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Griffiths and colleagues provided a clear and thoughtful review of the prediction error
model of delusion formation [Cognitive Neuropsychiatry, 2014 April 4 (Epub ahead of
print)]. As well as reviewing the central ideas and concluding that the existing evidence
base is broadly supportive of the model, they provide a detailed critique of some of
the experiments that we have performed to study it. Though they conclude that the
shortcomings that they identify in these experiments do not fundamentally challenge
the prediction error model, we nevertheless respond to these criticisms. We begin by
providing a more detailed outline of the model itself as there are certain important
aspects of it that were not covered in their review. We then respond to their specific
criticisms of the empirical evidence. We defend the neuroimaging contrasts that we
used to explore this model of psychosis arguing that, while any single contrast entails
some ambiguity, our assumptions have been justified by our extensive background
work before and since.
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We were pleased to see Griffiths, Langdon, Le Pelley, and Coltheart (2014) review the
evidence that abnormal prediction error may be important in delusion formation. We
agree with their overall conclusion that there is a growing evidence base supporting
the idea and we are pleased that they share our enthusiasm for applying an associative
learning framework to understanding psychosis. Such a framework offers a set of testable
hypotheses about how disturbances in basic learning processes may lead ultimately to
altered models of the world and, hence to profound shifts in the ways in which sensory
evidence is processed, attended to and interpreted (Corlett, Honey, & Fletcher, 2007).
Furthermore, concepts derived from associative learning offer a level of analysis and
description that will prove very useful in the quest to link disturbed brain processes to
alterations in cognition and experience (Corlett, Frith, & Fletcher, 2009; Corlett, Honey,
Krystal, & Fletcher, 2010). Moreover, key concepts that describe associative learning
fit well with computational perspectives on perception, inference and decision-making
(Friston, 2005; Friston & Stephan, 2007). We believe that such computational psychi-
atry approaches (Corlett & Fletcher, 2014; Friston, Stephan, Montague, & Dolan, 2014;
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Montague, Dolan, Friston, & Dayan, 2012; Stephan & Mathys, 2014) offer the oppor-
tunity to move beyond the useful but necessarily limited and often metaphorical accounts
that shape many cognitive accounts of delusions.

We feel that it is useful to add some comments to the paper of Griffiths et al.: first, we
would like to offer some refinements to the prediction error account of delusions and to
embed it more thoroughly in hierarchical models of perception and inference (Friston,
2005; Friston & Stephan, 2007). We believe that this is important in demonstrating
its potential value in linking what we know about brain function with higher-level
descriptions that shape our understanding of psychopathology (Corlett et al., 2009, 2010).
Second, we underline what we consider to be an important characteristic of this model –
that characterisation of disruption in prediction error signal, as well as providing a
parsimonious and comprehensive account of how delusions emerge, may help explain
their resistance to contradictory evidence, their elasticity and the characteristic co-
occurrence of perceptual anomalies (Corlett et al., 2013; Corlett, Krystal, Taylor, &
Fletcher, 2009). Third, we wish to respond to the critique of our work (Corlett et al.,
2004, 2006, 2007) that Griffiths et al. presented in the second part of their paper.

A fuller perspective on the prediction error model

Challenging the perception-belief dichotomy

Models of delusional belief have tended to be expressed in ways that implicitly or
explicitly treat perception and inference as fundamentally separable phenomena, a
dichotomy that has led to some contention over whether delusions emerge from normal
inferences acting on abnormal perceptual experiences (Kapur, 2003; Maher, 1974, 1988)
or abnormal inferences acting on normal experiences (Campbell, 2001; Currie, 2000). It
has been argued that neither deficit alone could account for a delusional belief and that
two factors – both abnormal perception and abnormal inference (in this case the ability to
evaluate beliefs, which is of course itself an inference) – must be disturbed (Coltheart,
2010; Coltheart & Davies, 2000). While the latter is a cogent argument, we believe that it
is only necessary in so far as there is a clear distinction between perception and inference:
a distinction which is not actually compatible with what is known about how the brain
deals with the world (Barlow, 1990; Helmholtz, 1878/1971). Increasingly, influential
views consider the brain as a predictive device that makes inferences about the world
(Friston, 2005; Friston & Stephan, 2007). Specifically, it must estimate the likely cause of
an input, a process that may be known as abductive inference (Peirce, 1931–1958) and,
notably, one that Coltheart has pointed out is characteristic of delusional beliefs
(Coltheart, Menzies, & Sutton, 2010). This is actually an insoluble problem of inference
and the best that the brain – isolated as it is from the reality of the world – can hope for is
an informed guess. The abductive guess is informed by prior experience, which is of
course the essence of Bayesian processing.

So the simple idea is that a perception even at the lowest levels is actually shaped by
what is already known – it is an inference about the cause of a sensation and cannot be
readily separated from belief (Friston, 2005; Friston & Stephan, 2007). Experience
enables predictions that shape inference (Friston, 2005; Friston & Stephan, 2007). In a
system that is arranged hierarchically, we may perhaps choose to refer to the inferences at
the lower levels as perceptions and the inferences at the higher levels, being more abstract
and immutable, as beliefs, but we suggest that it is important to consider that similar
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processing pertains at all levels of the hierarchy – upcoming signal is compared with
current predictions (Friston, 2005; Friston & Stephan, 2007). The ensuing experience is a
consequence of the brain striving to find the prediction that best fits the signal (Friston,
2005; Friston & Stephan, 2007). A prediction that fails to account for current input leads
to a prediction error signal which, depending on its nature, may either be suppressed or
may percolate to higher levels in the hierarchy where it may ultimately (though not
necessarily) be the drive towards new predictions – that is, new beliefs (Friston, 2005;
Friston & Stephan, 2007). Note too that this model incorporates inferences about
inferences: an inference at one level that violates the expectations embodied at a higher
level will generate a prediction error which again may be suppressed or may lead to an
alteration in those expectations. This could be equated to belief evaluation.

From this perspective, a dispute about whether delusions arise from abnormal
experiences, abnormal inferences or both becomes unhelpful and potentially meaningless.
Indeed, it might be argued that the treatment of delusions and hallucinations as distinct
entities is also fundamentally challenged by this insight. In essence, we are suggesting
that, although it is possible – and sensible – at one level of analysis to distinguish beliefs
from perceptions (and delusions from hallucinations) at another level of analysis – the
one that we think is more useful – no distinction is called for (Friston, 2005; Friston &
Stephan, 2007). We believe that this is an important point to make. While Griffiths et al.
are very clear that the prediction error model is a single deficit model of psychosis, we
wish to add that the employment of a hierarchical predictive coding model points to the
important principle that perceptions and beliefs (and, by implication, hallucinations and
delusion) should not, indeed cannot at certain key levels of description, be separated. That
is, we are not talking simply about a single deficit that affects two qualitatively distinct
sets of mental processes but rather invoking a model that points to deep similarities
between perception and belief.

More than just the emergence of a new belief

A further point that we think should be emphasised and, one that has been developed
more recently, is that, although altered prediction error may most directly and clearly
account for the emergence of delusions, insights from associative learning studies actually
show how the argument may be extended to account for the fact that delusions become
strongly fixed and, at the same time, sufficiently elastic to incorporate new evidence –
even evidence that seems directly contradictory to the core of the belief.

We suggest that the process through which beliefs are relinquished and replaced with
alternative beliefs could be likened to extinction learning (Corlett et al., 2009). Extinction
learning is invoked when a previously reinforced association is reinforced no longer
(Bouton, 2000). New, context-dependent, learning ensues, learning not to expect
reinforcement (Bouton, 2000). The interplay between new and old learned expectations
is delicate and it may be modulated by prediction error (Eisenhardt & Menzel, 2007). In a
study of fear memories in crabs, definitively confounding the crab’s learned expectation
engendered extinction learning. However, reactivation of the learned expectation without
disconfirming it (reminding crab of the reinforced situation) actually strengthened the
memory (Pedreira, Perez-Cuesta, & Maldonado, 2004). That is, a surprising reminder of a
reinforced situation strengthens the memory for that situation, even when the reinforce-
ment does not occur (Eisenhardt & Menzel, 2007; Pedreira et al., 2004). This effect has
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been reported in rodents (Lee, 2008). The importance of prediction error in human
memory reconsolidation has also been confirmed (Sevenster, Beckers, & Kindt, 2012,
2013). We have argued that aberrant prediction errors drive delusion formation (Corlett,
Taylor, Wang, Fletcher, & Krystal, 2010). If prediction errors also drive memory
strengthening, then aberrant prediction errors ought to entail aberrant memory strength-
ening (Corlett, Taylor, Wang, Fletcher, Krystal, 2010).

We can express this in terms of the predictive coding account too. If delusions form as
new “priors” as a consequence of altered prediction error signal, then it is the nature of
the hierarchical predictive system that they are deployed to predict and explain future
experiences. Critically, the delusion has formed as the best way to account for a noisy and
uncertain prediction error [and one that perhaps has an unjustly elevated level of precision
(Adams, Stephan, Brown, Frith, & Friston, 2013; Corlett et al., 2010; Fletcher & Frith,
2008)]. But it is unlikely to be very successful in accommodating this error signal. Over
time, a haphazard error signal – even a strong one – will become discounted – it will not
contribute to updating (Preuschoff & Bossaerts, 2007). Thus, the reactivation of the prior,
even though it does not accurately predict the ensuing input, will have a reinforcing effect
on that belief. Similar, so-called backfire, effects are observed in politics (Bullock, 2009)
and science (McRaney, 2013). Indeed, ketamine – an experimental model of psychosis –
may produce a comparable effect (Corlett et al., 2013).

Clarifying the role of prediction error in psychosis

We feel that the neural responses in our studies are best described as aberrant prediction
errors, errors in response to events that really ought not to be surprising. This pattern of
excessive responses to unsurprising events is present in all of our studies [and in other
studies that do not explicitly manipulate prediction error (see Anticevic & Corlett, 2012
for a review)]. It is probably most unambiguously demonstrated in our study of forward
blocking in healthy individuals with schizotypal beliefs (e.g. beliefs in telekinesis or alien
abduction). Here, subjects learned that one cue (e.g. apples) predicted the allergy (A+). In
a subsequent phase of training, they learned that apples and bananas predicted the same
allergy (AB+). The outcome was already fully predicted by the apple (A), and there
should have been no prediction error on AB+ trials and hence nothing should have been
learned about B.

When we examined brain responses to AB trials, we found that on average,
dorsolateral prefrontal cortex (DLPFC) was less active than on control trials (Stage 1,
C–, Stage 2, CD+). However, some subjects engaged DLPFC (and hence prediction error
signalling) more than others in response to AB+ trials. This was manifest as behavioural
learning about B, subjects with inappropriate prediction error responses at Stage 2,
learned that B caused the allergy (Corlett & Fletcher, 2012). In response to Griffiths
et al.’s concerns that we do not discuss behavioural data sufficiently, we returned to this
data-set, examining the relationship between this inappropriate learning about redundant
stimuli and the extent of subjects’ odd beliefs (as measured by the magical ideation
subscale scores from the Chapman Schizotypy scale). There was a significant correlation
between subject’s learning about the redundant stimuli (B?) and their odd-beliefs (n = 17,
r = 0.5, p = 0.03, see Figure 1). We take Griffiths et al.’s point here, clearly simpler
designs are easier to communicate and it is easier to use them to link inappropriate
prediction error brain signal to delusion-like ideation unambiguously.
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Considering Griffiths et al.’s critique of retrospective revaluation studies

Now, we turn to the more specific critique of our work and the evidence that it provides
for the prediction error model of delusions. First, we are grateful to Griffiths and
colleagues for their careful consideration of the experiments and for setting out the key
components so clearly. We should acknowledge that we do not hold a monopoly on
providing the relevant experimental evidence and there are other examples of cortical
(Schlagenhauf et al., 2009; Schmack et al., 2013) and subcortical prediction error signals
(Romaniuk et al., 2010) that are inappropriately engaged in people with delusions. We are
glad too that their central conclusion is that aberrant prediction error has promise as an
explanatory mechanism for delusion formation. But we are naturally keen to defend the
work against some of the criticisms levelled at it.

Griffiths et al. have three main criticisms of our work:

(1) We do not show a retrospective revaluation effect nor is behaviour on the task
disrupted by psychosis.

(2) We use reverse inference to make the case that what we are observing in DLPFC
is a prediction error signal.

(3) We did not choose the best trial types from our design to identify prediction error
signals.

These three concerns really boil down to one important question in the context: Were we
able to identify neural responses specific to expectancy violation (i.e. prediction error)
and to relate variations in these responses to psychosis. This is less relevant to one of the
paper that is discussed (Corlett et al., 2004) which was actually using a brain response as
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Figure 1. Relating behavioural predictions to delusion-like ideas.
Note: Scatterplot depicting the relationship between subjects’ behavioural predictions about the
blocked cue and their self-reported magical ideation measured with the Chapman scale (Eckblad &
Chapman, 1983).
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the basis for interpreting the impact of the associative learning manipulation. In this
study, we made certain key observations that formed the basis for interpreting the
findings of aberrant right prefrontal cortex (rPFC) activity in psychosis and ketamine.
First, we showed that a specific focus of rPFC activation – one that we had shown in
prior causal associative learning studies to code prediction error – accompanied the
retrospective revaluation manipulation lending support to the modified associative
account of revaluation. The fact that there was a strong, though not significant, trend
towards behavioural report of altered predictive strength at a later stage we took to be
evidence that such revaluation was occurring. Griffiths et al. argue that we were incorrect
to do this. We respond that such behavioural measures may not have been sufficiently
sensitive to reflect a genuine revaluation effect and point to another finding in this paper:
That the degree of subject-specific rPFC activation during expectancy violation in the
final stage was predicted by the degree of activation occurring at the prior revaluation
stage (Stage 2). This strongly suggested to us that Stage 2 involved processes that related
directly to updating expectancies. We argue that, for such an experiment, behavioural data
are noisier and less sensitive than brain imaging data. We recognise that this is a
speculation and acknowledge that Griffiths et al. do not believe it. The question of
whether neuroimaging findings can be interpreted or believed in the absence of
behavioural changes is reviewed carefully elsewhere (Wilkinson & Halligan, 2004).

Of course the above argument – and indeed the experimental design as a whole – did
indeed involve so-called reverse inference. We defended this approach in the original
paper and we continue to do so. There are of course problems with reverse inference.
Merely observing a brain response in a particular region in a novel task (in say the
striatum) does not entail a specific psychological process (e.g. reward) is occurring in that
task. However, reverse inference is not always inherently flawed (Hutzler, 2014). If we
take a Bayesian approach, given that subjects are doing the sort of causal learning task in
which we have previously observed DLPFC responses that are co-incident with
prediction error (e.g. superlearning, preventative learning and simple associative learning)
and we now observe identical activation in a similar causal learning setting (retrospective
revaluation), it is reasonable to infer that we are observing prediction error. Of course, we
do not believe that all DLPFC BOLD responses are prediction errors; we never claimed
that they were. What we have been striving for is a brain marker for the occurrence of
prediction error signal. With such a marker we are in a position to test models of
disrupted processing.

Most importantly, we turn to the comment in Griffiths et al.’s paper that “A serious
shortcoming of the studies reported by Corlett et al. (2004, 2006, 2007) is that the control
cues in the fMRI contrasts were not appropriate”. They point out, for example, that the
trials of interest entail not merely prediction error but also incidental recall of cues with
which the critical cues had previously been paired. We draw their attention to the methods
section (Corlett et al., 2004) in which we describe how we subtracted out the effects of
within-compound associations at both Stages 2 and 3 precisely as they suggest. Indeed, it
was because the retrospective revaluation manipulation offered an elegant way of
manipulating stimulus-related expectancy while controlling for associative history and
structure that we first became interested in it. While we would argue that contrast used to
identify prediction error-dependent updating in this experiment is the most tightly
controlled that we have seen, the subtlety of the effect and the unreliability of the
backward blocking effect meant that we used, when we carried out analyses of prediction
error responses in patients and volunteers receiving ketamine, we used a lower level
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baseline. As Griffiths et al. point out the danger of a low-level baseline condition is that it
may differ from the experimental condition in more just the process of interest. We argue,
however, that the body of work leading up to these more clinical studies engenders
sufficient confidence that the precise area of rPFC in the context of casual associative
learning tasks correlates with prediction error-dependent updating and the fact that it
showed clear group differences (including abnormally high levels of response to the low
level baseline trials in patients and volunteers) under ketamine and that the magnitude of
this disruption related to delusion-thinking. As an internal check (Corlett et al., 2007), we
used a supplemental analysis in which we specifically explored, on a trial by trial basis,
how the magnitude of violation related to rPFC activity using the actual predictions
(modulated by confidence) that each participant had made for each trial. Again we found
a group difference and found that this related to delusional thinking in patients.

To be clear, we cannot argue that, for any given comparison or study, we unequivoc-
ally demonstrate that group differences are characterised by prediction error abnormalities
and nothing else. Indeed we have been working since on finding new ways of addressing
this question. Some of the ways, including the use of forward blocking (Corlett &
Fletcher, 2012, 2013), coincide with suggestions made by Griffiths et al. Moreover, while
we do argue that these three studies strongly support a prediction error model of
psychosis, we would present them not as a fait accompli but as an emerging narrative that
has been sufficiently compelling for us to continue to pursue it.

Griffiths et al. suggest that the controls we chose and the regions we identified
suggest that our findings may be interpreted in terms of perturbed working memory. We
disagree, having shown that in the same participants (Corlett et al., 2006) tasks engaging
working memory and attention associated with negative symptoms (Honey et al., 2008).
Conversely, in the patient group, a separate reward learning task (Murray et al., 2007)
was associated with altered prediction error responses.

However, Griffiths et al. do highlight an important inadequacy our choice of controls.
The J cue ought to be less associable. That is, J should garner less attention and enter into
fewer associative relationships. In prior work, Le Pelley, Griffiths and their colleagues
have demonstrated that patients with schizophrenia (Morris, Griffiths, Le Pelley, &
Weickert, 2013) and individuals with schizotypal personality traits (Le Pelley, Schmidt-
Hansen, Harris, Lunter, & Morris, 2010) find irrelevant stimuli more associable during
learning tasks. Prediction error is one mechanism through which cues garner subsequent
associability (Courville, Daw, & Touretzky, 2006; Pearce & Hall, 1980). However, it
is not only candidate process but individuals can also find highly predictive stimuli
more associable (Mackintosh, 1975). Hybrid models that combine prediction error and
associability have been proposed (Le Pelley, 2004).

Associability is difficult to examine in a neuroimaging setting using subtractive
analyses. One study used computational modelling to generate trial-by-trial regressors for
associability and prediction error (Li, Schiller, Schoenbaum, Phelps, & Daw, 2011;
Roesch, Esber, Li, Daw, & Schoenbaum, 2012). Associability correlated with activity in
the amygdala and anterior cingulate cortex [regions that also signal prediction errors
(Chumbley et al., 2014; Holroyd & Coles, 2002; McHugh et al., 2014)]. Furthermore,
Li et al. also observed an associability signal in DLPFC, head of caudate and midbrain –
in regions that signal prediction error in our analyses (see Li et al., supplementary
materials). Future work should try to dissociate associability from prediction error
(which will be a challenge) and then explore the contribution of each to the genesis of
delusions.

Cognitive Neuropsychiatry 101



More broadly, this exchange points to a tension in cognitive neuroscience. It is
not clear exactly how we can make bridges between cognitive and neural science. One
approach, predicated on neuropsychology, is to assume that one region performs one
function (hence, when that region is damaged, the process is lost – this is basis for
neuropsychology using cognitive tasks to infer the location of brain damage). This is a
sort of Swiss Army Knife approach to neuro-cognition – it is modular (specific tools
solve particular problems) and limited (there are a finite number of tools). There are
lesion patients whose cognitive dysfunctions support such mappings from specific
functions to particular regions [although post-mortem data can sometimes call that
specificity into question (Annese et al., 2014)]. It would seem that this mapping approach
would support our assertion that DLPFC and prediction error are associated. It would also
support the lesion-based account for delusions proposed by Coltheart and colleagues.

However, it does not support the observation of activations in similar regions when
different processes are engaged (e.g. DLPFC is often engaged during working memory).
Nor does it allow for the redundancy and capacity for recovery in the human brain.
We suggest instead that cognition might be more meaningfully mapped to brain function
in terms of distributed circuits; networks of interacting brain regions that dynamically
reconfigure in response to different tasks (Cole et al., 2013). In our causal learning task,
when prediction errors occur, the DLPFC is co-active with the head of the caudate and
midbrain. In working-memory tasks, thalamus, cerebellum and parietal cortex are often
co-activated with DLPFC. This is by no means exhaustive and task engendered circuits
are not necessarily exclusive, however, in this way, we can explain how we can observe
activations in similar brain regions across a range of apparently unrelated cognitive tasks.
This dynamic reconfiguration in response to the task at hand is more like the T1000 robot
in the movie Terminator 2. The machine is made from a liquid mimetic poly-alloy and
can take on a range of different forms in order to solve new problems. Meta-analyses of
task-based fMRI data will help us identify these circuits and compare them across tasks.

This discussion leads to a final point that we would like to make in response to
Griffiths et al. Given this more dynamic relationship between brain activity and cognition,
it does not seem appropriate to attribute regional responses to processes such as belief and
perception nor to separate them on neuroanatomical grounds. Instead, the dynamic model
allows for an influence of belief on perception and, vice versa, influences for which
behavioural evidence abounds. We believe prediction error is reflected by regional
activations and regional interactions. Delusions arise as a result of aberrant prediction
errors at both of these levels of analysis. We agree with Griffiths et al. that the work on
prediction error thus far is supportive of the model. And we are happy too with their
proposal for robust experiments that may further test and refine the model. We look
forward to following the outcomes of such experiments.
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