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Editorial on the Research Topic

Towards the Next Generation of Deep Brain Stimulation Therapies: Technological

Advancements, Computational Methods, and New Targets

Deep Brain Stimulation (DBS) has matured into a staple of modern therapeutics for movement
disorders and is considered a promising tool toward the treatment of psychiatric conditions
(Vedam-Mai et al., 2021). More importantly, DBS has been the engine propelling the development
of a diverse ecosystem of technological innovations, ranging from surgical navigation systems
that incorporate connectome data (Li et al., 2020) to algorithms that predict the therapeutic
outcomes of brain stimulation (Gonzalez-Escamilla et al., 2019; Reich et al., 2019), and implantable
neurostimulators that integrate chronic monitoring and real-time modulation of neural activity
(Stanslaski et al., 2018; Topalovic et al., 2020).

With the wealth of technological advancements accrued in recent years, two key questions
have rapidly gained interest: (1) How do stimulation targets and settings affect the therapeutic
efficacy of DBS? and (2) How can weminimize the burden associated with DBS programming while
maximizing the clinical efficacy? In this Research Topic we gathered original research studies from
experts in the field who addressed these questions and provided cutting-edge solutions toward the
next generation of DBS therapies.

Despite advancements in neuro-navigation and planning, the decision about
precisely where to stimulate (i.e., which electrode contact should be activated on a
DBS array?) remains challenging, in part because intraoperative feedback on lead
placement often relies on expert interpretation of intra-operative multiunit recordings.
To cope with this limitation, Ozturk et al. reported a double-blinded pilot study that
showed the potential of novel intra-operative analyses based on local field potentials.
The authors demonstrated that the analysis can be done online in the operating
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room and enhanced the therapeutic outcomes of DBS through
improved target localization compared to current methods using
multiunit recording. Li andMcConnell reported interesting work
in rats that mapped the heterogeneity of the electrophysiology in
the substantia nigra (SNr) and the ventral tegmental area, which
are promising new targets for DBS. The authors reported the
existence of distinct electrophysiological features in these areas
and showed how these features can help precisely target SNr
subregions during DBS surgery.

To further enhance the therapeutic outcomes of DBS,
Anderson et al. developed a novel directional DBS lead
with thousands of microscale contacts. The new design
dramatically increased the spatial resolution of stimulation
steering and improved the selectivity in targeting small
diameter fibers, which promises to significantly widen the
window of therapy for DBS. Furthermore, Zheng et al.
investigated the effects that can be induced on the therapeutic
outcomes of DBS by changing the appearance order of the
intervals between consecutive pulses. They showed that a
random arrangement of inter-pulse intervals (IPI) can recruit
more neurons to fire in synchrony following specific sub-
sequences of pulses compared to gradual IPI, thus providing
a paradigm to widen the neuronal recruitment in response
to DBS.

A general consensus has been that the burden of DBS
programming will be lowered by introducing closed-loop control
algorithms. However, studies so far have mainly assessed
the feasibility of closed-loop DBS over short periods (Little
et al., 2013; Arlotti et al., 2018) and have been limited to
control algorithms that lack sensitivity and specificity over
long durations. Because symptom fluctuations are a hallmark
of various movement disorders, occurring on multiple time
scales, there is an unmet need for algorithms that can self-
adapt as symptoms and biomarkers evolve with time. In
this Research Topic, we presented work related to this need
with respect to the fluctuations of pathological beta-band
in Parkinson’s disease (PD). Fleming, Dunn, et al. evaluated
the resilience of traditional PI controllers against beta-band
fluctuations, and Fleming, Orlowski, et al. proposed a novel,
self-tuning controller that tracks beta-band fluctuations over
time and adjusts the closed-loop DBS strategy accordingly.
Also, Su et al. proposed a hierarchical control architecture,
where the closed-loop DBS is based on an autoregressive (AR)
model of the input-output relationship between DBS pulses and
pathological beta-band oscillations. As the AR model is updated
periodically through the day, the control strategy is automatically
adjusted to efficiently cope with the daily fluctuations of beta-
band oscillations. Finally, Cutsuridis expanded the model-based

framework to develop DBS strategies for chronic memory
loss treatment.

With regard to PD, DBS therapies have been traditionally
focused on motor symptoms such as akinesia (Moro et al., 2010),
even though cognitive symptoms are a significant contributor
to the severe disability imposed by the disease, diminishing
the individual’s quality of life. An emerging trend suggests that
DBS therapies should be used to satisfy multiple therapeutic
goals simultaneously and address both motor and non-motor
symptoms. This may necessitate the investigation of new targets,
stimulation patterns, and feedback signals. In Bentley et al.,
authors capitalized on the positive cognitive outcomes of
intermittent theta-burst stimulation (iTBS, a TMS paradigm) of
the dorsolateral prefrontal cortex (DLPFC) and delivered DBS
with iTBS pulse sequences to the globus pallidus of PD patients.
They documented the effects of GPi iTBS vs. regular GPi DBS
on the neuronal activity in the DLPFC, which is a center for
PD cognitive symptoms, and reported evidence of the cognitive
effects of DBS. Wickramasuriya et al., on the other hand,
proposed the use of sympathetic arousal as a potential biomarker
of non-motor symptoms. The authors specifically focused
on neuropsychiatric symptoms and developed an innovative
approach to efficiently decode psychological arousal from neural
activity underlying skin conductance signal variations. Finally,
Guo et al. investigated hybrid stimulation protocols to treat
disorders of consciousness (DOC) and proposed a combination
of deep stimulation and high-density transcranial direct current
stimulation of the precuneus to rehabilitate DOC patients.

Altogether, these contributions showed that the next
generation of DBS therapies will aim to expand the range of
clinical applications and boost therapeutic outcomes through
a rapid integration in the design process of wearable sensing
modalities, electronic miniaturization, control methods, and
electrophysiological exploration.
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