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ABSTRACT

For cell instance segmentation on Electron Microscopy (EM)
images, state-of-the-art methods either conduct pixel-wise
classification or follow a detection and segmentation man-
ner. However, both approaches suffer from the enormous
cell instances of EM images where cells are tightly close to
each other and show inconsistent morphological properties
and/or homogeneous appearances. This fact can easily lead
to over-segmentation and under-segmentation problems for
model prediction, i.e., falsely splitting and merging adjacent
instances. In this paper, we propose a novel approach in-
corporating non-local correlation in the embedding space to
make pixel features distinct or similar to their neighbors and
thus address the over- and under-segmentation problems. We
perform experiments on five different EM datasets where
our proposed method yields better results than several strong
baselines. More importantly, by using non-local correlation,
we observe fewer false separations within one cell and fewer
false fusions between cells.

1. INTRODUCTION

Biomedical image analysis, such as cell tracking [1], neu-
roanatomy reconstruction [2], depends heavily on the quality
of cell instance segmentation. Instance segmentation [3, 4, 5,
6, 7] targets assembling pixels that belong to the same cat-
egory and simultaneously separating individual objects from
their same-category neighbors. This demand for segmenta-
tion makes it more difficult since many cells are similar and
homogeneous in the biomedical images, further leading to in-
separable cells for CNN models.

A well-adopted approach of instance segmentation for
biomedical images is based on pixel-wise classification, such
as [8, 9, 10, 11, 12, 13, 9, 14, 15, 16, 17] to outline every
instance by its boundary map prediction. This approach is
generally well-performed, but it can easily fail to produce a
good segmentation due to a small number of misclassified
pixels, such as in Figure 1. A few misclassified pixels in
(c) cause an over-segmentation problem of the cell. Besides

(a) Input (b) GT (c) Unet (d) Ours

Fig. 1: Illustration of the over-segmentation problem. GT:
ground truth segmentation. The model should overlook either
artifacts or nuclei within the neuron cell for better segmenta-
tion. Compared with Unet, our non-local correlation method
correctly removes the artifact and produces a better result.

the over-segmentation problem, under-segmentation can be
induced by false fused prediction of two adjacent cells, reduc-
ing the total number of instances by 1. Therefore, we demand
a more continuous and compact boundary map prediction to
achieve a reliable instance segmentation result.

Another prevalent type of approach follows the detect-
and-segment pipeline. The most known method, Mask-
RCNN [15], first generates many region proposals and then
the model segments for each proposal. Object detection re-
quires non-maximum suppression (NMS) to remove duplicate
proposals. However, for biomedical images, especially when
objects have irregular shapes and inconsistent sizes, Mask-
RCNN becomes problematic because there are high chances
of overlapping bounding boxes of two objects, eliminating
one among two authentic predictions. Hence, Mask-RCNN
tends to fail to predict elongated cell structures.

In this work, we propose a novel approach utilizing the
non-local correlation to learn discriminative features to ob-
tain an accurate boundary map prediction. The reason for
over-segmentation and under-segmentation is that the model
falsely identifies the similarity or dissimilarity between the
pixels. For example, as in Figure 1, an oracle model should
recognize the artifacts by inferring from the surrounding
pixels. There are studies about global [18] and local con-
straints [19] for assisting the model in identifying this similar-
ity and dissimilarity. However, these methods [20, 21, 22, 23]
implement sophisticated loss functions to supervise the learn-
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ing of the model, which makes it hard to train. Instead of
designing a new type of loss, we only use the cross-entropy
loss to train a model with a fast convergence rate. Our
approach enhances the ability of the model by incorporating
neighboring information at the level of the feature map. Since
our method operates at the feature map level, we named it
non-local correlation. The ultimate goal of our non-local
correlation is to make pixels’ features in one location either
similar or unique from other locations in the embedding.

To evaluate the efficacy of our method, we compare our
method with several strong baselines in five different EM
datasets. Overall, our method yields comparable or better
results on these datasets. By investigating the experimen-
tal results, our approach significantly reduces the extent of
over-segmentation and under-segmentation problems, thus
providing a higher quality of instance segmentation results.
Overall, we summarize our contributions as three-fold: i)
We first propose a novel non-local correlation in the EM
segmentation task to reduce segmentation errors; ii) We pro-
pose a multi-scale representation to capture the correlation
among different scales; iii) Extensive experimental results
on five EM datasets verifies the efficacy of both non-local
mechanism and multi-scale strategy.

2. APPROACH

Our model, shown in Fig. 2, adopts encoder-decoder archi-
tecture and outputs a boundary probability map whose value
is between 0 and 1. The image encoder and correlation
encoder are structurally identical but functionally different.
The feature out of the correlation encoder goes through self-
correlation calculation and correlation look-up and then input
into the correlation bottleneck with the image feature. We
then input the bottleneck output into the decoder and skip-
connected the image encoder and the decoder between every
feature map level except the last one to obtain the final pre-
diction for the boundary map.

2.1. Non-local correlation

Our non-local correlation operates at the feature map level,
measuring the similarity between every pair of locations.
Starting from an input image x, suppose the feature map out
of the image encoder F is fx ∈ Rh×w×df , and the one out-
put from the correlation encoder C is cx ∈ Rh×w×dc , where
h,w, d are the height, width, depths, respectively.
Self-correlation. Self-correlation reflects the similarity of ev-
ery pair of locations within the feature map. We calculate it by
the dot-product of feature cx and its transpose c′x ∈ Rdc×h×w,
resulting in correlation representation ĉx

ĉx =<cx, c
′
x> ∈ Rh×w×h×w. (1)

Correlation look-up. To index the correlation volume Cx :=
{ĉix}, where i is the height of the correlation pyramid, we
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Fig. 2: A. An overview of our pipeline. The input image
is fed into two encoders to generate image features and cor-
relation features. Next, we process the multi-scale correla-
tion features with the non-local mechanism to obtain the final
correlations in B. The correlation bottleneck C takes the fi-
nal multi-scale correlations and the multi-scale image features
and output representations as the input to the decoder to pro-
duce the boundary map prediction. +⃝, c⃝ correspondingly
denote element-wise addition and concatenation. p⃝ and u⃝
denote global average pooling and upsampling, respectively.

first initialize a grid circle with radius r around every location
p for correlation feature cx, therefore the points inside the
circle should be

Lr(p) = p+∆p | ∆p ∈ Z,∆p ≤ r, (2)

where p is the current location, ∆p can be any integers be-
tween −r and +r. Next, the non-local correlation is gath-
ered by indexing Cx using Lr(p), while given the mapping
function g from coordinates to partial features of correlation
representation cx, we obtain the final correlation of cx as

crx = g(cx,Lr(p)) ∈ Rh×w×(2r+1)2 . (3)

The depth of crx is (2r+1)2 since the total number of points is
the multiplication of the height and the width of the look-up
area, which are both 2r plus the center itself.
Correlation Bottleneck output. We first embed the non-
local correlation crx and the image feature fx into the same
depth, separately. Next, we concatenate the embedded fea-
ture and input it to the final bottleneck convolution to produce
a representation of the same size as fx, used in the decoder to
generate the final boundary probability map.

2.2. Multi-scale correlation representation

For the multi-scale representation calculation, we input multi-
scale image features {f1

x , f
2
x , · · · , fN

x } and the correlation
map after correlation look-up operation into the correlation
bottleneck where N is the maximum scale. For each pair of
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f i
x ∈ Rh×w×dfi and f i

c ∈ Rh×w×dci , where i ∈ [1, N ]. Each
feature will pass a corresponding two-layer encoder and be
encoded into the same dimension as the final fused feature is

hi
x = concat(Ef (f i

x), Ec(f i
c)), (4)

where Ef and Ec are two-layer encoders for the image feature
and correlation feature, respectively, and hi

x and the same size
as the image feature f i

x.
Then, the generated multi-scale features {hi} | i ∈ [1, N ]

are added to the corresponding initial image features as the
fused feature oix

oix = concat(hi
x ⊕ f i

x, u
i+1)), (5)

where ⊕ denotes the element-wise addition, and U denotes
Upsampling operation. This operation first sums up correla-
tion f i

c and image feature f i
x to the fused feature hi

x. It then
concatenates the fused feature hi with the upsampling feature
ui+1 of the first below layer U i of the current level to gen-
erate the final decoder feature of current level in the decoder.
During our experiments, we find the best number of the multi-
scale representation is three, as shown in Fig. 2.

3. EXPERIMENTS

Datasets. We compare our method with other methods in five
different EM datasets. CREMI: [24] This dataset consists of
three different volumes, i.e., CREMI A, B, and C, which are
taken from adult fruit flies, each of size 1250 × 1250 × 125
pixels, 5× 5× 5µm3 of physical size. It is worth noting that
these three datasets are remarkably different in appearance,
especially for CREMI B and CREMI C, where cells have ob-
scure boundaries and significant variations in size and shape.
For each dataset, the first 50 slices in the z dimension are used
in testing, and the last 75 in training. FIB25: [25] is of size
520 × 520 × 520, 8 × 8 × 8nm3 of physical size. It is chal-
lenging since it has plenty of small instances in every slice.
We used the first 100 slices for testing and the rest for train-
ing the baseline model. SNEMI3D: [26] This image size of
SNEMI3D is 1024× 1024× 100, 3× 3× 30nm3 of physical
size. This dataset is taken from a mouse brain and comprises
neuron cells that vary in shape and size. We used the first 30
slices and the last 70 to test/train the model.
Metrics. We used two metrics for validation - Arand Rand Er-
ror (ARAND) and Variation of Information (VOI). ARAND
is the error version of the Adjusted Rand Index [27]. One
perfect matching between prediction and ground truth has
an ARAND of 0. Conversely, ARAND of 100 indicates
that nothing is matched. VOI [28, 29] measures the con-
ditional entropy (H) between the predicted S and the GT
segmentation S⋆, it has two components: VOIsplit = 100 ×
H(S⋆|S),VOImerge = 100×H(S|S⋆). VOIsplit can be inter-
preted as the amount of over-segmentation, and VOImerge as
the amount of under-segmentation.
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Fig. 3: Qualitative results of different methods on different
datasets: The first row are raw images: SNEMI3D (left),
FIB25 (Middle), CREMI A (right). We can witness that
a small boundary error can lead to over-segmentation and
under-segmentation problems, as shown in the white bound-
ing boxes. Overall, our method produces fewer false merging
of adjacent cells than other methods. Mask-RCNN suffers in-
ferior predictions due to the cells’ irregular shapes.

Discussion of results. We show some qualitative results in
Fig. 3 and quantitative results in Table 1. Overall, we ob-
serve that the competitions among different methods are tight.
This relatively close performance largely owes to the strong
baseline of the encoder-decoder structure. Despite the close
performance, we specifically find that our non-local method
improves more on VOI metrics. These performance gains cer-
tify our assumption that using the non-local mechanism can
reduce false separations and fusions among neighboring cells.

Specifically, the performance of all models in CREMI B
and CREMI C is worse than in the other three datasets. The
difficulty of the corresponding datasets induces this perfor-
mance degeneration due to the varying cell size and unde-
sired organelle boundaries. However, among all baselines,
our non-local method is more resilient to cases where base-
line methods fail. This robustness verifies that introducing
a non-local correlation mechanism can erase some negative
impact on the dataset, resulting in better segmentation. In
addition, the inferior performance of Mask-RCNN can be at-
tributed to the irregular and diverse morphology of the cells,
making the region proposal less appropriate, which is a vital
step in Mask-RCNN. Therefore, Mask-RCNN needs to han-
dle flawed region proposals, which further leads to unfaithful
and fragmented predictions. This tendency is apparent when
long and irregular cells are segmented. Overall, our method
performs better than the other baselines, leveraging the com-
pactness of the cells with fewer over-or-under segmentations.
Error map of segmentations. Compared with PraNet, our
method achieves slightly better results in terms of boundary
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Metric Method Datasets
CREMI A CREMI B CREMI C FIB25 SNEMI3D

ARAND↓

Unet 17.84 44.99 38.62 8.41 28.64
FusionNet 14.79 45.08 34.77 6.73 25.15

Mask-RCNN 47.39 66.87 69.30 46.24 86.48
Unet++ 15.23 42.40 39.70 7.27 26.38
Unet 3+ 14.31 46.29 39.17 7.77 29.25
PraNet 10.08 37.40 35.15 4.51 24.80
Ours 10.32 36.88 23.55 3.57 22.42

VOIsplit ↓

Unet 8.65 10.13 8.44 8.79 10.46
FusionNet 8.76 14.23 7.63 9.29 7.85

Mask-RCNN 24.21 65.99 43.46 21.71 40.86
Unet++ 5.24 8.22 6.52 5.99 7.22
Unet 3+ 4.67 7.57 8.84 5.20 7.34
PraNet 2.94 5.34 6.51 6.34 4.97
Ours 1.73 3.88 4.41 5.47 3.73

VOImerge ↓

Unet 16.47 89.58 57.67 10.91 32.22
FusionNet 16.13 85.99 78.04 12.50 38.08

Mask-RCNN 50.09 128.78 138.54 69.79 209.70
Unet++ 16.22 91.24 64.53 7.59 23.51
Unet 3+ 16.85 91.22 48.91 6.59 19.98
PraNet 14.97 89.17 52.12 6.78 24.19
Ours 13.94 78.00 46.35 7.05 20.05

Table 1: Quantitative comparisons with different
methods on five datasets.

Datasets Setting Metrics
ARAND↓ VOIsplit ↓ VOImerge ↓

CREMI A
Scale 1 12.99 3.00 14.84
Scale 2 12.17 2.12 14.81
Scale 3 10.32 1.73 13.94

CREMI B
Scale 1 38.84 51.30 82.00
Scale 2 37.68 4.95 81.99
Scale 3 36.88 3.88 78.00

CREMI C
Scale 1 24.51 5.80 49.63
Scale 2 24.50 5.01 48.12
Scale 3 23.55 4.41 46.35

FIB25
Scale 1 6.08 5.38 8.12
Scale 2 5.10 6.12 8.49
Scale 3 3.57 5.47 7.05

SNEMI3D
Scale 1 24.01 5.21 25.32
Scale 2 22.89 4.32 24.20
Scale 3 22.42 3.73 20.05

Table 2: Ablation studies on differ-
ent numbers of the multi-scale rep-
resentation on different datasets. we
fix the radius parameter at one and
conduct all the experiments.

Metric Setting Datasets
CREMI A CREMI B CREMI C FIB25 SNEMI3D

ARAND↓

Radius 1 10.32 36.88 23.55 3.57 22.42
Radius 2 9.98 33.04 29.70 4.27 20.31
Radius 4 13.31 39.36 31.97 3.77 22.95
Radius 6 13.97 41.15 22.37 3.51 16.98
Radius 8 13.23 42.40 29.15 3.51 21.80

VOIsplit ↓

Radius 1 1.73 3.88 4.41 5.47 3.73
Radius 2 2.10 4.24 6.56 5.20 3.83
Radius 4 2.44 5.82 6.05 5.59 5.22
Radius 6 1.97 5.17 8.18 5.20 6.34
Radius 8 1.94 4.54 5.51 5.34 6.47

VOImerge ↓

Radius 1 13.94 78.00 46.35 7.05 20.05
Radius 2 12.91 71.37 59.75 7.83 20.02
Radius 4 17.22 90.13 64.84 6.50 23.51
Radius 6 17.85 92.12 44.98 6.81 19.98
Radius 8 16.97 99.57 57.72 6.78 23.49

Table 3: Ablation studies on different
radii, where the number for multi-scale
representation is 3 for these experiments.

(a) Raw image

(b) GT

(c) PraNet

(d) Ours
(e) Error map

Fig. 4: Error map between the state-of-the-art and our method
(color indicated: see the color bar inside e). Compared to
PraNet, our method is more robust in cases such as organelles
with a clear boundary but should be overlooked to obtain a
better segmentation. Note that the images are re-scaled for
visualization purposes. Best view zoomed.

prediction, associated with fewer false fusions of cells (under-
segmentation) and more accurate prediction within individual
cells (less over-segmentation). We show the detailed error
map of a problematic input image constructed between the
segmentation result of PraNet and our method in Fig. 4. To
sum up, our approach to learning non-local correlation signif-
icantly helps to reduce over-segmentation.
Ablation study on numbers of multi-scale representation.
We also conduct an ablation study on the number of multi-
scale representations for our method. The results are shown
in Table 2. Due to the existence of a memory-consuming self-
correlation operation, we limit our scale in {1, 2, 3}, where
one means we only use the last layer of the encoder, 2 rep-
resents the last two layers of the encoder, 3 represents the
last three layers of the encoder. If a full-scale correlation is
urged, we would have to downsample the larger layers and
upsampling back to their original size after calculating self-
correlation to address the memory issue. Despite this minor

limitation on the number of scales, we can observe a reason-
able gain from our multi-scale correlation design.
Ablation study on radius. To evaluate the sensitivity of
the parameter radius r, we test our method with different
radii. The result is shown in Table 3. Best performances are
achieved in different radii in different datasets. Recall that
our non-local correlation is learned from embedding space,
which gathers information from other locations for every lo-
cation to make it either heterogeneous or homogeneous. For
datasets, typically CREMI A with fewer variations on the ap-
pearance of cells (shape, size, or texture), small radii are ef-
ficient enough to capture the correlation within the encoded
features since larger radii may lead to faithless correlations.
For datasets that are significantly dissimilar in cells, we have
to choose larger radii, such as SNEMI3D. Finding an optimal
radius might require some fine-tuning experiments. We fixed
the radius as 1 in comparison with baseline methods.

4. CONCLUSION

Considering the nature of Electron Microscopy images con-
taining many objects with irregular shapes and varied sizes,
we propose to fully exploit the non-local correlation of the
feature map in the embedding space to take the single loca-
tion and multiple locations around it into account for making
predictions. Our correlation mechanism enables the model
to learn from neighbors around one location to distinguish
or homogenize itself to its surroundings. We also find that
Mask-RCNN may not be adequate to process such images
with many instances that have irregular and inconsistent
shapes since NMS tends to erase valid region proposals,
resulting incomplete segmentation.

Our approach yields state-of-the-art results in five differ-
ent EM datasets compared with other baselines. More im-
portantly, as we discussed, we observe fewer false splittings
within the same cell and fewer merges between cells in our
predicted segmentation, which is crucial to separate cells.
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5. COMPLIANCE WITH ETHICAL STANDARDS

Here, we propose a multi-scale non-local correlation mech-
anism on the feature map in the embedding space to boost
the medical image representations and thus address the over-
segmentation and under-segmentation problems. To best of
our knowledge, our method may not raise any ethical issues.

6. ACKNOWLEDGEMENTS

This research is supported by NIH BRAIN initiative grants
RF1MH123402 and RF1MH124611. This article solely re-
flects the opinions and conclusions of its authors and not the
funding agents.

7. REFERENCES

[1] Y. Meirovitch, L. Mi, H. Saribekyan, A. Matveev, D. Rolnick,
and N. Shavit, “Cross-classification clustering: An efficient
multi-object tracking technique for 3-d instance segmentation
in connectomics,” in CVPR, 2019.
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