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Three trials of transcranial magnetic stimulation (TMS) during the maximum voluntary muscle contraction (MVC) were repeated
at 15-minute intervals for 1 hour to examine the effects on motor evoked potentials (MEPs) in the digital muscles and pinching
muscle force before and after 4 high-intensity TMSs (test 1 condition) or sham TMS (test 2 condition) with MVC. Under the
placebo condition, real TMS with MVC was administered only before and 1 hour after the sham TMS with MVC. Magnetic
stimulation at the foramen magnum level (FMS) with MVC was performed by the same protocol as that for the test 2 condition.
As a result, MEP sizes in the digital muscles significantly increased after TMS with MVC under test conditions compared with
the placebo conditions (P < 0.05). Pinching muscle force was significantly larger 45 minutes and 1 hour after TMS with MVC
under the test conditions than under the placebo condition (P < 0.05). FMS significantly decreased MEP amplitudes 60 minutes
after the sham TMS with MVC (P < 0.005). The present results suggest that intermittently repeated TMS with MVC facilitates
motor neuron excitabilities and muscle force. However, further studies are needed to confirm the effects of TMS with MVC and its
mechanism.

1. Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive
method of stimulating cortical neurons; that is, electrical
currents in axons of interneurons stimulated by TMS activate
cortical neuron cell bodies via synaptic transmission [1]. Sin-
gle TMS or repetitive TMS (rTMS) can transiently inhibit or
facilitate cortical neuron excitabilities for a prolonged period
following stimulation [2–5]. According to these lines of
evidence, many studies have tested whether TMSs or rTMS
accelerates functional recovery in patients with motor dis-
ability [6–11].

A previous study reported that only three single TMS
during the maximum voluntary muscle contraction (MVC)
in patients with weakness of the thigh muscles transiently,
but significantly, enhanced muscle strength compared with
TMS during muscle relaxation [12]. Nevertheless, the effects
of TMS with MVC have not yet been established, and its

mechanism still remains unknown. In the present study, we
investigated the effects of TMS with MVC on motor neuron
excitability by recording motor evoked potentials (MEPs)
with MVC, using a modified protocol of TMS with MVC
to induce more prolonged and robust effects on motor neu-
ron function. Furthermore, we stimulated the corticospinal
tract at the foramen magnum level to detect the functional
mechanism of TMS with MVC.

Preliminary results of the present study were previously
reported in the third International Conference on Complex
Medical Engineering (CME2009) on April 9–11, 2009 in
Tempe, Arizona.

2. Subjects and Methods

This study was approved by the local ethics committee of
our institution. All subjects who were healthy volunteers
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Figure 1: The time schedule of TMS with MVC under the test 1,
test 2, or placebo conditions. MEPs were recorded at time points
marked as 3 TMSs with MVC.

consented to participate in the present study after receiving
an explanation on the protocol and safety of the experiments.

2.1. TMS with MVC Procedure. Nine subjects including
seven females and two males (age range: 21–45 years, mean
age ± S.D.: 28.9 ± 10.4 years) participated in the study.
Subjects sat on a comfortable chair and totally relaxed
their voluntary muscles. They performed MVC by pinching
a button-like strain-gauge transducer measuring 1.5 cm
diameter (9E01-L2, NEC San-ei, Japan) using the right
thumb and index finger with maximum force. To induce
maximum force of the right first dorsal interossei muscle
(FDI), the transducer was pressed on the left side of the
distal interphalangeal joint of the index finger by the thumb.
Each MVC trial for 2 seconds was started and stopped
quickly responding to verbal cues by the operator. TMS was
delivered using a round coil of 10 cm diameter connected
to a single pulse magnetic stimulator (SMN-1200, Nihon-
Kohden, Japan). Stimulus intensity was 150% of the active
motor threshold in the right FDI. We defined the active
motor threshold as the intensity to induce MEPs in right
FDI with amplitudes greater than 50 μV in at least 50% of
successive TMS trials during sustained pinching of the strain-
gauge transducer by the right thumb and index finger with
maximum muscle force [13]. TMS was delivered 1 second
after subjects started MVC, in which timing muscle force
approximately reached the top, and TMS was repeated 4
times with an interstimulus interval of 10 s.

2.2. Recording of MEPs and Pinching Muscle Force. To induce
MEPs using Ag/AgCl surface electrodes in FDI and the
thenar muscle (TH), the left motor cortex for FDI and TH
was stimulated using the apparatus described above with a
stimulus intensity of 110% of the active motor threshold of
the right FDI. TMS was delivered 1 second after subjects
started MVC for 2 seconds responding to the operator’s
verbal cues. One session of MEP recording consisted of 3

TMS trials with an interstimulus interval of 10 s. MEPs were
recorded for six sessions: 5 minutes before and just after the
4 trials of TMS with MVC, and each 15 minutes for 1 hour
after the trials under test 1 condition (Figure 1). The pressure
for pinching the strain-gauge transducer was simultaneously
recorded as electric signals during MVC as a marker of the
muscle force of FDI and TH, and the signals for pressure were
converted to Kg as that 10 Kg was 0.11 V.

Under the test 2 condition, sham TMS was delivered in
the 4 trials of TMS with MVC with the round coil positioned
tangentially and its lower edge fixed on the vertex. Other
experimental settings were the same as those for the test
1 condition (Figure 1). Furthermore, we recorded 3 MEPs
5 minutes before and 1 hour after the 4 trials of sham
TMS with MVC under the placebo condition. At other time
points for MEP recording under the test conditions, sham
TMS was delivered during 3 MVC trials. Recording of MEPs
and pinching muscle force was performed by 8 subjects
under each condition. However, pinching muscle force was
recorded in only 6 subjects under the test 1 or 2 condition
due to mechanical problems.

2.3. Foramen Magnum Stimulation. Two of the nine subjects
and novel seven subjects including 2 males and 7 females
(age range: 18–45 years, mean ± S.D.: 24.6 ± 10.0 years)
participated in the study. TMS at the foramen magnum level
was delivered using an eight-figure coil with the maximum
output of the apparatus according to the method in the
study by Ugawa et al. [14]. The lower edge of the coil was
initially placed at the foramen magnum level and was then
moved to the optimal point to induce MEPs in the right FDI.
Other experimental settings were similar to those in the test
2 condition.

2.4. Data Analysis. Amplitudes and areas of three MEPs were
measured and averaged off line at each recording session.
Voltages and latencies from baselines to peaks of pressure
signals induced via the strain-gauge transducer during 3
MVC were measured and averaged. Pinching muscle forces
were converted to ratios to those in the first session of TMS
with MVC. Data were statistically analyzed using repeated
measure of analysis of variance (ANOVA) and Dunnett
post hoc analysis (SPSS Ver. 17). In ANOVA, F values were
corrected by Greenhouse-Geisser ε (GGE) if necessary.

3. Results

MEP amplitudes or areas of FDI and TH before TMS with
MVC were similar among the three conditions, and pinching
muscle force before TMS with MVC did not significantly
differ among the groups (Table 1).

3.1. Changes of MEP Sizes by TMS with MVC. Changes in
MEP amplitudes in FDI after TMS with MVC compared with
those before TMS with MVC significantly differed among
the three conditions (F2, 21 = 4.662, GGE = 1.0, P < 0.05)
(Figure 2). Changes in MEP areas of FDI and MEP ampli-
tudes or areas of TH were similar among the conditions.
There were significant differences in the changes of MEP
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Table 1: MEP sizes and pinching muscle force before TMS with MVC under each condition.

MEP amplitudes (mV) MEP areas (mV ×ms)
Pinching muscle force (V)

FDI TH FDI TH

Conditions
Test 1 3.88 ± 0.85 2.31± 0.36 11.64 ± 3.85 6.69 ± 1.45 13.2 ± 2.0

Test 2 3.74 ± 0.90 3.13 ± 0.72 7.59 ± 1.21 8.62 ± 2.26 14.5 ± 2.2

Placebo 4.37 ± 0.67 3.64 ± 0.82 12.40 ± 2.84 10.77 ± 2.91 18.3 ± 2.6

Data are shown as mean ± S.E. There were 8 data sets except for pinching muscle force under the test 1 and test 2 conditions (n = 6). MEP: motor evoked
potentials, TMS: transcranial magnetic stimulation, MVC: the maximum voluntary muscle contraction, FDI: the digital interossei muscle, TH: the thenar
muscle.
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Figure 2: Changes of MEP amplitudes of FDI before and after TMS
with MVC under the test 1, test 2, or placebo conditions. Values
show means ± S.E.

amplitudes (F1, 14 = 25.85, P < 0.001) or areas (F1, 14 =
4.181, P < 0.02) in FDI after TMS with MVC between the
test 2 and the placebo conditions. The test 1 condition had
significant differences in changes of MEP amplitudes in TH
after TMS with MVC than the placebo condition (F1, 14 =
5.63, P < 0.05).

Under the test 2 condition, Dunnett’s post hoc analysis
showed that MEP amplitudes in FDI significantly increased
45 minutes (5.52 ± 0.82 mV, P < 0.05, mean ± S.E.) and 1
hour (7.03 ± 0.73 mV, P < 0.001) after TMS with MVC than
before it (3.74 ± 0.90 mV) (Figure 3), and MEP areas in FDI
were significantly larger 45 minutes (13.23 ± 2.88 mV×ms,
P < 0.01) and 1 hour (13.77 ± 2.38 mV×ms, P < 0.01)
after TMS with MVC than before it (7.59 ± 1.21 mV×ms).
MEP amplitudes in TH significantly increased 30 minutes
(5.32 ± 1.23 mV, P < 0.05) after TMS with MVC compared
with those before TMS with MVC (3.13± 0.72 mV). The test
1 condition, showed no significant difference in MEP sizes
from the test 2 condition. There was no significant change in
MEP sizes under the test 1 condition which tended to slightly

decrease just after TMS with MVC and increase 60 minutes
after TMS with MVC.

3.2. Changes of Pinching Muscle Force by TMS with MVC.
Changes in pinching muscle force by TMS with MVC showed
significant differences among the three conditions (F12,
102 = 2.140, GGE = 0.603, P < 0.05) (Figure 4). The test 1
or 2 condition showed a significant difference in changes in
muscle force by TMS with MVC compared to those under
the placebo condition (F6, 72 = 2.428, P < 0.05 in the test
1 condition or =3.265, P < 0.01 in the test 2 condition).
The data at 45 and 60 minutes after TMS with MVC under
the test 1 condition (1.14 ± 0.11 and 1.12 ± 0.04, resp.)
or the test 2 condition (1.19 ± 0.12 and 1.19 ± 0.07, resp.)
were significantly larger compared with those in the placebo
condition (0.87 ± 0.06 and 0.91 ± 0.07, resp., P < 0.05).

3.3. Changes of MEP Sizes and/or Pinching Muscle Forcer by
Foramen Magnum Stimulation with MVC. Changes in MEP
amplitudes in TH or FDI by foramen magnum stimulation
showed a significant interaction with those in the test 2
condition (F1, 5 = 6.35, P < 0.001 in TH and F1, 5 = 8.38,
P < 0.001 in FDI). Changes in MEP areas in FDI by foramen
magnum stimulation significantly differed from those in
the test 2 condition (F1, 5 = 4.46, P < 0.005). Dunnett’s
post hoc analysis showed that MEP amplitudes in FDI
were significantly decreased 60 minutes after the stimulation
with MVC (1.80 ± 0.48 mV, P < 0.05) than before it
(1.03 ± 0.23 mV) (Figure 5). MEP areas, TH amplitudes,
and TH areas were not significantly changed by foramen
magnum stimulation with MVC. Pinching muscle force did
not significantly change by foramen magnum stimulation
with MVC.

4. Discussion

The present study showed that TMS with MVC transiently
increased MEP sizes and pinching muscle force. This result
supports a previous report that documented enhancing
MVC force and voluntary activation (VA) of the quadriceps
femoris muscles by TMS with MVC in normal subjects [12].
Furthermore, we demonstrated novel findings that intermit-
tently repeated TMS with MVC significantly increased MEP
amplitudes and muscle force compared with the placebo
condition.

We stimulated the motor cortex by TMS with a stimulus
frequency (SF) of 0.1 Hz. A previous study showed that single
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Figure 3: A sample of changes in MEPs of FDI muscle during TMS
with MVC under the test 2 condition.
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Figure 4: Changes in the ratios of the maximum pinching muscle
force before and after TMS with MVC under the test 1, test 2 or
placebo condition. Values show averaged ratios to the maximum
pinching force in the first session of TMS with MVC.

TMS repeated at intervals of 10 seconds did not have any
prolonged effect on cortical motor neuron excitabilities [2].
However, the dual stimulation of TMS with an interstimulus
interval of 10 seconds and persistent peripheral nerve
or motor point stimulation, known as paired associative
stimulation (PAS), had facilitative effects on MEP amplitudes
as well as inducing prolongation of the silent period and
expansion of muscle representation on the scalp [15, 16].

Since F wave elicited by peripheral nerve stimulation and
MEPs induced by electrical stimulation of the brain stem
were not affected by PAS, the effective point of this technique
was suggested to be in the cortical neurons. The mechanisms
like long-term potentiation (LPT) of synaptic transmission
were speculated as the mechanisms for PAS [17]. Another
study demonstrated the fact that intracortical facilitation at
a short interstimulus interval (0.8–2.0 ms), assessed by the
paired TMS technique, was enhanced just after PAS, and
which was considered to reflect I wave interaction within the
motor cortex [18].

Prolonged peripheral nerve stimulation induced reorga-
nization of the cortical motoneurons, as increasing corti-
cospinal outputs or changing cortical representation of the
stimulated muscles [18, 19]. Median nerve stimulation, in
which trains for 1 millisecond with an SF of 10 Hz were
delivered at an SF of 1 Hz for 2 hours, increased muscle force
in stroke patients [20]. In the present study, intermittently
repeated MVC during 1 hour performed by the subjects con-
tinuously activated muscle afferents, and repetitive muscle
afferent inputs appear to facilitate sensorimotor integration
in the sensory and motor cortices as observed in prolonged
peripheral nerve stimulation [18, 19]. In addition, TMS
delivered synchronously during brisk thumb movements
enhanced motor memory encoding of thumb movements
[21]. This finding appears to coordinate with the Hebbian
principle that LTP of synaptic transmission is induced when
pre- and postsynaptic fibers are simultaneously activated
[22]. Considering these findings, the facilitative effects of
TMS with MVC on motor neuron function appear to share
a mechanism similar to that of PAS. Since TMS with low
stimulus intensity principally activates presynaptic interneu-
rons in the cortex, synaptic efficacy of cortical motoneurons
seems to be increased by TMS with MVC [11, 12, 23].

Impulses in corticospinal tract fibers generated by fora-
men magnum stimulation are transmitted to anterior horn
cells in the spinal cord. Such impulses appear to activate facil-
itatory and/or inhibitory interneurons in contact with synap-
tic terminals of the upper motor neurons or anterior horn
cells [23]. Additionally, magnetic impulses delivered with
high stimulus intensity (SI) spread and activate the neck and
occipitofrontal muscles, and afferent inputs from those mus-
cles most likely influence activities of the anterior horn cells.
Single TMS to the C6/7 nerve root inhibited MEPs by cortical
stimulation lasting for some 5 ms [24]. Furthermore, rTMS
at 1 Hz with subthreshold SI to the right posterior neck facil-
itated MEPs in hand muscles elicited by TMS and Hoffman
reflex [25]. On the other hand, spread of magnetic currents
with the suprathreshold SI may stimulate the cerebellum
despite the use of a figure-eight coil for foramen magnum
stimulation. Many previous studies have shown that single
TMS or rTMS to the cerebellum can modulate cortical motor
neuron excitabilities [26]. However, magnetic stimulation
at the foramen magnum level with a suprathreshold SI
during MVC has not previously been investigated. The
present study showed a novel finding that foramen magnum
stimulation with MVC applied intermittently for 1 hour
significantly decreased MEP amplitudes in FDI but did not
change pinching muscle force. Therefore, the decreased MEP
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Figure 5: A sample of changes in MEPs of FDI during foramen
magnum stimulation with MVC under the test 2 condition.

amplitudes by foramen magnum stimulation with MVC
suggest inhibition of spinal motor neuron excitabilities, while
the facilitative effects of TMS with MVC on motor neuron
excitabilities are ascribed to the supraspinal mechanism.

The test 1 condition showed increases of MEP amplitudes
in TH after TMS with MVC compared with the placebo
condition. In addition, the test 1 condition tended to be
decreased MEP sizes just after application of TMS with MVC,
although the changes of MEP sizes did not reach statistical
significances. In the experiment, TMS was delivered with
high SI, 1.5 times higher than the active motor threshold, and
could induce almost the maximum MEP amplitudes. Previ-
ous studies showed that sustained or repeated MVC induces
fatigue as expressed by reduced muscle force and subsequent
increment of MEP amplitudes as a result of supraspinal
fatigue [27, 28]. We presume that high-intensity TMS with
MVC is capable of inducing fatigue in the muscles or spinal
cord just after TMS application and may have masked the
increment of muscle force and MEP amplitudes, which
would explain why there were no significant differences in
the changes in MEP sizes between the test conditions. We did
not find any evidence of supraspinal fatigue in the present
study because we employed a brisk and short MVC as a task.

In conclusion, we consider that intermittently repeated
TMS with MVC facilitates motor neuron function and
is applicable to accelerating functional recovery of motor
disability caused by an impaired central nervous system.
However, further studies are needed to confirm the effects
of TMS with MVC and elucidate details of the mechanism.
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