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Environmental microbial gene expression patterns remain largely unexplored, particularly
at interannual time scales. We analyzed the variability in the expression of marker genes
involved in ecologically relevant biogeochemical processes at a temperate Atlantic site
over two consecutive years. Most of nifH transcripts, involved in nitrogen (N) fixation,
were affiliated with the symbiotic cyanobacterium Candidatus Atelocyanobacterium
thalassa, suggesting a key role as N providers in this system. The expression of nifH and
amoA (i.e., marker for ammonia oxidation) showed consistent maxima in summer and
autumn, respectively, suggesting a temporal succession of these important N cycling
processes. The patterns of expression of genes related to the oxidation of carbon
monoxide (coxL) and reduced sulfur (soxB) were different from that of amoA, indicating
alternate timings for these energy conservation strategies. We detected expression of
alkaline phosphatases, induced under phosphorus limitation, in agreement with the
reported co-limitation by this nutrient at the study site. In contrast, low-affinity phosphate
membrane transporters (pit) typically expressed under phosphorus luxury conditions,
were mainly detected in post-bloom conditions. Rhodobacteraceae dominated the
expression of soxB, coxL and ureases, while Pelagibacteraceae dominated the
expression of proteorhodopsins. Bacteroidetes and Gammaproteobacteria were major
contributors to the uptake of inorganic nutrients (pit and amt transporters). Yet, in
autumn, Thauma- and Euryarchaeota unexpectedly contributed importantly to the
uptake of ammonia and phosphate, respectively. We provide new hints on the active
players and potential dynamics of ecologically relevant functions in situ, highlighting
the potential of metatranscriptomics to provide significant input to future omics-driven
marine ecosystem assessment.
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INTRODUCTION

The analysis of marine protein-coding genes has undergone rapid expansion following the
development of meta-omics technologies and its application to oceanic environments, from
local to large-scale ocean surveys (Gilbert and Dupont, 2011; Moran et al., 2013; Salazar
et al., 2019). The study of this vast repertoire of microbial functional genes is providing
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new perspectives on the ocean biogeochemistry, including the
discovery of novel enzymes, pathways, and key microbial players
(Zehr and Kudela, 2011; Ferrera et al., 2015). In this regard, the
identification of marker genes, highly specific for some metabolic
functions, has been key to address the abundance, diversity
and geographic extent of microbes involved in biogeochemically
relevant processes, such as nitrification (amoA genes, Francis
et al., 2005; Sintes et al., 2013), nitrogen fixation (nifH genes;
Zehr et al., 2003), or carbon monoxide oxidation (cox genes;
King and Weber, 2007).

As compared to the oceanic distribution of these functional
marker genes (as targeted by metagenomics), our knowledge
on their gene expression patterns has grown at a slower
pace. In one the first applications of metatranscriptomics to
aquatic environments, some biogeochemically relevant processes
such as bacterial assimilation of C1 compounds and the
oxidation of sulfur (S) compounds were found to be active at
a coastal Atlantic salt marsh (Poretsky et al., 2005). Related
with C1 metabolism, carbon monoxide (CO) is an important
greenhouse gas, which in marine systems is mainly produced by
photochemical degradation of organic matter. Thus, the uptake
of this compound by marine bacteria can substantially reduce its
oceanic emissions to the atmosphere (King and Weber, 2007).
Even if the marker genes for CO oxidation (coxL) are abundant
in the environment (Cordero et al., 2019), reports of their
expression in marine waters are still scarce (Georges et al., 2014).
Also linked to climate, dimethylsulfoniopropionate (DMSP) is
a source of C and reduced S for marine microorganisms, and
the precursor of the climate-cooling gas DMS (Yoch, 2002).
While the production of DMS from DMSP was first described
in Rhodobacteraceae, other key players in this process, such as
some members of Gammaproteobacteria, have been identified by
experimental metatranscriptomics (Vila-Costa et al., 2010).

In the context of the nitrogen (N) cycle, studies targeting
the functional marker genes amoA (for ammonia oxidation)
and nifH (for nitrogen fixation) have drastically increased
our knowledge on the magnitude of these two processes in
the ocean. In the former case, the sequencing of some of
the first marine metagenomes retrieved amo sequences of
archaeal origin (Venter et al., 2004), challenging the previous
assumption that this function was exclusively carried out by a
few members of Gamma- and Betaproteobacteria (Ward et al.,
2007). Subsequent studies have found that Archaea actually
dominate the oxidation of ammonia in the ocean, expanding
the geographical distribution of this process to the extensive
mesopelagic and bathypelagic realms (Wuchter et al., 2006; Sintes
et al., 2013, 2016). In the second case, biological N fixation, which
reduces atmospheric N2 to biologically available ammonium,
supplies this essential nutrient to aquatic ecosystems. First
thought to be dominated by the filamentous bloom-forming
cyanobacteria Trichodesmium, this process is now known to
be mediated mainly by widespread unicellular N2 fixers in the
open ocean (such as Candidatus Atelocyanobacterium thalassa
and Crocosphaera watsonii, Zehr, 2011). Additionally, there
is evidence of heterotrophic bacteria involved in this process
(Bombar et al., 2016). These findings have changed the size class
of the dominant diazotrophs in the ocean, with implications in

the fate of fixed N in marine food webs. Determining the spatial
coverage and temporal activity of these widespread, abundant
unicellular diazotrophs would be a key step toward filling the
large gaps in our oceanic global N2 fixation estimates.

In general, marine metatranscriptomic studies have helped
uncover the key microbial players involved in different
biogeochemical processes, and where in the ocean they become
active. Yet, identifying the temporal patterns in the expression of
globally relevant functional genes remains one of the main gaps in
knowledge (Salazar et al., 2019). While there are evidences of diel
oscillations in marine microbial expression patterns (Poretsky
et al., 2009b; Ottesen et al., 2014; Aylward et al., 2015), few
studies have addressed gene expression patterns at longer time-
scales (e.g., monthly, inter-annually; but see Gifford et al., 2014;
Hollibaugh et al., 2014). Here, we carried out an analysis of
a metatranscriptomic dataset obtained over two consecutive
years in surface waters at a temperate mid-shelf station in the
southern Bay of Biscay (NE Atlantic). Our aims were (i) to
identify key biogeochemical pathways that were active at the
study site by following the expression dynamics of functional
marker genes, (ii) to analyze the composition of transcriptionally
active taxa involved in these functions, and (iii) to understand
the variability in their expression levels under environmental
conditions ranging from oligotrophic to mesotrophic, as typically
found in temperate waters over the seasonal cycle.

MATERIALS AND METHODS

Sample Collection
Eight metatranscriptomic samples were collected in spring (April
and/or May), summer (July) and autumn (November) over
two consecutive years at the station Radiales E2 Gijón/Xixón
(43.67◦N, 5.58◦W) in the Southern Bay of Biscay. For consistency
with previous studies on the same dataset (e.g., Alonso-Sáez
et al., 2015, 2018), a sample collected in early May in 2012
(2nd May) has been designated “April 2012,” to distinguish
it from a second sample taken in late May (23rd May, see
Supplementary Table S1). Ancillary variables (temperature,
salinity, chlorophyll a, bacterial cell abundance and heterotrophic
prokaryotic production) were measured as explained in Arandia-
Gorostidi et al. (2017). Samples for RNA analysis (from 4.5 to
11 L) were collected from a depth of 5 m and immediately
filtered using 3-µm pore-size polycarbonate pre-filters and 0.22-
µm pore-size polycarbonate filters (GTTP, Millipore). The 0.22-
µm filters were placed in Whirl-Packs containing 2 mL of RLT
buffer (Qiagen, Valencia, CA), flash frozen in liquid nitrogen, and
stored at −80◦C. Time from sample collection to flash freezing
of the filters ranged between 15 and 20 min. Samples were
taken around midday (1–3 h after noon), to minimize biases
in the interpretation of the results due to differences in diel
transcription patterns (Poretsky et al., 2009b).

RNA Processing
RNA was extracted as previously detailed (Poretsky et al., 2009a).
Briefly, filters were shattered with a mallet, vortexed in falcon
tubes containing Power Soil beads (Mobio), and the lysate was
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mixed with 70% ethanol (1:1 volume). RNA extractions were
carried out with the RNeasy Mini Kit (Qiagen). RNA was
treated with Turbo DNase (Ambion) and the ribosomal RNA
was depleted using the mRNA-only isolation kit (Epicenter),
the MicrobeExpress, and MicrobeEnrich kits (Ambion). The
enriched mRNAs were linearly amplified using the Message
Amp II-Bacteria kit (Ambion), reverse transcribed to double-
stranded complementary DNA (cDNA) with the Universal
Riboclone cDNA synthesis system (Promega) and purified
with the QIAQuick PCR purification kit (Qiagen). The eight
cDNA samples were subjected to single-end sequencing in an
Illumina MiSeq run.

Bioinformatics Analysis
After an initial quality trimming of the reads, ribosomal RNAs
(rRNAs) were removed from the dataset after identifying them by
a BLASTn search using a SILVA reference database. The sequence
of phiX174, used as a control in Illumina platforms, was also
removed prior to further analyses. The remaining non-rRNA
sequences were annotated using two different workflows. First,
for a preliminary identification of functional marker protein-
coding genes and top-hit taxonomic bins, all putative mRNAs
were queried (BLASTx, bitscore cutoff ≥40, Altschul et al., 1990)
against the National Center for Biotechnology Information’s
(NCBI) RefSeq database (version 63, January 2014), which
includes proteins from viruses and all three domains of life.
The annotations of the BLASTx top-hits were screened by text-
based queries to search for specific functional genes following
Gifford et al. (2013). Next, a subset of mRNAs representing an
even coverage among samples (201510 sequences each) were
queried by BLASTx (bitscore cutoff ≥40) against a custom RefSeq
database where peptides of interest were reannotated using
hidden Markov models run with HMMER3 (Eddy, 2008). The list
of genes selected fulfilled two criteria: (i) high specificity for the
corresponding function of interest (to avoid targeting genes with
ambiguous functions or potentially involved in several metabolic
processes) and, (ii) being represented by a single protein
family easily recognizable by bioinformatic methods. Based on
this selection, the protein families TIGR01287, TIGR01792,
TIGR04486, TIGR01115, and TIGR00842 were used to search
NifH, UreC, SoxB, PufM, and BCCT, respectively. PF05787,
PF09423, and PF01384, were used for PhoX, PhoD, and Pit
transporter searches, respectively. Finally, PF01315, PF00909,
PF12942, and PF01036 were used for CoxL, amt transporters,
archaeal AmoA and proteorhodopsin (PR) searches, respectively.
TIGR03080 was used to search for bacterial AmoA, but no hits
were found in our metatranscriptomes. A PFAM or TIGRFAM
hit was considered valid if its score was equal to or bigger than
the recommended gathering score for the hidden Markov model.
The label of the peptides in the RefSeq sequence file was modified
to accommodate the new annotation based on hits to protein
families. In the case of CoxL, we additionally looked for the
signature sequence “AYxCSFR” at the active site of the enzyme, a
motif present only in Form I Carbon Monoxide Dehydrogenases
(CODH). Thus, CODH Form II enzymes, which may not be
primarily involved in CO oxidation (King and Weber, 2007),
were not targeted in the analyses. In the case of the Pit and PR,

a preliminary search against PATRIC protein families (Wattam
et al., 2013) identified a substantial number of hits of euryarchaeal
origin. Thus, euryarchaeal peptides were incorporated to the
protein database as they were absent from RefSeq. The microbial
taxa involved in each marker gene expression were identified
using MEtaGenome Analyzer (MEGAN, Huson et al., 2007), to
obtain consensus taxonomic assignments.

RESULTS AND DISCUSSION

The temperate station of study (E2-Gijón/Xixón, 100 m
maximum depth) is a long-term monitoring site (Morán et al.,
2015) located ca. 13.5 km off the Spanish coast. This site is
characterized by a late winter/early spring phytoplankton bloom,
followed by summer thermal stratification and autumn re-
mixing of the water column, like most of the northern Iberian
Peninsula continental shelf (Bode et al., 1996; Morán et al.,
2015). Samples for mRNA analysis were collected at different
seasonal periods over two consecutive years, with the aim
of covering a wide range of oceanographic conditions, from
oligotrophic (summer stratification) to mesotrophic (mixing
periods, Figure 1). Summer and autumn samples differed
substantially in temperature and chlorophyll a concentration
over the 2 years but shared relatively low levels of cell-
specific heterotrophic bacterial production (Figure 1). Bacterial
production was maximum in spring, concomitant with a
declining trend in chlorophyll a concentration, characteristic
of post-bloom scenarios (Figure 1). However, the two spring
periods analyzed showed important differences in terms of
bacterial abundance and cytometric profiles. An unusually low
abundance of low-nucleic-acid cells in situ was found in May
2012 (Figure 1), reaching minimum levels in the first 10-years of
the time-series at the study site (Morán et al., 2015). This change
was also reflected in the taxonomic composition of bacterial
communities in spring 2012, clearly differing from the two
previous spring periods (Alonso-Sáez et al., 2015). This suggests
that the spring samples collected in 2012 were rather atypical
in environmental and/or biotic conditions, which resulted in
a large year-to-year variation in the expression profiles in that
season. In this line, the relative contributions of the 50 top-
hit taxonomic bins to the transcript pool were highly correlated
in samples taken in autumn or summer, but not in spring
(Supplementary Figure S1).

From the 4.26 million reads identified as non-rRNA
transcripts in the metatranscriptomes, 61% had significant
hits in the RefSeq protein database (Supplementary Table
S1). In a preliminary BLASTx search, several genes involved
in ecologically relevant metabolic pathways (Moran, 2008)
were detected at various expression levels in our dataset
(Supplementary Table S2). We subsequently focused on a
reduced set of well-studied marker genes, highly specific for
environmentally relevant functions (Ferrera et al., 2015),
and represented by single protein families, which would
allow a robust method of detection (following Palovaara
et al., 2014). These marker genes belonged to six main
categories: photoheterotrophy (PR, pufM), oxidation of
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FIGURE 1 | Monthly data at the surface of the study station (E2-Gijón/Xixón)
from March 2011 until December 2012 for (A) surface temperature (closed
circles) and salinity (open circles); (B) Chlorophyll a concentration (closed
circles) and cell-specific bacterial heterotrophic production (open circles);
(C) Abundance of low- nucleic acid (LNA, closed circles) and high-nucleic acid
(HNA, open circles) cells. Months when samples for metatranscriptomic
analyses were collected appear highlighted in colors (green for spring, red for
summer and blue for autumn).

inorganic compounds (coxL, amoA, and soxB for carbon
monoxide, ammonia and sulfide/thiosulfate oxidation,
respectively), nitrogen acquisition (nifH, ureC, and amt, for
nitrogenases, ureases and ammonia membrane transporters,
respectively), phosphate acquisition (the extracellular alkaline
phosphatases phoX and phoD, and the low-affinity phosphate
membrane transporter pit) and reduced S acquisition (the
Betaine/Carnithine/Choline BCCT family transporter involved
in DMSP incorporation, Sun et al., 2011).

Due to our limited sequencing depth, we could not
appropriately capture rare transcripts. Yet, the coverage
should be enough for a fair representation of frequently
transcribed genes from relatively abundant taxa. Most of the
main representatives in the metatranscriptomes were dominant
members of surface bacterial communities in temperate
waters (i.e., Pelagibacteraceae, SAR116, Rhodobacteraceae,
Flavobacteriaceae, etc., Supplementary Figure S1). Some of
these taxa showed recurrent seasonal dynamics at station E2
(e.g., Prochlorococcus, Rhodobacteraceae), while the dominant

taxa affiliated with Pelagibacteraceae did not show any significant
seasonality (Alonso-Sáez et al., 2015). A drastic decrease in the
abundance of Pelagibacteraceae was found in samples collected
in spring 2012 (Alonso-Sáez et al., 2015), consistent with the
atypical cytometric profiles found in those samples (Morán et al.,
2015). This marked change in composition was mirrored by
substantial changes in the expression of some marker genes,
such as PRs (Figure 2). The PR gene was mainly expressed
by Pelagibacteraceae and their transcripts showed minimum
levels in spring 2012, when its expression was dominated by
Gammaproteobacteria (including Thioglobus), Bacteroidetes
and Euryarchaeota (Figure 3). We also found a significant
correlation between PR transcripts and the abundance of
SAR11 in situ (determined by 16S rRNA amplicon sequencing
in Alonso-Sáez et al., 2015, Spearman Rho = 0.83, p = 0.015,
n = 8). Similarly, in coastal waters of the San Pedro Channel,
PR gene transcripts were generally dominated by SAR11 except
for a sample collected during a spring algal bloom, where
Gammaproteobacteria dominated PR transcripts (Sieradzki
et al., 2018). Thus, our results support the idea that community
turnover strongly impacts some gene transcriptional patterns
(Salazar et al., 2019). Additionally, the regulation of PR genes is
likely complex at the community level, as PR have been found to
be constitutively expressed (Giovannoni et al., 2005; Riedel et al.,
2010) or regulated in response to light, nutrients or physiologic
conditions in different isolates (Gómez-Consarnau et al., 2007,
2016; Steindler et al., 2011; Akram et al., 2013) and in the
environment (Lami et al., 2009). Here, we found a marginally
significant negative correlation between PR expression levels
and cell-specific bacterial production (Spearman Rho = −0.71,
n = 7, p-value = 0.088), supporting the view that the expression
of PRs may decrease under conditions of high C bioavailability
(McCarren et al., 2010).

In comparison to PRs, the expression of the marker gene
pufM, encoding the M subunit of the Aerobic Anoxygenic
Photosynthesis (AAP) reaction-center complex was very low (at
least two orders of magnitude below PRs, Figure 2). However,
the quantification of AAP activity may have been underestimated
in our dataset as samples were always collected around midday
and the expression of puf genes takes place mostly during the
night (Wagner-Döbler and Biebl, 2006; Jeanthon et al., 2011;
Voget et al., 2015). We did not recover any pufM transcripts in
autumn (November), a season when the abundance of AAPs has
been described to rapidly drop in Mediterranean waters, likely
associated with decreases in temperature and light availability
(Ferrera et al., 2014).

With regards to the N cycle, a temporal succession of the
key processes nitrogen fixation and ammonia oxidation was
suggested by the dynamics of nifH and amoA genes (Figure 2).
In our dataset, most nitrogenase related transcripts (96%)
were affiliated with the unicellular symbiotic cyanobacterium
Can. A. thalassa (previously UCYN-A, Thompson et al., 2012),
sharing 93–100% identities at the nucleotide level. A previous
study had also detected UCYN-A in summer at a nearby
marine site, by using a double Catalyzed Reporter Deposition -
Fluorescence In Situ Hybridization (CARD-FISH, Cabello et al.,
2016). This taxon has been recognized as one of the most
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FIGURE 2 | Temporal dynamics in expression patterns of key marker genes for photoheterotrophy (proteorhodopsins and aerobic anoxygenic photosynthesis), C1

metabolism (oxidation of carbon monoxide), N cycle (ammonia monooxygenase, nitrogenase, ammonia transporter and urease), S cycle (sulfur oxidation and DMSP
uptake), and P cycle (low-affinity phosphate transporter and extracellular phosphatases) over two consecutive years. The marker genes analyzed for each case
appear in each individual plot. For each marker gene, the normalized abundance of transcripts has been calculated as Reads per Kilobase Million (RPKM).

abundant nitrogen-fixing organisms in the surface open ocean
(Martínez-Pérez et al., 2016), while some studies have shown a
more widespread distribution, including deeper water layers and
coastal environments (Moisander et al., 2010). As N fixation may
shift the communities to P limitation, documenting the relevance
of this process has important biogeochemical implications. At

the station E2-Gijón/Xixón, evidence for N and P co-limitation
of heterotrophic prokaryotes has been suggested for most of
2012 (with nitrate and phosphate concentration below 1 and
0.1 µmoL L−1, respectively, Morán et al., 2018). Yet, these
conditions were not restricted to the summer months, when we
detected nifH transcriptional activity, but comprised from May
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FIGURE 3 | Relative contribution of taxa involved in the expression of each of the marker genes analyzed in the spring (April, May), summer (July) and autumn
(November) samples of two consecutive years. Consensus taxonomic bins have been identified using MEGAN software. Only genes which showed active
expression in more than 50% of the samples are shown.

through November. In general, the response ofCan. A. thalassa to
nutrient availability in terms of N fixation and nifH transcription
has shown mixed responses, with no clear pattern (Turk-Kubo
et al., 2012; Krupke et al., 2015). In a recent study, where the
abundance of UCYN-A1 was analyzed in surface samples from
the global ocean, no environmental factor clearly explained their
distribution, but it was suggested that light availability may limit
its growth (Cabello et al., 2016). Here, we found evidence that
Can. A. thalassa were active in summer in mid-shelf waters,
while supporting the observations that, in contrast to other
unicellular diazotrophic cyanobacteria, they fix N during the day
(Muñoz-Marín et al., 2019).

In contrast to the nifH expression dynamics, transcripts
of another key enzyme of the N cycle was almost only
found in autumn: the ammonia monooxygenase (amo) involved
in archaeal nitrification (Wuchter et al., 2006). Interestingly,
recurrent peaks of ammonia-oxidizing archaea have been found
in autumn and winter in other coastal systems (Galand et al.,
2010; Pitcher et al., 2011). While the ultimate reasons for
such seasonal patterns remain unclear, the combination of
temperature, nutrient availability, light and more recently,
ROS sensitivity (Tolar et al., 2016), have been suggested as
possible drivers of their dynamics. Presumably to fuel their
nitrifying activity, Thaumarchaeota contributed significantly

to the uptake of ammonia through the amt membrane
transporter in autumn (up to 74% of total amt transcripts,
Figure 3). Similarly, N acquisition proteins were dominant in
thaumarchaeal transcripts in Sapelo Island waters (Hollibaugh
et al., 2014). The high normalized transcript abundance of
amoA, as compared to other genes (e.g., nifH, soxB, coxL)
indicates a very active transcriptional activity ofThaumarchaeota.
This is remarkable given their low abundance in situ (on
average only ca. 1% of cells as determined by CARD-FISH;
Alonso-Sáez et al., 2015). These results agree with previous
studies where Thaumarchaeota were also highly represented
at the transcriptional level despite sustaining low-abundant
populations (Church et al., 2010; Gifford et al., 2011), and
suggests a key role for these microorganisms in the N
biogeochemistry also in temperate systems.

While polar archaea can fuel nitrification by using urea
(Alonso-Sáez et al., 2012), isolate-based studies have shown
that the capability to use N from urea is not universal within
Thaumarchaeota (Walker et al., 2010; Qin et al., 2014; Bayer
et al., 2016). We did not detect transcripts of archaeal ureases
at the E2 station, in agreement with the finding that ureases
are more abundant in polar than temperate Thaumarchaeota
(Tolar et al., 2016). However, a diversity of bacterial ureases
was actively expressed, consistent with the idea that a large
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diversity of bacteria can use this compound (Collier et al.,
2009; Solomon et al., 2010). Most ureolytic bacteria were
affiliated with Rhodobacterales and other Alphaproteobacteria,
but occasional active expression of Gammaproteobacteria and
cyanobacteria was also found (Figure 3). Prochlorococcus
was actively expressing ureC genes and amt transporters in
autumn, in line with results from transcriptomic studies of the
model strain Prochlorococcus sp. MED4, which expressed both
mechanisms of N acquisition simultaneously (Zinser et al., 2009).
While the relative abundance of ureC transcripts was lower than
the widespread ammonia transporter amt, it is still remarkable
that the temporal dynamics of both transcripts was largely similar
(Figure 2). This suggests that, from the temporal perspective,
both substrates can be simultaneously incorporated by coastal
marine bacteria as N sources.

In addition to nitrifiers, some marine microbes can oxidize
other widespread substrates as an alternative energy source, such
as carbon monoxide (CO) and inorganic S compounds. These
processes were targeted by the marker genes encoding the CO
dehydrogenase large subunit (coxL) and the sulfate thiohydrolase
(soxB) of the Sox multi-enzyme pathway. Rhodobacterales were
major contributors to the transcript pool of both soxB and coxL
(Figure 3), confirming the view that members of this clade are
central to the pelagic S cycling and CO metabolism (Buchan
et al., 2005; Wagner-Döbler and Biebl, 2006). Transcripts
of coxL and soxB genes showed very different dynamics as
compared to amoA, suggesting a different temporal partitioning
of these energy-conservation strategies (Figure 2). The use of the
supplementary energy gained by CO oxidation has previously
been described as a strategy for coping with nutrient-poor
conditions in Rhodobacteraceae (Moran et al., 2004), but the
energetic benefits of oxidizing CO so far remain unclear (Cunliffe,
2013; Giebel et al., 2019). Here, we found an inverse relationship
between coxL expression and chlorophyll a concentration
(Spearman Rho = −0.738, p = 0.046, n = 8) as a proxy for trophic
status, in agreement with the idea that bacteria can use CO to
obtain extra energy under substrate limiting conditions.

Related with S metabolism, the expression of a DMSP
transporter (BCCT) peaked both years in the phytoplankton
decay period, characterized by potentially high availability of
DMSP released from microalgae (Yoch, 2002). While most of the
transcripts were not confidently assigned to any specific bacterial
taxon, Gammaproteobacteria contributed ca. 20% of BCCT
transporter transcripts, some of them identified as HIMB55, a
member of the OM60/NOR5 clade (Figure 3). Previous results
using microautoradiography combined with FISH have shown
that a taxonomically diverse suite of microbes is potentially
involved in DMSP uptake, including some unidentified
Gammaproteobacteria (Vila et al., 2004; Malmstrom et al., 2005;
Motard-Côté et al., 2012). Our results by metatranscriptomics,
together with those of Vila-Costa et al. (2010) support this
view, and identified the gammaproteobacterium HIMB55 and
Rhodobacterales as potentially active consumers.

Finally, regarding the phosphorus (P) cycle, a number of
mechanisms for the acquisition of this element were analyzed.
As P is a key component of cell macromolecules, prokaryotes
have developed different strategies to incorporate it, such as the

production of extracellular alkaline phosphatases to scavenge Pi
from polymers. At least three prokaryotic alkaline phosphatase
gene families have been described (phoA, phoD, and phoX), which
differ in substrate specificity and requirements of specific metal
ions. The two most highly expressed extracellular phosphatases
in marine waters are PhoD and PhoX (Luo et al., 2009;
Sebastián and Ammerman, 2009), while the most classical PhoA
is mainly intracellular, and likely playing a role in internal
organophosphate hydrolysis. We found maximum abundance of
both phoD and phoX transcripts in summer 2011. In contrast, the
low-affinity P transporter pit clearly showed different dynamics,
likely reflecting P availability conditions at the study site (Morán
et al., 2018). As found elsewhere (Luo et al., 2009), most phoD
and phoX transcripts remained uncharacterized at the taxonomic
level (Figure 3), while Gammaproteobacteria and Bacteroidetes
dominated pit transcripts. These groups include copiotrophic
taxa with mechanisms of luxury P acquisition to meet their high
demands for cellular energetics and growth. Thus, the dynamics
of the pit transporter is likely associated with the presence of these
taxa typically abundant in post-bloom conditions. Interestingly,
in autumn, some picoeukaryotes (mainly Ostreococcus) and
Euryarchaeota, an ecologically significant group with yet poorly
known metabolic features (Zhang et al., 2015), jointly contributed
more than 50% of pit transcripts, indicating their relevance in
P cycling at that time of the year (Figure 3). Thus, our results
indicate a so far unrecognized important role in nutrient cycling
for Archaea in temperate waters. Often disregarded because of
their low contribution to total prokaryotic abundance in surface
waters, they may also represent key players in the biogeochemical
cycling of coastal environments.

In summary, we have found evidence of active expression
of diagnostic genes of some key microbial processes, such as
nitrogen fixation, nitrification and carbon monoxide oxidation
at a mid-shelf temperate site, which showed contrasting and
occasionally recurrent patterns in their temporal dynamics. This
suggests that the associated biogeochemical activities are liable
to be affected by seasonally changing environmental conditions.
We confirmed a prominent role of Thaumarchaeota in ammonia
oxidation, Rhodobacterales in the use of alternative energy
conservation strategies (CO and reduced sulfur oxidation) and
obtained new hints into the microbial taxa actively involved in
other biogeochemical processes in coastal shelf waters, such as
Can. A. thalassa in nitrogen fixation, OM60/NOR5 in DMSP
uptake, and Euryarchaeota and Ostreococcus in P cycling.
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