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Abstract

Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning.
However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited,
especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the
interactive effects of warming and N addition on soil food web. The experiment was established in 2006 in a temperate
steppe in northern China. After three to four years (2009–2010), we found that N addition positively affected microbial
biomass and negatively influenced trophic group and ecological indices of soil nematodes. However, the warming effects
were less obvious, only fungal PLFA showed a decreasing trend under warming. Interestingly, the influence of N addition
did not depend on warming. Structural equation modeling analysis suggested that the direct pathway between N
addition and soil food web components were more important than the indirect connections through alterations in soil
abiotic characters or plant growth. Nitrogen enrichment also affected the soil nematode community indirectly through
changes in soil pH and PLFA. We conclude that experimental warming influenced soil food web components of the
temperate steppe less than N addition, and there was little influence of warming on N addition effects under these
experimental conditions.
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Introduction

Climate warming has been predicted to increase the global

surface temperature by 1.8–4.0uC at the end of this century [1].

The rise in temperature could have profound effects on terrestrial

ecosystems, such as changes in competition between species [2],

altering plant productivity [3,4], and in turn, influencing the

supply of carbohydrates to belowground subsystems through root

growth [5]. In addition to climate change drivers, terrestrial

ecosystems are also affected by other global change phenomena,

such as nitrogen deposition. It is predicted that global deposition of

reactive N to the environment will increase from 100 Tg N yr21

(in 1995) to 200 Tg N yr 21 by 2050 [6]. The intensive alteration

of global nitrogen (N) cycles due to anthropogenic activities could

change plant species composition and community structure

[7,8,9], with consequent impacts on the structure and functions

of soil ecosystems. Although individual effect of warming and N

enrichment on ecosystem functioning has received wide attention

[10,11,12], their combined effects are still unknown [13],

especially on the responses of belowground organisms

[13,14,15,16,17].

The few observations on the interactive effects of warming and

N addition are relatively inconsistent. For example, there were

additive effects of N addition and winter warming on plant

productivity and soil N availability in temperate old fields [18,19],

and N addition increased the temperature sensitivity of the slowly

cycling soil C pool in tropical forest [20]. In the Harvard Forest

Long Term Ecological Research Site (LTER), the N availability

diminished the warming effect on soil respiration in autumn

[21,22]. In a subarctic heath ecosystem, warming was found to

negate the N addition effect on plant and microbial biomass after

fifteen years of climate change manipulations [23]. On the other

hand, N deposition and climate warming influenced litter

decomposition and the associated microbial communities inde-

pendently in low-alpine heath [24]. Given the important roles of

soil biota in terrestrial ecosystems [15], understanding the

direction and magnitude of interactive effects of N enrichment

and warming on soil food webs and their components is crucial for

predicting the changes in ecosystem structure and functioning

under global climate change.

N addition and warming can each alter the activity of microbial

decomposers, influencing the quantity of C lost from soils via

respiration, and the transport of C from the surface into soils as
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dissolved organic C [25,26]. N deposition can directly change soil

C-cycling rates by inhibiting the microbial production of

ligninolytic enzymes and enhancing cellulolytic enzyme activity

[27]. Moreover, N deposition can also influence soil microorgan-

isms and decomposition processes indirectly through altering plant

composition and productivity by alleviating nitrogen limitation of

plant growth [28]. Altogether, warming and N deposition can alter

the rates of heterotrophic microbial metabolism in soil, and

consequently the flow of C and N through soil food webs. While

both warming and N deposition can impact soil biogeochemical

processes, most of the research to date only quantified these effects

independently, and the majority of these studies have focused on

aboveground subsystems [10,29]. Until now, there is relatively

little knowledge on how different global change drivers interac-

tively influence soil food web composition and functioning

[15,17,30]. Since soil biota may influence biogeochemical cycling

and physical conditions in terrestrial ecosystems, their responses to

global changes are important at the ecosystem scale [15,31].

Recent reviews of global change effects on soil biota also suggested

that there is an urgent need for long-term studies to investigate

interactions between different agents acting in concert [32,33].

As part of the Eurasian grassland biome, the temperate steppe

in northern China has suffered from over-grazing since 1980s,

resulting in severe land degradation and soil N deficiency [34]. In

addition, temperature in these areas increased substantially during

past half century [35], and warming could stimulate evaportan-

spiration and reduced soil water availability, consequently

aggravating soil water deficits in the semiarid regions [36]. Thus,

it is predicted that the grassland ecosystems in this region are

sensitive to climate change [37,38]. However, there has been little

information on how belowground biota respond to climatic

change in this region, particularly to the combined driving factors,

i.e. climate warming and N deposition. Therefore, a field

experiment has been set up to examine the effects of climate

warming, atmospheric N deposition, and their interactions. Our

objectives were to explore the respective and interactive effects of

N addition and warming on the micro-food web in a temperate

steppe of Northern China. We focused on microbial biomass and

nematode trophic groups as important components of soil micro-

food web, because the micro-food web governs nutrient cycling

and mineralization processes, and strongly determines the

responses of belowground subsystem to climate change [15].

Previous studies at the field site we conducted our research have

demonstrated that warming negatively affected root production

[5], soil respiration, and microbial biomass [39]. In addition, N

addition was found to stimulate gross ecosystem productivity and

ecosystem C exchange by increasing C assimilation in the

temperate steppe [26]. Accordingly, where they occur separately,

warming and N addition appear to have an opposite effect on soil

C dynamics [21]. Based on these previous studies and other

reports [20,33,40], we hypothesized that N enrichment will

positively affect micro-food web components, while warming will

negatively influence them. Further, we hypothesized that warming

and N addition will be counteracting each other, so that their

interaction effect will be neutral. Structural equation modeling

(SEM) was used to test whether N addition or warming influenced

the components of soil food web directly or indirectly through

changes in soil abiotic characters and/or plant growth.

Materials and Methods

Study site
This study was conducted at a field site of the Duolun

Restoration Ecology Experimentation and Demonstration station

of the Institute of Botany, the Chinese Academy of Sciences. The

station is located at a temperate steppe in Duolun County, Inner

Mongolia (42u029N, 116u179E, 1324ma.s.l), China. The soil in the

study site is Chestnut soil (Chinese classification), or Haplic

Calcisols according to the FAO classification, with sand, silt, and

clay being 62.7%, 20.3%, and 17.0%, respectively. Mean bulk

density is 1.31 g?cm23 and pH is 7.7. The local climate in our

study area has increased 0.45 uC over the past half century (1953–

2005) [35]. N deposition in 2005–2006 was estimated at about

20 kg ha21 yr21 in this region [34]. The dominant plant species

are Stipa krylovii Roshev., Artemisia frigida Willd., Potentilla acaulis L.,

Cleistogenes squarrosa (Trin.) Keng., Allium bidentatum Fisch. ex

Prokh., and Agropyron cristatum (L.) Gaertn. Traditional land uses

in this region include livestock grazing and farming. From the late

1950s to the 1970s, the government put strict policies into effect to

ban grazing. Since the economic reforms and open-door policy in

1978, lands were thrown open to private use. After 2000, new bans

on grazing have been carried out by the local government, but

cattle and sheep grazing are still conducted in some areas of this

region.

Experimental design
The experiment consisted of a complete random block design

with six treatments, of which we included four treatments in the

present study. There were six replicates of each treatment. Thirty-

six plots of 3 m64 m were arranged in a 666 matrix. The

distance between two adjacent plots was 3 m. One of the six plots

in each row was randomly assigned to one of the six treatments. In

our study, we examined effects of control (CK), diurnal (24 h)

warming (W), N addition (N), and diurnal warming plus N

addition (WN) treatments. Effects of day and night warming were

also included in the experimental design, but these treatments

were not evaluated in the present study.

All the warmed plots were heated continuously by MSR-2420

infrared radiators (Kalglo Electronics Inc., Bethlehem, PA, USA)

suspended 2.25 m above the soil surface. Across the four growing

seasons from 2006 to 2009, warming treatment significantly

increased the soil temperature at the depth of 10 cm by 1.79 uC.

More detailed information of warming treatments on soil

microclimates can be found in [41]. In each control or N addition

plot, one ‘dummy’ heater with the same shape and size as the

infrared heater was installed as in the heated plots to simulate the

shading effects of the infrared radiator. All the heaters of the

warming treatments were set at a radiation output of approxi-

mately 1600 W. The warming treatment started on 23 April 2006.

N additions were spread by hand before the first rain event in the

rainy season, and were applied once a year with NH4NO3 in the

form of pellets. Given that N effects on species composition and

ecosystem production saturate at N addition rates of about 10.5 g

N m22 yr21 in this region [37], the level of N addition in this study

was 10 g N m22 yr21. The experiment was started in 2006 and

soil samples were collected in September 2009 and 2010. From

each plot, five soil cores of 2.5 cm diameter were collected from a

depth of 0–15 cm below soil surface and stored at 4uC until further

analysis. In late August of each year, we clipped a 161 m2 quadrat

in each subplot. Aboveground and belowground biomasses were

measured. Root biomass at 0–15 cm depth was measured by soil

auger (8 cm in diameter). The soil was carefully removed from the

root system and the roots were thoroughly rinsed. The dry masses

of aboveground and belowground biomass were determined by

over-drying at 70 uC to constant weight.

Effects of N Addition and Warming on Soil Food Web

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e60441



Soil analyses
Soil temperature at the depth of 10 cm was recorded

automatically with a Datalogger (STM-01 Soil Temperature

Measurement System; Henan Electronic Institute, Zhengzhou,

China). Six soil temperature measurements in each plot were

collected with 10-min intervals and averages of the six measure-

ments were stored as the hourly averages. The average soil

temperature of each month is presented in (Fig. 1). The total soil

carbon (SOC) and nitrogen (TN) were determined by a TruSpec

CN Elemental Analyzer (Leco Corporation, USA). Soil pH was

determined with a glass electrode in 1:2.5 soil:water solution (w/v).

Soil moisture (SM) was measured by weight loss after drying at

105uC for 48 h.

PLFA analysis
The soil microbial community was characterized using phos-

pholipid fatty acid (PLFA) analysis as described by Bossio & Scow

(1998) with slight modifications [42]. PLFA was extracted from 8 g

freeze-dried soil, and the extracted fatty acid methyl esters were

identified with a standard qualitative mix ranging from C9 to C30

and a MIDI peak identification system (Microbial ID. Inc.,

Newark, DE).

The sum of the following PLFAs was used as the measure of

bacterial biomass: i15:0, a15:0, 15:0, i16:0, 16:1v7c, i17:0, a17:0,

17:0, cy17:0, and cy19:0. The fatty acid 18:2v6 and 18:1v9c were

used as indicator of fungal biomass [43] and 16:1v5c for AM fungi

(AMF) [44,45]. Taken together, all of the PLFAs indicated above

were considered to be representative of the total PLFAs of soil

microbial community.

Nematode community analysis
Nematodes were extracted from 100 g of soil (fresh weight) by a

modified cotton-wool filter method [46,47]. Nematode popula-

tions were expressed as number of nematodes per 100 g dry soil,

and at least 150 nematodes from each sample were identified to

genus level using an inverted compound microscope. The

nematodes were assigned to the following trophic groups

characterized by feeding habits: (1) bacterivores (Ba); (2) fungivores

(Fu); (3) omnivore-predators (Om-Ca) and (4) plant parasites (PP)

following Yeates et al. (1993) [48].

The following nematode community indices were calculated:

(1) Trophic diversity TD = 1/Spi
2; where pi is the proportion of

trophic group i;

(2) Generic richness SR = (S21)/ln(N), where S is the number of

taxa and N is the number of total nematodes [49];

(3) Maturity index MI =gv(i)6f(i), where v(i) is the c-p value of

taxon i according to their r and K characteristics following

Bongers (1990) [44], f(i) is the frequency of taxon i in a sample;

(4) Plant parasite index PPI =gv(i)6f(i), which was determined in

a similar manner with maturity index for plant parasitic

genera [50];

(5) Structure index SI = 1006(gksns/(gksns+gkbnb));

(6) Enrichment index EI = 1006(gkene/(gkene+gkbnb)),

where kb is the weight assigned to guilds Ba2 and Fu2 and nb is

the abundance of nematodes in guilds Ba2 and Fu2, which

indicate basal characteristics of the food web; ks the weight

assigned to guilds Ba3–Ba5, Fu3–Fu5, Om4–Om5 and Ca2–Ca5,

ns is the abundance of nematodes in these guilds, which represent

the structure condition of the food web; ke the weight assigned to

guilds Ba1 and Fu2, and ne is the abundance of nematodes in these

guilds, which represent an enriched condition of the food web

[51]. Bax, Fux, Cax, Omx, (where x = 1–5) represent the

functional guilds of nematodes that are bacterivores, fungivores,

predators and omnivores where the guilds have the characters

indicated by x on the colonizer-persister (cp) scale (1–5) following

Bongers & Bongers (1998) [52].

Statistical analysis
Nematode abundances and the PLFA-derived biomass were

ln(x+1) transformed prior to statistical analysis. General linear

model analysis of variance was used to test the main effects and

interactions of date, N addition and warming on soil properties

and biota. The least significant difference (LSD) test was used

Figure 1. Monthly mean soil temperature in 2009 and 2010 as affected by nitrogen addition and warming in a temperate steppe.
doi:10.1371/journal.pone.0060441.g001

Effects of N Addition and Warming on Soil Food Web
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when the treatment effects were significant. All statistical analyses

were performed by SPSS statistical software (SPSS Inc., Chicago,

IL). Difference at P,0.05 level was considered to be statistically

significant. For the PLFA and nematode data, no interactive

effects with sampling dates were observed in the ANOVA analysis,

so the data were combined and presented for the average of two

years.

Structural equation modeling (SEM) was used to investigate

how N addition and warming affected soil microbe and nematode

trophic groups in each year. We started the SEM procedure with

an initial SEM model, based on our predictions [53]. In this model

we hypothesized that N addition and climate warming may alter

soil abiotic properties and plant biomass, which in turn may affect

microbial community and soil nematode trophic groups. Soil

abiotic characteristics, microbial community and nematode

community were treated as latent variables [54]. We used soil

moisture,soil organic C, total nitrogen and soil pH as the

indicators of soil abiotic characteristics; bacterial, fungal and

AMF PLFA as the indicators of microbial community; and the

abundance of nematode trophic groups as the indicators of

nematode community. In the initial model, the relationships

between plant biomass and micro-food web were not significant

and contributed little for the fit of the model, so plant biomass was

removed from the final model for simplification. In the SEM

analysis, we compared the model-implied variance-covariance

matrix against the observed variance-covariance matrix with

maximum likelihood estimation. We used the x2 and its associated

P-value to judge the model fit to the data. In the first phase, we

constructed models containing all soil abiotic variables proposed to

have influences on soil micro-food web. Based on the results of

goodness-of-fit tests, we excluded less predictive measures (soil

moisture, soil organic carbon and total nitrogen) and retained soil

pH as the most informative abiotic variables in the final model. By

stepwise removal of non-significant paths from the model we

selected the model that fit our data best. SEM analyses were

performed using AMOS 5.0 (Amos Development, Spring House,

Pennsylvania, USA).

Results

Soil charateristics and plant biomass
Although soil characteristics (SM and pH) and plant biomass

varied between 2009 and 2010 (Table 1), no warming effects were

observed on the tested parameters. Soil pH was decreased by 8%

and 1% in 2009 and 2010, respectively, following N addition

(P,0.01).

Soil microbial community
No sampling date effect was observed in the total and subgroup

of PLFA biomass (Table 2). N addition effects on the PLFA

biomass were more obvious than the warming effects. The average

biomasses of total PLFA and the bacterial, fungal and AMF PLFA

were enhanced 47.4%, 48.1%, 74.5% and 34.3%, respectively, by

N addition (Fig. 2 a, b, c, d; P,0.05). Only fungal PLFA

responded to warming, which resulted in lower fungal biomass

under warming (Fig. 2c; P,0.05).

Soil nematode community
Warming and N addition didn’t influence the total nematode

abundance (data not shown). No warming effects were observed

on nematode trophic groups and ecological indices. Among

nematode trophic groups, only bacterivores varied between

different sampling years (P,0.05), but no treatment effects were

observed on the abundance of bacterivores and plant parasites

(Fig. 2 e, f). Surprisingly, although the fungal PLFA was increased

by N addition, the abundances of fungivores and omnivore-

predators showed opposite patterns, as N addition reduced their

abundances with 33.7% and 40.3%, respectively (Fig. 2 g, h;

P,0.05). Among nematode ecological indices, trophic diversity,

generic richness, maturity and structural indices were reduced by

N addition (P,0.05), whereas plant-parasite index and enrichment

index were not affected by the experimental treatments (Fig. 3).

SEM results
Since no significant path way was observed in the final model of

2010, we only presented the SEM results of 2009. SEM analysis of

Table 1. Soil characteristics and above and belowground plant biomass as affected by nitrogen addition (N) and warming (W) in a
temperate steppe (Means 6 SD).

Date SM (%) pH TN (g kg21) SOC (g kg21) A-Biomass (g m22) B-Biomass (g m22)

2009 CK 4.5860.87 7.2060.09A 1.9460.13 23.8161.75 58.4466.38 120.65655.31

W 4.0560.34 7.2960.10A 1.8760.27 23.8064.07 55.50610.19 101.90636.70

N 4.3160.61 6.6860.14B 1.8160.19 22.5562.52 54.22612.97 113.89647.03

WN 4.1960.37 6.6260.17B 1.7960.17 22.9461.63 50.27610.89 184.896100.20

2010 CK 3.1360.60 7.4260.17A 1.7860.42 22.3063.31 120.75611.65 971.886422.08

W 3.1360.74 7.2960.18A 1.7660.19 20.4062.66 116.54613.86 875.256303.15

N 3.4760.67 7.3160.08A 2.0160.56 26.1467.34 126.7465.97 1199.586269.78

WN 3.0260.42 7.2560.08A 1.9960.24 27.6965.51 142.85611.29 977.956295.41

ANOVA (P values)

Date ** ** ns ns ** **

W ns ns ns ns ns ns

N ns ** ns ns ns ns

W6N ns ns ns ns ns ns

Notes: ** indicates significant difference at P,0.01; ns indicates no significant difference. Capital letters indicate significant difference among different treatments. A-
Biomass, aboveground plant biomass; B-Biomass, belowground plant biomass.
doi:10.1371/journal.pone.0060441.t001
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2009 data suggested that N addition altered soil nematode

community composition indirectly through changes in soil

microbial biomass (PLFA) and soil pH. However, warming effects

were less obvious than those of N addition. The final models

adequately fit the data on soil food web components in our study

(standardized path coefficients are given in Fig. 4). The model of

2009 explained 35% of the variance in soil microbial biomass and

51% of variance in nematode abundance. The final SEM models

indicated that soil food web components were stronger influenced

by N addition directly rather than indirectly through changes in

soil abiotic parameters (soil pH).

Discussion

N addition effects on soil micro-food web
In the present study, N addition enhanced microbial biomass,

but negatively affected soil nematode trophic groups and

community composition. The latter effect did not support our

hypothesis. Low-levels of N addition have been reported to

stimulate microbial growth by ameliorating N and C limitation

through improving soil N availability and stimulating plant growth

and litter decomposition [55]. However, the increase in microbial

biomass did not lead to an increase in the abundance of nematode

trophic groups. The differential responses of microbial biomass

and nematode community composition might be driven by the

complex interactions between bottom-up (resource quantity and

quality) and top-down forces (regulation by predation) in the soil

food web [56]. In the present study, microbial biomass increased

while the abundances of fungivores and omnivore-predators

decreased with N addition. One possibility was that microbial

biomass in the temperate steppe was controlled by bottom-up

forces, such as the quality of organic material and plant exudates

[57], which increased under N additions. Whereas the fungivores

and bacterivores were not controlled by bottom-up forces, because

fungivores declined even though their resources (total PLFA)

increased. Interactions between soil organisms are inherently

complex and these bottom-up and/or top-down regulations in the

soil food web may also depend on climate and physical conditions.

On the other hand, Bai et al. (2009) found that there is a

threshold in the effects of nitrogen addition on aboveground

biomass and plant functional composition in the Inner Mongolia

grasslands [37]. Based on their findings, we inferred that there

may be also a threshold for the N addition effects on the soil

micro-food webs. Since high N additions might have a direct toxic

effect on some saprophytic fungi by inhibiting their enzymes [58],

which might also affect soil nematodes indirectly. SEM analysis

also revealed that N addition could affect nematode community

through changes in soil pH. Previous reports have suggested that

higher N levels are detrimental to omnivores–predators [59], thus

precluding any effects of temperature change. Soil acidification or

ammonium suppression following N addition has been reported as

important factors inhibiting soil nematodes [60].

Corresponding to the decrease in the abundances of fungivores

and omnivore-predators, nematode ecological indices such as

trophic diversity and generic richness were decreased by N

additions, indicating a soil food web with lower diversity in both

generic level and trophic community composition. The relatively

lower structural and maturity indices under N additions also

revealed a degraded food web relative to the treatments without N

additions. Due to the trophic complexity associated with soil food

webs, our knowledge is still limited about the processes controlling

resource acquisition and use in belowground subsystems.

SEM results in this study revealed that the direct effects of N

addition on soil food web components were more important than

the indirect effects through alterations in soil abiotic characteristics

or plant growth. Our observations were not in line with previous

findings that changes in nematode community composition

operated largely through effects on aboveground vegetation

[16,61]. Since we only tested above- and belowground biomass

in the present study, and no significant treatment effects were

found on plant biomass, the difference between our study and

results by Kardol et al. (2010) and Veen et al. (2010) may be due to

the species-specific relationships [16,61]. De Deyn et al. (2007)

found that nematode community composition responded differ-

ently to specific plants [62], and previous studies also suggest the

important effects of plant species identity on multiple trophic levels

in the soil food web [63]. In addition, it is also possible that soil

biota may have been affected directly by living plant roots or

indirectly through root exudates [64], which were not reflected in

the plant biomass during the experimental period (3–4 years). In a

long-term biodiversity experiment, Scherber et al. (2010) also

found that plant species richness effects generally mediated the

Figure 2. The PLFA biomasses for total (a) and indicator subgroups (b, c, d) and the abundance of nematode trophic groups (e–h) as
affected by nitrogen addition and warming in a temperate steppe soil (Means 6 SE). Bars indicate standard errors. Horizontal lines
indicate the N treatment effects derived from General linear model analysis of variance. * and ** indicate N treatment effects significant at P,0.05 and
P,0.01, respectively. Capital letters indicate significant differences among different treatments derived from LSD.
doi:10.1371/journal.pone.0060441.g002

Table 2. Results (P-values) of ANOVA on the effects of Date, warming (W), nitrogen addition (N) and their interactions on the PLFA
biomass, nematode trophic groups and ecological indices.

PLFA Trophic groups Ecological indices

Total Bacterial Fungal AMF BF FF PP OP TD SR MI PPI EI SI

Date ns ns ns ns * ns ns ns * ns ns ns ** ns

W ns ns * ns ns ns ns ns ns ns ns ns ns ns

N * * * * ns * ns ** * ** ** ns ns **

W6N ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Notes: * and ** indicate significant differences at P,0.05 and P,0.01, respectively; ns indicates no significant difference. Total, total PLFA biomass; Bacterial, Bacterial
PLFA; Fungal, Fungal PLFA; AMF, AMF PLFA; BF, bacterivores; FF, fungivores; PP, plant-parasites; OP, omnivore-predators; TD, trophic diversity; SR, generic richness; MI,
maturity index; PPI, plant-parasite index; EI, enrichment index; SI, structural index.
doi:10.1371/journal.pone.0060441.t002
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belowground responses through changes in root production or

root exudates, but not through the vegetation biomass or the

amount of litter input [65]. Our results underline suggestions

made in other studies that responses of soil biological processes to

N addition mainly resulted from direct effects other than indirect

effects through changes in soil abiotic characters or plant growth

[66,67].

Warming effects on soil micro-food web
In our experiment, fungal PLFA biomass decreased following

warming. In the same experimental field, the increased temper-

ature associated with climate warming was found to stimulate

evapotranspiration, leading to decreases in soil water content and

supply of carbohydrates to belowground ecosystems [2,5]. These

changes may help to explain the decrease of fungal PLFA biomass.

Similarly, in four heathland ecosystems along a climatic gradient

in Europe, experimental warming was found to increase soil

microbial biomass at the coldest and wettest site, and decrease soil

microbial biomass at the warmest and driest site [40]. While the

root-associated fungal community at tundra sites were quite

resilient to warming effects [68]. The meta-analysis of 75

manipulative experiments on the responses of soil biota abundance

to global change also revealed that effects of warming did not

depend on taxon or body size of soil biota, and negative effects of

warming were more likely to occur at the colder and drier sites

[33].

Warming did not influence other micro-food web components

tested in the present study, such as bacterial PLFA biomass or

nematode trophic groups. This may be because bacteria and

organisms feeding on them are less sensitive to climatic change

than fungi, since bacteria mainly live inside soil aggregates and

experience less extreme fluctuations in microclimate [69,70]. In

addition, other studies also found that soil moisture mediated the

warming effects, thus null and negative effects of experimental

warming have been attributed to the reductions in soil moisture

[71,72].

Interactive effects of warming and N addition on soil
micro-food web

One of our objectives in this experiment was to investigate

potential interactions between N deposition and climate change.

In our study, no interactive effects of warming and N addition

were observed on the micro-food web components, which was in

support to our hypothesis. Only fungal biomass decreased with

warming, so that the absence of interactive effects might be due to

the minimal effects of warming on the micro-food web compo-

nents. Similarly, in a low-alpine heathland, Papanikolaou et al.

(2010) also found that there was lack of interactions between

warming and N addition [24]. They concluded that N addition

and warming acted independently on decomposing and the

associated microbial community. Based on our observations in soil

micro-food web, the effects of N addition did not depend on

warming. Therefore, we conclude that in the temperate steppe

ecosystem of our study climate warming and N addition influence

soil micro-food web independently.

In summary, the results from our experiment indicated that N

addition has led to significant changes in the soil micro-food web

of temperate steppe, resulting in a lower diversity belowground

micro-food web. However, effects of warming were less obvious

than N addition and there were no interactive effects of N addition

Figure 4. Structural equation models of N addition and warming effects on soil micro-food web components in a temperate steppe
in 2009 (x2 = 27.511; df = 24, P = 0.281; CFI = 0.975; RMSEA = 0.080). Numbers on arrows are standardized path coefficients. Width of the
arrows indicates the strength of the causal influence (non-significant pathways are dashed). N represents N addition effects; W, warming effects; Soil
Char, soil characteristics; Microbe, soil microbial PLFA biomass; and Nema, soil nematode trophic groups.
doi:10.1371/journal.pone.0060441.g004

Figure 3. Nematode ecological indices as affected by nitrogen addition and warming in a temperate steppe soil (Means 6 SE). Bars
indicate standard errors. * and ** indicate N treatment effects significant at P,0.05 and P,0.01, respectively. Capital letters indicate significant
differences among different treatments derived from LSD.
doi:10.1371/journal.pone.0060441.g003
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and warming on soil food web components. Direct effects of N

addition on soil food web components explained the observed

responses more than indirect effects through changes of soil abiotic

conditions.
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