). The importance
of exosomes and their cargo (especially small RNAs) for GBM
has gradually been realized, as is the case for microRNAs
(miRNAs) in regulating angiogenesis and tumor metastasis (8)
and messenger RNAs (mRNAs) in mediating cell migration and
drug resistance (9, 10). Nonetheless, integration analysis of the
exosome expression profile in GBM has not been fully elucidated.

Because multiple signaling pathways and genes are interrupted
in tumor pathogenesis, target genes might be masked by other
unnecessary genes. The competitive endogenous RNA (ceRNA)
hypothesis provides a systemic perspective to explore potential
exosome-derived biomarkers to predict GBM diagnosis and
prognosis. The ceRNA network hypothesizes that crosstalk
between RNAs, including long noncoding RNAs (lncRNAs),
mRNAs and miRNAs, forms large-scale regulatory networks
through shared miRNA response elements (MREs) (11). Among
2

them, lncRNAs act as an endogenous competitive molecule sponges
that bind to miRNAs through MREs and further regulates mRNA
expression. Considerable studies have confirmed the role of the
lncRNA-miRNA-mRNA regulation network, and based on the
ceRNA hypothesis, oncocers that play crucial roles in oncogenic
pathways have been identified in various cancers, such as lung
cancer, prostate cancer, and liver cancer (12–15). These results
suggest the significance of the ceRNA network in the
comprehensive analysis of gene interactions and the identification
of potential biomarkers for tumor diagnosis, therapy, and prognosis.

In this study, we aimed to investigate and validate an
exosome-derived multiple gene expression signature based on
a ceRNA network that can predict prognosis and provide
potential targets for GBM treatment. Furthermore, based on
the exosome signature and clinical factors, we constructed a
promising GBM prognostic nomogram model with beneficial
predictive ability and accuracy.
MATERIALS AND METHODS

Data Retrieval and Processing
Datasets including quantified gene expression profiles of
exosomes in GBM were obtained from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (16).
Only two datasets were found: GSE106804 (lncRNA/mRNA) and
GSE112462 (miRNA). GSE106804, based on the GPL18573
platform (Illumina NextSeq 500), contains 13 GBM serum
exosome samples and 6 normal serum exosome samples from
healthy donors. GSE112462, based on the GPL24781 platform
(Nanostring human miRNA panel), contains 10 GBM serum
exosome samples and 8 normal samples from healthy donors.
Furthermore, we extracted information on the gene expression
profiles in GBM tumor tissues and normal brain tissues from
TCGA (lncRNA/mRNA), GSE80338 (lncRNA/mRNA),
GSE63319 (miRNA) and GSE25631 (miRNA). We selected
patients with complete clinical and survival data from the cohort
of TCGA and ultimately included 151 GBM patients to form a
training set with TCGA data. The validation set was formed based
on the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.
org.cn) database, including 350 GBM patients. Because the data
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were extracted from GEO, TCGA, and CGGA, approval for our
study by the ethics committee was waived.

Identification of Differentially Expressed
RNAs
For normalized gene expression profile data, we used edgeR
version 3.24.3 to screen DE-RNAs between GBM serum
exosomes and normal serum exosomes, using GSE106804 for
differentially expressed lncRNAs (DElncRNAs)/DEmRNAs and
GSE112462 for DEmiRNAs. A log fold change ≥ 2 and false
discovery rate (FDR) < 0.01 were considered as the screening
criteria (17). These DE-RNAs are illustrated in volcano plots. We
also analyzed the DE-RNAs between GBM tumor tissues and
normal brain tissues via a similar approach, with TCGA and
GSE80338 for DElncRNAs/DEmRNAs and GSE63319 and
GSE25631 for DEmiRNAs. Subsequently, the DE-RNAs
obtained from these two steps were intersected to screen final
DElncRNAs, DEmiRNAs, and DEmRNAs from both GBM
exosome samples and tumor samples, and the results are
depicted in Venn diagrams.

Construction of the Competitive
Endogenous RNA Network
Interactions between DElncRNAs and DEmiRNAs were
predicted using the miRcode database (http://www.mircode.
org/) (18). DEmRNAs targeted by DEmiRNAs were retrieved
from the databases TargetScan, miRTarBase, and miRDB (19–
21). Only the mRNAs in the miRNA-mRNA relationship pairs
recognized in all 3 databases were selected as candidate genes for
constructing the ceRNA network, as based on previously
identified lncRNA-miRNA and miRNA-mRNA relationship
pairs. The network was visualized using Cytoscape software
(https://cytoscape.org/).

Functional and Pathway Enrichment
Analyses
Functional enrichment analysis of the DEmRNAs in the ceRNA
network was performed using Database for Annotation,
Visualization, and Integrated Discovery (DAVID, https://david.
ncifcrf.gov/) (22), an online functional annotation tool used for
Gene Ontology (GO) functional enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses (23, 24). A P value < 0.05 was considered
statistically significant.

Construction and Evaluation of the
Prognostic Risk Score Model Based on
Exosomal Differentially Expressed Long
Noncoding RNAs
lncRNAs exhibit great species, tissue, and cell specificity and play
a dominant role in the upstream part of the ceRNA network,
which affects the function of mRNAs or miRNAs. Thus,
lncRNAs might be optimal biomarkers for GBM diagnosis as
well as prognosis evaluation. To identify survival-associated exo-
lncRNAs, univariate Cox regression was first performed using
the survival package in R 3.5.1 (http://bioconductor.org/
Frontiers in Oncology | www.frontiersin.org 3
packages/survival/) (25); DElncRNAs with a P value < 0.05
were selected for further lasso regression analysis. Optimal
prognosis-related exo-lncRNAs were identified using
multivariate Cox regression analysis based on the Akaike
information criterion (AIC) and used to construct a prognostic
risk score model for predicting overall survival (OS) (26). The
formula of the risk score model was as follows: risk score =
expression level of Gene1 × b1 + expression level of Gene2 × b2 +
…+ expression level of Genen × bn, where b is the regression
coefficient calculated by multivariate Cox regression analysis
(27). Using the median risk score as the cutoff value, patients
were divided into high- and low-risk groups (27).

Kaplan-Meier (K-M) survival curves were constructed to
estimate the prognosis of high-risk and low-risk patients, and
the survival differences between these two groups were assessed
by a two-sided log-rank test. The predictive and distinguishing
ability of the risk score model within 0.5, 1, 2, and 3 years was
evaluated using Harrell’s concordance index (C-index) and time-
dependent receiver operating characteristic (ROC) curve analysis
in the R package ‘survcomp’ (http://www.bioconductor.org/
packages/survcomp/) and ‘survivalROC’ (https://cran.r-project.
org/web/packages/survivalROC/) (28). The values of the C-index
and area under the ROC curve (AUC) range from 0.5 to 1, with 1
indicating perfect discrimination and 0.5 indicating no
discrimination. The exo-lncRNA-based prognostic model
constructed by the cohort from TCGA was validated in the
GBM cohort from CGGA using a similar method.

Associations Between the Exosomal Long
Noncoding RNA Signature and Tumor
Immune Microenvironment
The tumor immune microenvironment (TIME) patterns and
immunogenomic features of GBM were assessed, and the
associations between TIME and exo-lncRNA signature were
further analyzed. Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data (ESTIMATE) was
used to evaluate the overall patterns of tumor microenvironment
based on the gene expression profiles of GBM samples (29). The
abundances of intratumoral stromal cells (stromal score) and
immune cells (immune score), and the tumor purity were
predicted by ESTIMATE algorithm. In addition, 31 immune
signatures, introduced by He et al, was utilized to represent the
overall immune activity of tumors, including the types, functions
and molecular pathways of tumor infiltrating immune cells (TIICs)
(30). The enrichment levels of those immune gene sets were
quantified by single-sample gene set enrichment analysis
(ssGSEA), and then compared between high- and low-risk group
(31). Furthermore, Pearson correlation analysis was performed to
assess the associations between exo-lncRNA signature and the
enrichment levels of 31 immune signatures. P < 0.05 and Pearson
correlation coefficient > 0.3 were considered statistically significant.

Construction and Validation of
the Nomogram
Univariate Cox regression and multivariate Cox regression
analyses were performed with TCGA training set and CGGA
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validation set data to detect whether clinical characteristics are
significantly associated with OS in GBM patients. All independent
prognostic factors were then selected to construct a prognostic
nomogram using the rms R package in the cohort from TCGA.

The discrimination ability of the nomogram was quantitatively
evaluated by the C-index and the AUC (28). In addition, calibration
plots were performed to graphically evaluate the discriminative
ability of the nomogram (28). To compare the ability of the two
prognostic models, the exo-lncRNA signature and the nomogram,
in predicting OS, we calculated the net reclassification improvement
(NRI) index by using the ‘PredictABEL’ package in R. Finally, the
prognostic nomogram was externally validated using the CGGA
cohort. All analyses were performed with R version 3.5.1, and a two-
tailed P value of < 0.05 was considered statistically significant.
Hazard ratios (HRs) and 95% confidence intervals (CIs) are
reported if necessary.

Identification of Prognostic Oncocers
of Glioblastoma
Oncocers, as defined by ceRNA-mediated cross-talk by sponging
miRNAs in oncogenesis, were identified on the basis of the ceRNA
hypothesis, demonstrating positive correlations between lncRNAs
and mRNAs mediated by the same miRNAs (11, 15). Pearson
correlation analysis and regression analysis were applied to identify
prognostic oncocers of GBM based on the three prognostic-related
lncRNAs and the ceRNA network. P < 0.05 and cor (Pearson
correlation coefficient) > 0.3 were considered statistically significant.
Furthermore, Pearson correlation tests were performed to assess the
expression abundance of lncRNAs in tumors and exosomes.
Frontiers in Oncology | www.frontiersin.org 4
Gene Set Enrichment Analysis of
Differentially Expressed Long
Noncoding RNAs
Setting the expression level of a lncRNA as the population phenotype,
GSEA (http://software.broadinstitute.org/gsea/index.jsp) was
performed to identify related KEGG pathways and molecular
mechanisms of exosomal DElncRNAs in the risk score model and
oncocers (31). Enriched gene sets with a nominal P value < 0.05 and
an FDR q value < 0.25 were considered statistically significant.
RESULTS

Identification of Differentially Expressed
mRNAs, Differentially Expressed Long
Noncoding RNAs, and Differentially
Expressed miRNAs in
Glioblastoma Exosomes
By applying the screening criteria, 4167 DElncRNAs, 230
DEmiRNAs, and 8845 DEmRNAs were identified between GBM
serum exosomes and normal serum exosomes and are displayed in
the volcano plots (Figures 1A–C). In terms of the DE-RNAs from
GBM tumor samples and normal brain samples, we obtained 573
DElncRNAs and 2606 DEmRNAs from TCGA and GSE80338 and
76 DEmiRNAs from GSE25631 and GSE63319. Finally, we
obtained 520 DElncRNAs, 29 DEmiRNAs, and 1175 DEmRNAs
from both GBM tumor samples and serum exosomes (Figures
1D–F).
A B

D E F

C

FIGURE 1 | Identification of differentially expressed exosome-related genes. Volcano plots of (A) DElncRNAs, (B) DEmiRNAs, and (C) DEmRNAs between GBM
serum exosomes and normal samples. The red dots represent upregulated genes, and the green dots represent downregulated genes. The Venn diagram shows
(D) 520 DElncRNAs, (E) 29 DEmiRNAs, and (F) 1175 DEmRNAs in the overlapping part of exosome-related DE-RNAs and GBM tissue-related DE-RNAs. adj. P
value: adjusted P value; FC: fold change.
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Construction of the Competitive
Endogenous RNA Network
Figure 2 shows the flow chart of the construction of the ceRNA
network. We first predicted potential miRNAs that interact with
520 DElncRNAs through the miRcode database. Next, we
selected intersecting genes between the predicted miRNAs and
29 DEmiRNAs to obtain lncRNA-miRNA interaction pairs
comprising 45 lncRNAs and six miRNAs. To improve the
reliability of the bioinformatics prediction, the abovementioned
six miRNAs were input into the TargetScan, miRTarBase and
miRDB databases to identify common mRNAs. These common
mRNAs were compared to the 1175 DEmRNAs to identify
intersecting components, and miRNA-mRNA interaction pairs
of six miRNAs and 38 mRNAs were obtained. Ultimately, 45
lncRNAs, six miRNAs and 38 mRNAs were incorporated to
construct the ceRNA network, which was visualized with
Cytoscape (Figure 3A).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analyses
GO analysis, involving biological process (BP), cellular
component (CC) and molecular function (MF) categories, was
performed with the 38 mRNAs in the newly formed ceRNA
network. For BP categories, DEmRNAs were significantly
enriched in the terms immune responses, signal transduction
and cell communication (Figure 3B). In the CC category,
Frontiers in Oncology | www.frontiersin.org 5
DEmRNAs were significantly enriched in the terms plasma
membrane, extracellular and exosome (Figure 3C). In
addition, DEmRNAs were significantly enriched in the MF
category terms RNA binding, calcium ion binding and
transcription regulator activity (Figure 3D). Moreover, KEGG
pathway analysis revealed that DEmRNAs were mainly enriched
in the VEGF and VEGFR signaling networks, the regulation of
CDC42 activity and Syndecan-1-mediated signaling events
(Figure 3E).

Construction and Evaluation of the
Prognostic Risk Score Model Based on
Exosomal Differentially Expressed Long
Noncoding RNAs (exo-lncRNA Signature)
Univariate Cox regression analysis was performed on the 45
candidate DElncRNAs, 28 of which correlated significantly with
OS. We then applied lasso‐penalized Cox regression to select
potential prognosis-related DElncRNAs, revealing six lncRNAs
(Supplementary Figure 1). Multivariate Cox regression analysis
was performed, and three lncRNAs were confirmed, namely,
HOTAIR, SOX21-AS1, and STEAP3-AS1, which were included
in the construction of the prognostic risk score model (exo-
lncRNA signature). The final prognostic risk score formula was
as follows: risk score = expression level of HOTAIR × 0.341 +
expression level of SOX21-AS1 × (-1.208) + expression level of
STEAP3-AS1 × 0.903.
FIGURE 2 | Flow chart of ceRNA network construction. ceRNA, competitive endogenous RNA; DElncRNA, differentially expressed long noncoding RNA; miRDB,
miRNA database; miRNA, microRNA; mRNA, messenger RNA.
March 2021 | Volume 11 | Article 553594
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Next, we calculated the prognostic score of each patient in the
training set from TCGA and used the median risk score as the
cutoff value to classify all patients into high-risk (high-risk score,
75 patients) and low-risk (low-risk score, 76 patients) groups
(Figure 4C). K-M survival analysis showed that the high-risk
group had significantly poorer OS than the low-risk group (log-
rank P = 3.46×10-6), and the 0.5-, 1-, 2-, and 3-year OS rates of
the high-risk group versus (vs) the low-risk group were 65.6% vs
82.6%, 43.4% vs 71.6%, 8.1% vs 32.9%, and 0.0% vs 18.1%,
respectively (Figure 4A). The C-index of the exo-lncRNA
signature was 0.831 (95% CI, 0.801-0.861). In addition, the
exo-lncRNA signature showed favorable predictive ability for
0.5-, 1-, 2-, and 3-year OS rates in the training set from TCGA,
with AUC values of 0.798, 0.745, 0.834, and 0.855, respectively
(Figure 4B).

To confirm the adequacy of the prognostic exo-lncRNA
signature in different populations, an external validation set
from CGGA was applied. A total of 350 patients in the CGGA
dataset were classified into a low-risk group (175 patients) and a
high-risk group (175 patients) by using the median risk score as
the cutoff (Figure 4F), and the OS of the high-risk group was
significantly lower than that of the low-risk group (log-rank P =
1.07×10-3; Figure 4D). The AUC values of survival prediction
within 0.5, 1, 2, and 3 years in the CGGA validation set were
0.745, 0.684, 0.699, and 0.712, respectively, suggesting the
favorable predictive ability of the exo-lncRNA signature
(Figure 4E).

Finally, combined survival analyses were performed to
investigate the roles of the exo-lncRNA signature in predicting
the OS of patients with or without standard chemoradiotherapy,
namely, concurrent temozolomide (TMZ) and radiotherapy. As
displayed in Supplementary Figures 2A, B, patients receiving
standard chemoradiotherapy showed significantly better OS than
did those who did not receive standard chemoradiotherapy.
Notably, patients treated with standard chemoradiotherapy,
Frontiers in Oncology | www.frontiersin.org 6
whether high or low risk, commonly exhibited better outcomes
than did those without standard chemoradiotherapy in both
cohorts from TCGA and CGGA (Supplementary Figures 2C,
D). Interestingly, high-risk patients receiving standard
chemoradiotherapy would have a better OS than low-
risk patients.
Associations Between Exosomal Long
Noncoding RNA Signature and Tumor
Immune Microenvironment
The general TIME patterns of GBM patients were firstly assessed
by the ESTIMATE algorithm, and the immune, stromal, and
ESTIMATE scores were significantly higher in the high-risk
group, indicating higher infiltration levels of immune and
stromal cells in the high-risk GBM patients in both training
and validation cohort (Figures 5A, D). In contrast, tumor purity
was lower in the high-risk group in both cohorts (Figures 5A,
D). Additionally, the enrichment levels of the 31 immune
signatures, representing the overall immune activity of GBM,
were quantified by ssGSEA. Eighteen immune signatures
significantly differed between high- and low-risk group in the
TCGA training set (Figure 5B), and 27 immune signatures
differed between two groups in the CGGA validation set
(Figure 5E), and a total of 16 intersected immune signatures
(red dotted box) were selected for further analysis. Then,
correlation analyses between the exo-lncRNA signature and 16
immune signatures were analyzed, and nine immune signatures
were significantly correlated with the exo-lncRNA signature in
the TCGA cohort (Figure 5C), and seven signatures in the
CGGA cohort (Figure 5F). Finally, the intersected five
immune signatures, including cytolytic activity, cytotoxic T
lymphocyte level, regulatory T cell, checkpoint molecules, and
T cell co-inhibition, were believed to be significantly positively
correlated with the exo-lncRNA-based risk score.
A B

D E

C

FIGURE 3 | Integrated analysis of the ceRNA network. (A) ceRNA network, the yellow triangles represent 45 lncRNAs, the red diamonds represent six miRNAs, and
the blue dots represent 38 mRNAs. (B) Biological processes enriched in DE-RNAs. (C) CCs enriched in DE-RNAs. (D) MFs enriched in the DE-RNAs. (E) KEGG
pathways enriched in the DE-RNAs. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Determination of the Exosomal Long
Noncoding RNA Signature as an
Independent Prognostic Factor
The demographics and clinicopathological characteristics of GBM
patients in the training set from TCGA and validation cohort from
CGGA based on the exo-lncRNA signature are shown in Table 1.
Univariate Cox regression analysis was first performed to detect
whether the exo-lncRNA signature or clinicopathological factors are
significantly associated with OS in the training set from TCGA
(Table 2). The exo-lncRNA signature (P = 2.48×10-8), age (P =
1.98×10-4), pharmacotherapy (P = 1.06×10-4), radiotherapy (P =
1.04×10-3), IDHmutation status (P = 8.91×10-3), MGMT promoter
Frontiers in Oncology | www.frontiersin.org 8
status (P = 6.84×10-3), and ATRX status (P = 4.28×10-2) were found
to be significantly associated with OS. Multivariate Cox regression
analysis was subsequently performed to identify independent
prognostic factors (Table 2), revealing the exo-lncRNA signature
(P = 1.33×10-4), age (P = 1.45×10-2), pharmacotherapy (P =
1.55×10-2), radiotherapy (P = 3.21×10-4), IDH mutation status
(P = 2.31×10-2), and MGMT promoter status (P = 1.33×10-2).
Therefore, the prognostic exo-lncRNA signature constructed by the
training set from TCGA was observed to be an independent
prognostic factor for GBM, and it was confirmed to be an
independent prognostic factor in the external validation cohort
from CGGA (Table 2).
A

B

D

E

FC

FIGURE 5 | Associations between the exo-lncRNA signature and tumor immune microenvironment in the TCGA training set and CGGA validation set. (A, C)
Comparisons of the infiltration level of stromal and immune cells, the ESTIMATE score and tumor purity between high- and low-risk group by boxplots. (B, E)
Comparisons of the ssGSEA scores of 31 immune signatures between high- and low-risk group by heatmap. Red dotted boxes indicated 16 intersected immune
signatures in both training and validation cohort. *means P < 0.05, **means P < 0.01, and ***means P < 0.001. (C, F) Correlation analysis between the exo-lncRNA
signature and 16 immune signatures. Red dotted boxes indicated five intersected immune signatures in both training and validation cohort.
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Construction and Validation of the
Prognostic Nomogram
We constructed a prognostic nomogram using the six
independent prognostic factors identified to provide a clinically
applicable method for prognosis prediction in GBM patients.
Figure 6A shows the established nomogram that predicted
survival probability at 0.5, 1, and 3 years based on the training
set from TCGA. The C-index of the nomogram was 0.878 (95%
CI, 0.847–0.909). The AUC values of the 0.5-, 1-, 2-, and 3-year
survival prediction using the nomogram were 0.731, 0.897, 0.945,
and 0.907, respectively, which indicated a favorable predictive
ability (Figure 6B). Additionally, the calibration plots (Figures
6D–F) showed consistency between the nomogram prediction
and actual observation with regard to the 0.5-, 1-, and 3-year
Frontiers in Oncology | www.frontiersin.org 9
survival rates in the cohort from TCGA. NRI analysis indicated
that the proportions of correct reclassification of the nomogram
increased by 20.3% in 1 year (P < 0.001) and 21.5% in 2 years (P
< 0.001). These results suggest that the predictive ability of the
nomogram at 1 and 2 years is significantly better than that of the
exo-lncRNA signature (Supplementary Figure 3A).

In addition, based on the CGGA external validation cohort, the C-
index of the nomogram in predicting OS was 0.746 (95% CI, 0.718–
0.776), and the AUC values and calibration plots both demonstrated
great prediction performance for 0.5-, 1-, and 3-year OS in the cohort
from CGGA (Figures 6C, G–I). Finally, NRI analysis in the CGGA
cohort also demonstrated significant improvements in the NRI index
of the nomogram at 1, 2, and 3 years compared with the exo-lncRNA
signature (Supplementary Figure 3B).
TABLE 1 | Demographics and clinicopathological characteristics of GBM patients in TCGA training and CGGA validation cohorts based on the exo-lncRNA signature.

Variables TCGA training cohort CGGA validation cohort

Total (n=151) Low risk (n=76) High risk (n=75) Total (n=350) Low risk (n=175) High risk (n=175)

Age (years) 59.6 ± 13.7 57.7 ± 14.4 61.6 ± 12.7 48.1 ± 13.3 48.0 ± 12.6 48.1 ± 14.0
Sex
Female 53 25 28 139 70 69
Male 98 51 47 211 105 106
KPS
< 80 32 14 18 NA
>= 80 81 42 39 NA
NA 38 20 18 NA
Pharmacotherapy
TMZ 64 32 32 61 (No) 23 38
TMZ+BEV 26 13 13 269 (Yes) 139 130
Others (No TMZ) 19 8 11 – – –

No or NA 42 23 19 20 (NA) 13 7
Radiotherapy
No 22 9 13 48 17 31
Yes 122 65 57 283 147 136
NA 7 2 5 19 11 8
Surgery
Biopsy only 16 9 7 NA
Tumor resection 135 67 68 NA
IDH status
Wildtype 147 68 79 270 114 156
Mutant 8 8 0 80 61 19
MGMT promoter status
Methylated 66 29 37 NA
Unmethylated 85 47 38 NA
TERT status
Wildtype 146 73 73 NA
Mutant 5 3 2 NA
BRAF status
Wildtype 146 73 73 NA
Mutant 5 3 2 NA
ATRX status
Wildtype 140 66 74 NA
Mutant 11 10 1 NA
EGFR status
Wildtype 97 50 47 NA
Mutant 54 26 28 NA
1p/19q status
Noncodeletion NA 323 153 170
Codeletion NA 17 15 2
NA NA 10 7 3
March 2021 | Volume 1
GBM, glioblastoma; NA, not available; KPS, Karnofsky performance score; TMZ, temozolomide; BEV, bevacizumab; PCV, procarbazine lomustine vinCRISTine.
“Others (No TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and irinotecan.
Bold type means P < 0.05.
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Identification of Prognostic Oncocers
of Glioblastoma
Based on the ceRNA network and the three prognostic-related
lncRNAs, we further performed regression analysis and
Frontiers in Oncology | www.frontiersin.org 10
Pearson’s correlation tests to identify prognostic oncocers; P <
0.05 and cor > 0.3 were considered to indicate statistical
significance (Figure 7A, Supplementary Table 1). A total of
11 pairs of prognostic oncocers were identified. GSC, BEST3, and
TABLE 2 | Univariate and multivariate Cox proportional hazards analysis of clinicopathological variables and exo-lncRNA signature in TCGA GBM training and CGGA
GBM validation cohorts.

Variables TCGA training cohort (N=151) CGGA validation cohort (N=350)

Univariate Analysis Multivariate analysis Univariate Analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Age 1.028(1.013–1.044) 1.98e-04 1.017(1.002–1.012) 1.45e-02 1.078(1.048–1.108) 8.35e-05 1.017(1.001–1.033) 1.17e-02
Sex 0.916(0.626–1.341) 0.65 – – 1.063(0.837–1.350) 0.61 – –

KPS 0.926(0.696–1.233) 0.59 – – NA NA
Pharmacotherapy 0.883(0.852–0.913) 1.06e-04 0.951(0.936–0.966) 1.55e-02 0.573(0.432–0.759) 1.04e-04 0.603(0.444–0.819) 1.20e-03
Radiotherapy 0.433(0.262–0.714) 1.04e-03 0.343(0.192–0.615) 3.21e-04 0.668(0.492–0.908) 9.96e-03 0.879(0.863–0.895) 4.76e-02
Surgery 0.934(0.523–1.667) 0.82 – – NA NA
IDH mutation status 0.262(0.096–0.715) 8.91e-03 0.141(0.026–0.764) 2.31e-02 0.752(0.566–0.988) 3.89e-02 0.856(0.840–0.872) 3.34e-02
MGMT promoter status 1.434(1.133–1.733) 6.84e-03 1.250(1.235–1.265) 1.33e-02 NA NA
TERT promoter status 0.906(0.287–2.861) 0.87 – – NA NA
BRAF status 1.973(0.720–5.410) 0.19 – – NA NA
ATRX status 0.426(0.187–0.973) 4.28e-02 0.899(0.734–3.942) 0.08 NA NA
EGFR status 1.273(0.873–1.857) 0.21 – – NA NA
1p/19q status NA NA 0.913 (0.662–1.259) 0.58 – –

Exo-lncRNA signature 1.733(1.428–2.102) 2.48e-08 1.785(1.326–2.403) 1.33e-04 1.394(1.280–1.518) 1.94e-14 1.385(1.262–1.521) 6.78e-12
March 202
1 | Volume 11 | Artic
OS, overall survival; GBM, glioblastoma; NA, not available; HR, hazard ratio; CI, confidence interval; KPS, Karnofsky performance score; TMZ, temozolomide; BEV, bevacizumab; PCV,
procarbazine lomustine vinCRISTine.
“Others (no TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and irinotecan.
All statistical tests were two-sided. Bold type means P < 0.05.
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FIGURE 6 | Nomogram to predict the 0.5-, 1-, and 3-year survival probability of patients with GBM. Prognostic nomogram (A) to predict the survival of GBM
patients based on the training set from TCGA. Time‐dependent ROC curves based on risk score level in training set from TCGA (B) or in the validation cohort from
CGGA (C). Calibration curves of the nomogram for predicting survival at 0.5, 1, and 3 years in the training set from TCGA (D–F) and the validation cohort from
CGGA (G–I). The X-axis indicates the nomogram-predicted probability, and the y-axis indicates the actual survival.
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NRP1 were the most significant correlative mRNAs for
HOTAIR, SOX21-AS1, and STEAP3-AS1, respectively (Figure
7B). Positive correlations were also obtained for these lncRNA-
mRNA pairs. miR-338-3p and miR-338-5p are involved in multiple
ceRNA pathways, as shown in Figure 7A. Furthermore, regression
analysis suggested excellent consistency of the expression
abundance of the 3 prognostic-related lncRNAs between
exosomes and tumor tissue, with 0.61 (P<0.001), 0.45 (P<0.001),
and 0.51 (P<0.001) for HOTAIR, SOX21-AS1, and STEAP3-AS1,
respectively, as illustrated in Figure 7C.
Expression Analysis, Survival Analysis, and
Gene Set Enrichment Analysis of the Three
Prognosis-Related Long Noncoding RNAs
Expression of HOTAIR, SOX21-AS1, and STEAP3-AS1 in GBM
tissue or exosomes was significantly higher than that in normal
samples (P < 0.001), as shown in Figures 8A, D, G, respectively.
In addition, survival analyses confirmed that high expression of
HOTAIR and STEAP3-AS1 is related to a worse OS, with high
expression of SOX21-AS1 being associated with a better OS
(Figures 8B, E, H). According to GSEA, the high HOTAIR,
SOX21-AS1, and STEAP3-AS1 expression groups are mainly
enriched in pathways related to cancer, including apoptosis,
ECM receptor interaction, focal adhesion, the JAK-STAT
signaling pathway, cancer, cell cycle, cancer, the calcium
Frontiers in Oncology | www.frontiersin.org 11
signaling pathway, and the MAPK signaling pathway (Figures
8C, F, I, Supplementary Table 2).
DISCUSSION

GBM is one of the most aggressive brain tumors with high
mortality and poor prognosis. The high recurrence rate after
surgery and therapeutic resistance of GBM have prompted
researchers to further explore the molecular mechanism and
new therapeutic targets. Tumor-derived exosomes provide new
insight into the mechanisms of tumorigenesis, metastasis and
therapeutic resistance. Studies have demonstrated that exosomes
released by GBM contain cargo, such as EGFRvIII, VEGF, and
miR21, that are selectively enriched for oncogenic-related
functions and are transferred to recipient cells to stimulate
tumor proliferation, angiogenesis, and invasion (32, 33). In
addition, exosomes have been reported to contribute to
therapeutic resistance, and treatments targeting exosomes have
proven effective. For example, Chuang et al. (34) found that
STAT3 inhibitors could overcome temozolomide resistance by
downregulating miR-21-enriched exosomes in GBM. All these
studies suggest that exosomes may serve as biomarkers for
diagnosis, prognosis, and treatment in GBM.

With the development of high-throughput genome-
sequencing technologies and the availability of different open
A

B

C

FIGURE 7 | Correlation analysis of lncRNAs and mRNAs. (A) Identified lncRNA-miRNA-mRNA axes. Left bar: lncRNA; middle bar: miRNA; right bar: mRNA.
(B) lncRNAs versus protein-coding genes as indicated. The gray area around the blue line represents the 95% CI. (C) Correlation analysis of lncRNAs between
GBM exosomes and tumor tissue. lncRNA, long noncoding RNA; miRNA, microRNA; mRNA, messenger RNA.
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FIGURE 8 | Further analysis of the three lncRNAs included in the exo-lncRNA signature. (A, D, G) Expression analysis of HOTAIR, SOX21-AS1, and STEAP3-AS1
in GBM exosomes and tissues. (B, E, H) Survival analysis of HOTAIR, SOX21-AS1, and STEAP3-AS1, respectively. (C, F, I) GSEA of HOTAIR, SOX21-AS1, and
STEAP3-AS1, respectively.
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databases, numerous studies have performed in silico analysis to
identify novel biomarkers for GBM. Indeed, the ceRNA
hypothesis helped us to better understand the crosstalk
between RNAs and more comprehensively analyze the
complex gene interactions underlying cancerogenesis. Previous
studies have proposed multiple gene expression patterns in
GBM, and these patterns might predict prognosis and guide
treatment (35, 36). Although several studies have constructed
ceRNA networks and found meaningful biomarkers (37–39),
exosome-derived ceRNA networks in GBM have not been
constructed to date.

Our study first identified shared DElncRNAs, DEmiRNAs,
and DEmRNAs by comparing normal serum exosomes or brain
tissues with GBM serum exosomes or tumor tissues based on the
GEO and TCGA databases. After predicting lncRNA-miRNA
interactions and miRNA-mRNA interactions, 45 lncRNAs, six
miRNAs and 38 mRNAs were chosen for constructing the
ceRNA network, which provided an integrated view of the
crosstalk between GBM-specific transcripts. In addition, this
ceRNA network improved the prediction accuracy of potential
candidate biomarkers for prognosis and treatment, as it
narrowed the scope of research.

Due to evolutionarily nonconserved characteristics, lncRNAs
display high species, tissue, and cell specificity and are thus
optimal biomarkers for GBM. We identified three exosomal
lncRNAs (HOTAIR, SOX21-AS1, and STEAP3-AS1) that
correlated significantly with prognosis in the ceRNA network
through lasso and multivariate Cox regression analyses. Further
survival analysis confirmed high expression of HOTAIR and
STEAP3-AS1 and low expression of SOX21-AS1 to be associated
with a low OS rate, indicating the potential predictive ability of
these three exo-lncRNAs. HOTAIR is expressed by a sequence
within the highly conserved HOX gene, which has been found to
be highly expressed in multiple tumors, including breast cancer,
ovarian cancer, esophageal cancer, and colorectal cancer (40–44).
HOTAIR participates in cell growth and promotes tumor
development and metastasis (42). In addition, HOTAIR is able
to reprogram the chromatin state to promote cancer metastasis
in a polycomb repressive complex 2 (PRC2)-dependent manner
(44). Consistent with our results, Zhou et al. (45) found that high
expression of HOTAIR is related to poor survival outcome and
that depletion of HOTAIR inhibits GBM cell migration or
invasion, indicating that HOTAIR is a potential therapeutic
target. SOX21-AS1 is also reported to be associated with
multiple cancers, though with great heterogeneity among
tumors. SOX21-AS1 has been verified as an oncogene in tumor
progression, as it is highly expressed in lung adenocarcinoma,
hepatocellular carcinoma, and colorectal cancer and predicts
poor prognosis (46–48). Conversely, Yang et al. (49)
discovered that low expression of SOX21-AS1 was significantly
associated with poor clinicopathological features and prognosis
in oral cancer patients, proposing that SOX21-AS1 might
reinforce other tumor suppressor mRNAs and might otherwise
competitively bind to certain transcription factors, thus
preventing oncogene transcription. It was also suggested that
SOX21-AS1 significantly suppresses cervical tumorigenesis (50).
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Moreover, Paul et al. (51). revealed that lncRNA SOX21-AS1
plays a protective role in glioblastoma, as shown by our results.
The different roles of SOX21-AS1 in different cancers indicate its
crucial clinical value and prognostic predictive ability. STEAP3-
AS1 is less well understood than HOTAIR or SOX21-AS1, and it
has only been reported to be associated with a poor OS in tongue
squamous cell carcinoma (52).

Based on HOTAIR, SOX21-AS1, and STEAP3-AS1, we
further constructed and validated a novel exo-lncRNA
signature to calculate risk scores in GBM. We found that
patients with high-risk scores presented with significantly
poorer OS than did patients with low-risk scores, suggesting
that the former patients might need more aggressive treatments
and more regular follow-up examinations to detect occurrence.
In addition, subsequent univariate and multivariate Cox
regression analyses identified that this novel signature can
independently predict OS in GBM patients. All these findings
demonstrate the important value of this exo-lncRNA signature
in clinical decision making.

For more intuitive application in clinical work, we established
a novel prognostic nomogram with favorable predictive ability
that incorporates the exo-lncRNA signature and clinical
parameters, including age, pharmacotherapy, radiotherapy,
IDH mutation status, and MGMT promoter status.
Subsequently, TCGA/CGGA-based calibration plots indicated
its excellent predictive performance. To our knowledge, this is
the first nomogram incorporating a serum exosome-derived
ceRNA network for predicting GBM patient prognosis,
providing a convenient method to perform individualized
survival prediction and improve treatment strategies.

Furthermore, we performed correlation analyses between
DElncRNAs and DEmRNAs in the ceRNA network and
verified the positive correlations between lncRNAs and
mRNAs mediated by the same miRNAs. Interestingly, we
found that miR-338-3p and miR-338-5p are involved in
multiple ceRNA pathways, indicating their role in GBM
pathogenesis. Previous studies have also elucidated that miR-
338-3p/5p is involved in the development of GBM and other
tumors. For example, miR-338-3p inhibits GBM proliferation by
targeting MAP4K3 and suppresses angiogenesis by inhibiting
EGFL7 (53, 54); miR338-5p was also found to enhance tumor
metastasis by inhibiting TSHZ3 expression and thus promoting
MMP2 expression (55). Lei et al. (56). proposed that miR-338-5p
suppresses GBM proliferation and metastasis by inhibiting
EFEMP1, and miR-338-5p reportedly sensitizes GBM cells to
radiotherapy by regulating genes involved in the DNA lesion
response (57). Thus, miR-338-3p/5p might serve as a therapeutic
target for GBM.

Our study still has some limitations. First, clinicopathological
information of the GBM cohorts extracted from online databases
(TCGA and CGGA) was inevitably limited. In addition, detailed
information such as neuroimaging and resection extent was not
included in the nomogram due to incomplete data. Second,
previous studies have found that tumor-associated myeloid
cells (TAMCs), accounting for approximately 50% of the GBM
mass, play pivotal roles in the progression and chemotherapy
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resistance of GBM (58). These TAMCs might also release
exosomes in addition to GBM cells. In our study, exosomes
from the GSE106804 dataset were tumor specific because they
were obtained through a sensitive analytical microfluidic
platform (EVHB-Chip). However, GSE112462 used Exoquick
plus to detect exosomes, which may be from both GBM tumor
cells and TAMCs. Regardless of whether exosomes originate
from tumor cells or TAMCs, crosstalk exists in those cells and
exosomes, and both contribute to tumorigenesis and progression
and are associated with prognosis (59). Thus, the principal
findings of our study still provide a convincing and robust
prognostic model for GBM. Third, experimental validation in
vivo and in vitro was not carried out due to the in silico nature of
the study, though the results of the present study may serve as a
foundation for further experiments on cell lines or clinical
samples. Finally, further validation of the prognostic
nomogram in large-scale prospective clinical cohorts is needed.

In conclusion, a serum exosome-derived ceRNA regulation
network associated with lncRNAs was successfully constructed,
providing insight into the crosstalk among various RNA
transcripts. We identified a reliable exosome-related three-
lncRNA risk score model that can independently predict
prognosis and provide potential therapeutic targets for GBM.
We also established a novel promising prognostic nomogram
model based on the exo-lncRNA signature and clinical
parameters that may facilitate the prediction of GBM
prognosis and guide individualized treatment.
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