
A geno-clinical decision model for the diagnosis
of myelodysplastic syndromes

Nathan Radakovich,1,2 Manja Meggendorfer,3 Luca Malcovati,4 C. Beau Hilton,1,2 Mikkael A. Sekeres,5 Jacob Shreve,6

Yazan Rouphail,7 Wencke Walter,4 Stephan Hutter,4 Anna Galli,4 Sara Pozzi,4 Chiara Elena,4 Eric Padron,8 Michael R. Savona,9,10

Aaron T. Gerds,1 Sudipto Mukherjee,1 Yasunobu Nagata,11 Rami S. Komrokji,8 Babal K. Jha,11 Claudia Haferlach,4

Jaroslaw P. Maciejewski,11 Torsten Haferlach,3 and Aziz Nazha1

1Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; 2Cleveland Clinic Lerner College of Medicine
of Case Western Reserve University, Cleveland, OH; 3MLL Munich Leukemia Laboratory, Munich, Bavaria, Germany; 4Department of Hematology Oncology, Fondazione IRCCS
Policlinico San Matteo, University of Pavia, Pavia, Italy; 5Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL; 6Department of Internal
Medicine, Cleveland Clinic, Cleveland, OH; 7College of Arts and Sciences, The Ohio State University, Columbus, OH; 8Department of Malignant Hematology, H. Lee Moffitt
Cancer Center and Research Institute, Tampa, FL; 9Department of Medicine and 10Department of Pediatrics, Program in Cancer Biology, Vanderbilt University School of
Medicine, Nashville, TN; and 11Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH

The differential diagnosis of myeloid malignancies is challenging and subject to

interobserver variability. We used clinical and next-generation sequencing (NGS) data to

develop a machine learning model for the diagnosis of myeloid malignancies indepen-

dent of bone marrow biopsy data based on a 3-institution, international cohort of

patients. The model achieves high performance, with model interpretations indicating

that it relies on factors similar to those used by clinicians. In addition, we describe associ-

ations between NGS findings and clinically important phenotypes and introduce the use

of machine learning algorithms to elucidate clinicogenomic relationships.

Introduction

Myelodysplastic syndromes (MDS) and other myeloid neoplasms are primarily diagnosed based on mor-
phological changes in the bone marrow.1 The diagnosis can be challenging, especially in patients with
pancytopenia with minimal dysplasia, and is subject to interobserver variability, with up to 30% to 40%
disagreement in diagnosis.2 This difficulty is magnified for patients in whom the expected karyotypic or
morphologic bone marrow changes are absent, or in the case of unsuccessful biopsies (eg, due to
marked hypocellularity or extensive myelofibrosis).3,4 In addition, there is increasing recognition of the
relationship between MDS, myeloid neoplasms, and the states of idiopathic cytopenia of undetermined
significance (ICUS) and clonal cytopenia of unknown significance (CCUS).5 ICUS describes single or
multiple cytopenias without a clear etiology or known clonal mutations, even after bone marrow biopsy
evaluation. CCUS describes clonal mutations found with cytopenia(s) that do not meet criteria for a
World Health Organization–defined hematologic neoplasm.6

Next-generation sequencing (NGS) has identified somatic and germline mutations that play a role in mye-
loid neoplasms’ pathophysiology, progression, and response to therapy.7,8 Such findings may refine pre-
sumptive diagnoses, especially in the absence of morphologic or karyotypic information. They are not,
however, sufficiently specific to render a definitive diagnosis on their own, particularly in the case of
ICUS, which is a diagnosis of exclusion.5

Machine learning (ML) is a family of computational algorithms that extract information by learning from
relationships, patterns, and trends in data.9 ML can produce powerful, reliable, and reproducible
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Key Points

� We developed a
machine
learning–based model
to assist in the
differential diagnosis
of myeloid
malignancies.

� Our work also
describes genotype-
phenotype correla-
tions in different
myeloid malignancies.
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predictive models based on large and complex datasets.10 Although
ML models were traditionally considered “black boxes” that
achieved performance at the expense of scrutability, modern meth-
ods allow the extraction of the most relevant features, that in turn
allow models to be exploited and assure their reproducibility and
accuracy when applied in clinical settings.11

In this study, we describe the use of an interpretable, ML model to
differentiate MDS from other myeloid malignancies and provide
patient-specific personalized interpretation of predictions using clini-
cal and mutational data from peripheral blood without relying on
information from a bone marrow biopsy.

Methods

Patients

Combined genomic and clinical data were collected from 652
patients treated at the Cleveland Clinic (United States), 1509 from
the Munich Leukemia Laboratory (Germany), and 538 from the Uni-
versity of Pavia (Italy) between 2004 and 2018 (2697 patients in
total). Clinical and laboratory data were retrospectively collected for
all patients. To assure the accuracy and reproducibility of the model,
other myeloid malignancies that resemble the presentation of MDS
and can be in some cases difficult to distinguish from MDS, such
as chronic myelomonocytic leukemia (CMML), MDS/myeloprolifera-
tive neoplasm (MPN ), polycythemia vera (PV), essential thrombocy-
themia (ET), primary myelofibrosis (PMF), ICUS, and CCUS, were
included. Inclusion criteria for patients included the following: avail-
ability of peripheral complete blood count and differential, bone mar-
row examination, and performance of NGS at the time of diagnosis.
All patients’ diagnoses were made by multidisciplinary teams experi-
enced in the diagnosis of MDS and related disorders. Histopatho-
logic examination of bone marrow specimens was performed by
experienced hematopathologists who were not associated with the
study or its outcomes in accordance with 2016 World Health Orga-
nization criteria.1 The study was approved by each institution's Inter-
nal Review Board in accordance with the Declaration of Helsinki.

DNA sequencing analysis

Targeted deep sequencing was performed on 38 genes that are
commonly reported in commercial genomic panels and have been
demonstrated to be clinically relevant to MDS and other myeloid
malignancies (supplemental Table 1). All genomic data were
obtained via commercially available, clinically approved sequencing
platforms. Detailed descriptions of sequencing procedures are avail-
able in the supplemental methods.

Model building and statistical analysis

Descriptive statistics were used to summarize the cohort. The x2

and Mann-Whitney tests were used to compare categorical and
continuous data between disease subtypes, respectively. Cooccur-
rence and mutual exclusivity of mutations between genes were
assessed using Fisher’s exact test with the Benjamini-Hochberg
correction used to account for multiple hypothesis testing. Similarly,
a corrected Fisher’s exact test was used to evaluate cooccurrence
vs mutual exclusivity between disease subtypes and mutations, as
well as between select clinical characteristics and mutations.

A gradient boosted machine (GBM) ML strategy, which generates
predictions based on the input of multiple individual decision trees,

was selected for model development for its ability to effectively
handle nonlinear relationships in data and deliver state-of-the-art,
interpretable performance.12 To both train the model on a multi-
institutional cohort and assess its external validity in a separate,
independent cohort of patients, patients from the Cleveland Clinic
and the University of Pavia were used as a train/test cohort; after
model generation, model performance was then evaluated sepa-
rately on the Munich Leukemia Laboratory cohort (graphical depic-
tion in supplemental Figure 1). Models were developed using
random 80% to 20% train-test splitting in the train/test cohort, with
fivefold cross-validation and bootstrapping used to estimate confi-
dence intervals (all confidence intervals are 95% unless otherwise
specified). GBM algorithms were applied to predict myeloid malig-
nancy diagnosis and bone marrow blast percentage. More details
regarding model building are available in the supplemental
appendix.

The feature importance package SHAP was used to identify geno-
mic/clinical variables that impacted models’ prediction, to visualize
the impact of each variable on phenotype, and to generate individual
predictions with explanations.13 Prediction performance was evalu-
ated according to area under the receiver operating characteristic
curve (AUROC; this statistic measures the tradeoff between true
positive and false positive predictions, with 0.5 representing a ran-
dom guess and 1.0 representing a perfect predictor), confusion
matrices, and inspection of individual predictions. Data analysis,
model generation, and model interrogation were all performed using
open-source Python packages (details in supplemental methods).
Extensive descriptive data analyses are provided in the supplemental
appendix.

Results

Patient characteristics

Of 2697 patients, 1630 (60.4%) had MDS, 399 (14.8%) had
CMML, 142 (5.3%) had ICUS, 93 (3.4%) had CCUS, 129 (4.8%)
had MDS/MPN, 41 (1.5%) had PV, 52 (1.9%) had ET, and 95
(3.5%) had primary PMF (Table 1). The clinical characteristics for
the entire cohort and for each disease category are summarized in
Table 1. Briefly, compared with MDS, the median age for MDS-
MPN/CMML patients was older (70 vs 69 years; P 5 .043), equal
for CCUS (68.4 years; P 5 .948), younger for ICUS (56 years; P
, .001), and younger for MPNs (62; P , .001). Significant differ-
ences in the clinical and karyotypic data exist between MDS other
cohorts (Table 1). (All P values are summarized in supplemental
Table 1 in the supplemental appendix).

Molecular characteristics. To identify molecular signatures
associated with each disease phenotype and to assure the repro-
ducibility of our results across commercially available genomic pan-
els, we focused all analyses on the 24 most common genes that
were mutated in at least 2% of patients in our cohort (Figure 1A).
These mutations are commonly included in all commercial laborato-
ries and correlate with prior published reports.14,15 We identified at
least 1 mutation of these genes in 1711 patients (79%) with a
median number of 2 mutations per sample (Q1: 1 mutation, Q3:
3 mutations).

The top mutated genes in MDS were SF3B1 (26.5%), TET2
(25.3%), and ASXL1 (19.3%), differing in frequency from those in
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MDS-MPN/CMML (TET2 46.3%, ASXL1 33.7%, SRSF2 28.8%),
CCUS (TET2 40.9%, DNMT3A 26.9%, ASXL1 19.4%), and MPN
(JAK2 63.6%, ASXL1 26.6%, TET2 14.0%) (Figure 1B). As
expected, JAK2 mutations were the most common mutations in
MPNs (Figure 1B). Gene mutation frequencies correlated with what
has been reported in previous studies.14-16

Correlation of molecular mutations among each other
and with clinical variables in each disease phenotype.
We evaluated the correlation between the mutations with each other,
disease phenotype, and clinical variables (Figures 1C and 2). As
expected, strong correlations were observed between SF3B1 and
MDS-RS, TET2/SRSF2 and CMML, and JAK2 mutations and MPNs
(Figure 2). TP53 and RUNX1 mutations were associated with MDS
with excess blasts, whereas SF3B1 was mutually exclusive with this
disease phenotype; the converse was observed for MDS with ring
sideroblasts, which was also associated with a favorable outcome.

The correlation among mutations differed in each phenotype (Figure
2). Briefly, in MDS, ASXL1 mutations were associated with muta-
tions in other genes involved in epigenetic modification, such as
SRSF2, CBL, and STAG2. Mutual exclusivity was seen between
SF3B1 and SRSF2, RUNX1, U2AF1, STAG2, TP53, NRAS, IDH2,
and NPM1. Mutual exclusivity was also observed between TP53
and ASXL1, SF3B1, and SRSF2. Among patients with CMML/
CCUS/MDS-MPN, cooccurrence was observed between TET2 and
SRSF2, between ASXL1 and RUNX1, and between ASXL1 and
EZH2 (Figure 2: no significant co-occurrence or mutual exclusivity
was observed in mutations in the MPN category, ET/PMF/PV).

Interesting correlations were also observed between mutations and
the clinical variables (Figure 2). As expected, TP53 correlated
strongly with complex karyotype, chromosome 5 abnormalities, and
chromosome 7 abnormalities (Figure 2). Conversely, SF3B1 muta-
tions were associated with normal karyotype and bone marrow
blasts ,10% while demonstrating mutual exclusivity with complex

Table 1. Cohort demographics, laboratory parameters, and cytogenetic variables

MDS MDS-MPN/CMML MPN ICUS CCUS

Mean (2.5th-97.5th percentile)

Age, y 69.0 (41.00-85.70) 70.0 (43.00-85.86) 62.2 (28.35-83.90) 56.0 (22.44-84.55) 68.4 (40.55-85.04)

WBC, 109/L 5.8 (1.29-20.23) 19.8 (2.27-84.83) 15.5 (2.99-61.99) 4.4 (1.80-10.71) 4.7 (1.80-10.84)

Hemoglobin, g/dL 10.1 (6.80-14.10) 11.1 (7.00-15.39) 12.6 (7.19-20.70) 12.2 (7.10-16.09) 11.9 (7.57-15.01)

Platelets, 1012/L 183.1 (15.00-650.15) 182.6 (15.00-735.75) 362.5 (10.13-1069.30) 159.8 (19.52-387.32) 142.5 (18.10-350.50)

ANC, 109/L 3.1 (0.27-12.07) 9.4 (0.59-37.21) 10.3 (1.34-42.70) 2.5 (0.19-7.34) 2.5 (0.52-7.45)

ALC, 109/L 1.0 (0.04-3.63) 2.6 (0.44-7.85) 2.3 (0.31-6.54) 1.5 (0.46-3.25) 1.6 (0.45-3.92)

AMC, 109/L 0.3 (0.00-1.50) 4.8 (0.08-26.28) 0.9 (0.00-4.40) 0.4 (0.02-1.08) 0.5 (0.07-1.38)

BM blast, % 5.0 (0.00-17.00) 5.5 (0.00-19.00) 1.5 (0.00-6.70) 1.6 (0.00-4.50) 1.8 (0.00-4.60)

Peripheral blasts, 109/L 0.3 (0.00-3.00) 1.6 (0.00-12.00) 1.4 (0.00-8.32) 0.0 (0.00-0.00) 0.0 (0.00-0.00)

Number (%)

Female 1005 (37.26) 392 (14.53) 89 (3.30) 67 (2.48) 57 (2.11)

Normal karyotype 810 (30.03) 103 (3.82) 104 (3.86) 44 (1.63) 30 (1.11)

Chr 5 abnormality 135 (5.01) 6 (0.22) 4 (0.15) 0 (0.00) 0 (0.00)

Chr 7 abnormality 73 (2.71) 18 (0.67) 5 (0.19) 0 (0.00) 0 (0.00)

Complex karyotype 105 (3.89) 12 (0.44) 5 (0.19) 0 (0.00) 1 (0.04)

P

Age, y reference 0.043 5.04E-12 1.27E-17 0.948

WBC, 109/L reference 5.47E-122 3.94E-49 0.13 0.579

Hemoglobin, g/dL reference 7.32E-21 7.99E-19 3.13E-25 2.86E-17

Platelets, 1012/L reference 0.245 4.60E-19 0.727 5.13E-01

ANC, 109/L reference 2.28E-79 2.23E-54 0.552 5.06E-01

ALC, 109/L reference 6.23E-115 2.78E-34 4.27E-19 7.75E-15

AMC, 109/L reference 1.77E-194 3.03E-34 8.28E-15 1.58E-13

BM blast % reference 0.659 2.17E-24 1.43E-07 2.13E-05

Peripheral blasts, 109/L reference 6.35E-54 2.58E-43 0.08 1.09E-01

Female reference 0.468 2.94E-08 0.000987 9.69E-01

Normal karyotype reference 1.10E-45 0.819 2.77E-05 2.00E-03

Chr 5 abnormality reference 3.26E-10 0.001 0.000666 7.00E-03

Chr 7 abnormality reference 0.118 0.199 0.019 6.90E-02

Complex karyotype reference 2.89E-05 0.026 0.003 6.10E-02

ALC, absolute lymphocyte count; AMC, absolute monocyte count; ANC, absolute neutrophil count; BM, bone marrow; Chr, chromosome; WBC , white blood cell.
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karyotype, chromosome 7 abnormalities, and low platelets. These
observations reflect the favorable prognosis associated with SF3B1
mutations.17

Model development

Fifteen genomic/clinical variables were included in the final model
that was used to accurately diagnose MDS, in distinguishing it from
other conditions (supplemental Table 2). The model explanation
algorithm SHAP was used to identify the variables with the most
substantial impact on model predictions; to simplify model use and
reduce the degree of overfitting, the top 15 variables were retained
for the final model. Overall, the most important variables were (in

descending order of importance) as follows: number of mutations
(greater mutation number being associated with a prediction of
MDS and lower numbers more associated with predictions of ICUS
or CCUS), percentage of blasts in peripheral blood (most associ-
ated with MDS/MPN-CMML), absolute monocyte count (most asso-
ciated with MDS/MPN-CMML and a negative predictor for MDS),
JAK2 status (most predictive for MPN), hemoglobin (elevated or
normal hemoglobin associated with MPN, and relatively mild anemia
associated with CCUS/ICUS), absolute basophil count, age, abso-
lute eosinophil count, absolute lymphocyte count, absolute neutro-
phil count, KRAS status, SF3B1 status, and platelet count (Figure
3A). The most important variables for each class, along with the rel-
ative impact of high or low values for those variables, are shown in
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Figure 1. Cohort genomic characteristics. (A) Top mutated genes in cohort. (B) Mutation frequency by disease subtype. (C) Cohort-wide oncoprint.
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individual summary plots (representative examples shown in Figure
3B; for instance, in 1 patient correctly identified as having MDS/
MPN-CMML, the model’s prediction is driven by monocytosis for
the example patient, but the patient’s thrombocytosis, leukocytosis,
and elevated absolute neutrophil count [ANC ] also factor into the
prediction).

Model diagnostic performance

When applied to the test and validation cohorts, model performance
was as follows (a perfect predictor has an AUROC of 1, and
AUROC . 0.90 are generally considered excellent): AUROC of
0.951 (0.934 to 0.966) for test cohorts, and AUROC of 0.926
(0.916 to 0.937) for the training cohorts. Inspection of cohort-level
feature importance revealed which patient characteristics were most
influential for the diagnosis of each disease subtype (Figure 3A). In
addition to cohort-level model explanations, quantitative differential
diagnoses were produced for each patient in the validation cohort
(examples shown in Figure 3B).

Other predictions

A GBM model was also used to predict important clinical and
genetic characteristics based on one another (eg, using clinical and
karyotypic data to predict individual mutation status in the absence of
NGS data, and vice versa). When NGS data and patient sex were
used as inputs, complex karyotype was predicted with an AUROC of
0.821, normal karyotype with an AUROC of 0.790, abnormal karyo-
type with an AUROC of 0.761, age with an AUROC of 0.675, and
severe pancytopenia (defined as hemoglobin ,8 g/dL, platelets
,50000/uL, and ANC ,1000/uL) with an AUROC of 0.700.
Cohort-level explanations for model predictions reflected known asso-
ciations in myeloid malignancies, such as concordance between
TP53 mutations and complex karyotype, TET2 mutations and age
.65 years, and exclusivity between SF3B1 mutations and either
severe pancytopenia and complex karyotype. Using karyotype and
peripheral blood count data, the model was able to predict TP53,
SF3B1, and IDH status with an AUROC of 0.87, 0.78, and 0.90,
respectively. Feature importance graphs as calculated by Shapley
values are provided in Figure 4.
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Discussion

The differential diagnosis of MDS includes several similar-appearing
neoplasms that can be difficult to distinguish from one another,
even for physicians who specialize in such disorders. We describe
an ML-based approach to aid in the differential diagnosis of myeloid
malignancies using data collected exclusively from peripheral blood
in patients receiving treatment at tertiary malignant hematology prac-
tices. The model developed with this approach was able to gener-
ate highly accurate predictions in the absence of any data collected
from patients’ bone marrow.

As described by Shapley values, the most pivotal features for differ-
ential diagnosis were primarily clinical, with the exception of the total
number of mutations, as well as JAK2, KRAS, and SF3B1 status.
This is unsurprising, as few of the mutations studied are considered

exclusive hallmarks of a particular malignancy and thus would not
be expected to be particularly informative for differential diagnosis.
The predictive genomic features identified in our model are excep-
tions, as they are documented hallmarks of particular conditions
(ICUS, MPNs, and MDS, for absence of any mutations, JAK2 sta-
tus, and SF3B1 status, respectively). Beyond aggregate feature
importance, the model was able to generate sensible explanations
for individual differential diagnoses. This is critical, as clinically appli-
cable artificial intelligence must be interpretable in order for it to
interface with the other lines of evidence and data sources that clini-
cians use to deliver patient care.

A diagnostic model such as this one has several potential applica-
tions for clinicians. Although histopathological evaluation remains a
linchpin in the diagnosis of myeloid malignancies, poor sample
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quality, fibrosis, or hypocellularity often serve as barriers to reliable
evaluation.16 Models capable of making predictions exclusive of his-
topathological information may offer clarity in such situations, or
when tissue specimens are adequate but ambiguous, and patients
are unwilling to undergo repeat bone marrow assessments. In addi-
tion, although this model was developed based on patients from ter-
tiary care centers (and thus likely represents an older and more
advanced state of disease compared with myeloid malignancies in
aggregate), it may represent a useful approach for general oncolo-
gists, either as an additional data point to consider when diagnosing
a condition or when contemplating referrals to specialists in hemato-
logic malignancies. Previous work such as that by Moraes et al,
who apply ML to the differential diagnosis of lymphoproliferative dis-
orders via flow cytometry,18 highlights the utility of these techniques
for making great use of existing data and providing complementary
means of rendering diagnoses. The addition of tools such as this to
electronic health records could aid diagnostic decision making by
suggesting likely diagnoses as well as providing rationales for com-
peting differential diagnoses.

We also describe, using only patient age and NGS data, the predic-
tion of several clinically relevant patient characteristics, such as
abnormal or complex karyotypes and severe pancytopenia. Although
some of these characteristics (such as complete blood counts) are
not intrinsically difficult to obtain, these findings are hypothesis gen-
erating in determining how different genetic alterations contribute to
the varied presentations of MDS and related malignancies. In addi-
tion, the ability to predict certain disease phenotypes, such as cyto-
penias leading to frequent transfusions or high infection risk, may
inform expectations about the degree of supportive care required for
patients, or even the timing and relative risk of stem cell transplant.

Our study also investigated the ability to predict clinically mean-
ingful single-gene alterations such as TP53 and SF3B1 status.
In addition to its hypothesis-generating role, being able to pre-
dict such key genomic alterations based off readily available
data may play a role in upfront decision making in patients with
myeloid malignancies, as the presence of certain mutations
such as TP53, IDH1, and SF3B1 has established prognostic
and therapeutic ramifications.17,19,20 This could affect the deci-
sion to pursue targeted therapies, or in the case of TP53 muta-
tions, eschew chemotherapy. Such predictions would eventually
have to be confirmed by NGS, in clinical practice obtaining
NGS data may take weeks, delaying treatment decisions. Impor-
tantly, although our approach to predicting phenotype-genotype
correlations is new, it successfully identifies known relationships
in myeloid malignancies, such as the well-established correla-
tion between high numbers of chromosomal abnormalities and
mutant TP53 status.21,22 Although observations from this
approach should be considered hypothesis generating, they
offer an intriguing means of exploring genotype-phenotype
relationships.

Our study has some limitations. Although large by the standard of
studies investigating malignancies, the size of our dataset precluded
rarer mutations from being incorporated into the model. Thus,
although our work does positively identify several predictive factors,
it cannot exclude the significance of other, infrequent mutations. It is
also important to note that the diagnoses associated with our

training data reflect contemporaneous diagnostic standards and def-
initions of each disease subtype. As such, the estimates of model
performance described assume it will be applied in settings where
similar diagnostic criteria are used. Furthermore, prospective valida-
tion will provide important confirmation of the diagnostic accuracy of
our model, as well as confirmation of its ability to assist with ambigu-
ous or difficult diagnoses. Finally, although our model was able to
accurately make use of genomic data obtained with different plat-
forms and protocols, it is unclear if a model using more granular
data such as variant allele frequency would be similarly robust
across platforms. Although beyond the scope of this work, it will
remain vital that diagnostic practices between institutions are contin-
ually examined, especially as new diagnostic modalities emerge.

In summary, we describe an ML-based approach to the diagnosis of
myeloid malignancies absent the data typically obtained from a
bone marrow biopsy. Our model’s findings and predictions are con-
sistent with known hallmarks of these diseases and demonstrate the
potential utility of ML-based approaches as an additional tool in the
upfront evaluation of these diseases.
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