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ABSTRACT The relative importance of spatial and temporal variability in shaping
the distribution of soil microbial communities at a large spatial scale remains poorly
understood. Here, we explored the relative importance of space versus time when
predicting the distribution of soil bacterial and fungal communities across North
China Plain in two contrasting seasons (summer versus winter). Although we found
that microbial alpha (number of phylotypes) and beta (changes in community com-
position) diversities differed significantly between summer and winter, space rather
than season explained more of the spatiotemporal variation of soil microbial alpha
and beta diversities. Environmental covariates explained some of microbial spatio-
temporal variation observed, with fast-changing environmental covariates— climate
variables, soil moisture, and available nutrient—likely being the main factors that
drove the seasonal variation found in bacterial and fungal beta diversities. Using
random forest modeling, we further identified a group of microbial exact sequence
variants (ESVs) as indicators of summer and winter seasons and for which relative
abundance was associated with fast-changing environmental variables (e.g., soil
moisture and dissolved organic nitrogen). Together, our empirical field study’s re-
sults suggest soil microbial seasonal variation could arise from the changes of fast-
changing environmental variables, thus providing integral support to the large
emerging body of snapshot studies related to microbial biogeography.

IMPORTANCE Both space and time are key factors that regulate microbial commu-
nity, but microbial temporal variation is often ignored at a large spatial scale. In this
study, we compared spatial and seasonal effects on bacterial and fungal diversity
variation across an 878-km transect and found direct evidence that space is far more
important than season in regulating the soil microbial community. Partitioning the
effect of season, space and environmental variables on microbial community, we fur-
ther found that fast-changing environmental factors contributed to microbial tempo-
ral variation.

KEYWORDS bacterial community, fungal community, space, season, spatiotemporal
variation

Microbial communities regulate vital soil processes, such as nutrient cycling, de-
composition rates, and pathogenesis, all of which are fundamental for plant

productivity in croplands and natural ecosystems (1, 2). The distribution and ecological
drivers of bacteria and fungi are well studied (3) from local to global scales (4, 5). Much
less is known, however, of the temporal variability of microbial communities at large
spatial scales, as most previous large-scale studies have overlooked potential effects of
time in their experimental design, often using samples collected at a single point in

Citation Zhang K, Delgado-Baquerizo M, Zhu
Y-G, Chu H. 2020. Space is more important
than season when shaping soil microbial
communities at a large spatial scale. mSystems
5:e00783-19. https://doi.org/10.1128/
mSystems.00783-19.

Editor Marnix Medema, Wageningen
University

This article followed an open peer review
process. The review history can be read here.

Copyright © 2020 Zhang et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Haiyan Chu,
hychu@issas.ac.cn.

Received 19 November 2019
Accepted 22 April 2020
Published

RESEARCH ARTICLE
Ecological and Evolutionary Science

crossm

May/June 2020 Volume 5 Issue 3 e00783-19 msystems.asm.org 1

12 May 2020

https://orcid.org/0000-0001-9004-8750
https://doi.org/10.1128/mSystems.00783-19
https://doi.org/10.1128/mSystems.00783-19
https://doi.org/10.1128/mSystems.00783-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:hychu@issas.ac.cn
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00783-19&domain=pdf&date_stamp=2020-5-12
https://msystems.asm.org


time (6–8). Consequently, the relative importance of spatial heterogeneity versus time
for driving microbial community composition remains largely unexplored at large
spatial scales.

Striking seasonal variation in the soil microbial community and processes at a single
or several sampling locations has been well documented for decades, and patterns are
commonly attributed to key regulatory factors, such as moisture, temperature, nutrient
content, and plant carbon allocation (9–13). Previous studies have provided critical
knowledge of major temporal patterns and ecological drivers of local microbial sea-
sonality (14, 15). Yet, much less is known about the relative importance of seasonality
and spatial heterogeneity in predicting the distribution of soil microbial communities.
Recent meta-data surveys that synthesized spatial and temporal studies from different
sites to better understand the biogeographic distribution of microbial communities
have highlighted temporal variation as an implication of spatial variation, suggesting
both are crucial aspects of microbial biogeography (16, 17). But those meta-analysis
studies collected data sets in which either the effect of spatial variation or temporal
variation was examined, which could cause site-specific confounding factors, thus
obscuring the result interpretation. Hence, it is essential to focus on both spatial and
temporal dynamics at the same study sites when trying to disentangle drivers of
microbial distributions.

Here, we hypothesized that spatial heterogeneity would be much more important
for controlling the alpha and beta diversities of soil microbes than the effect of
contrasting seasons (i.e., winter versus summer). In other words, large differences in soil
properties across plots are stronger predictors for the distribution of microbial com-
munities than the changes in seasonality they experienced. The reasoning here is that
soil microbial communities such as bacteria and fungi are well known to be driven by
slow-changing soil properties, such as pH and total organic carbon across large spatial
scales (3, 4, 18). These soil properties take from centuries to millions of years to change
(19), making them very stable with respect to time. Of course, seasonality could still
predict a reduced portion of the variation in microbial communities’ distributions that
is closely associated with climate factors; in this way, fast-changing soil attributes, such
as soil moisture, soil processes, and nutrient pools, which are known to change over
days or weeks, are likely better able to predict changes in microbial communities over
shorter time periods (days to months). For example, soil moisture is well known to
influence the community composition and activity of microbial communities in drying
and rewetting processes (20, 21).

To test our hypothesis, we collected soil samples across 45 locations along a ca.
878-km transect during two contrasting seasons (winter versus summer) and used
amplicon sequencing to measure soil bacterial and fungal communities. In this way, a
total of 90 topsoil samples were collected in wheat croplands across North China Plain.
There are two good reasons for choosing wheat fields to investigate spatiotemporal
distributions of soil-dwelling microbes. (i) Wheat is among the most economically and
functionally important crops globally; therefore, more information on its associated
microbial communities is of paramount importance. (ii) By focusing on single plant
species (wheat), we could remove the noise derived from having different plant species,
which are known to be important drivers of microbial communities at large spatial
scales (22).

RESULTS
Spatiotemporal distribution of environmental variables. Among the 12 mea-

sured environmental variables, slow-changing environmental factors such as pH, total
phosphorus (TP), and total potassium (TK) were highly localized: 87% (P � 0.01), 62.6%
(P � 0.01), and 64.5% (P � 0.01) of their respective variation was explained by sampling
sites alone. In contrast, fast-changing environmental factors, such as soil moisture (SM;
R2 � 0.237, P � 0.01), dissolved organic nitrogen (DON; R2 � 0.249, P � 0.01), average
monthly temperature (Tem; R2 � 0.962, P � 0.01), and average monthly precipitation
(Pre, R2 � 0.352, P � 0.01), were largely influenced by the seasons. In winter, SM and

Zhang et al.

May/June 2020 Volume 5 Issue 3 e00783-19 msystems.asm.org 2

https://msystems.asm.org


DON were significantly higher, yet Tem and Pre were significantly lower, than summer
(see Fig. S2 in the supplemental material). All the environmental variables were found
to be significantly affected by the sampling sites, and environmental dissimilarity
significantly increased with geographic distance in both winter and summer (see
Fig. S3).

Spatiotemporal distribution of the soil microbial community. For the Illumina
MiSeq sequencing, 2,053,526 high-quality sequences with 12,381 exact sequence vari-
ants (ESVs) and 4,534,055 high-quality sequences with 3,308 ESVs were obtained for the
16S rRNA V4 region and ITS2 region, respectively. At a 99% taxonomy identity thresh-
old, most sequences of 16S rRNA were mainly assigned to Actinobacteria (22.19%),
Acidobacteria (14.07%), and Proteobacteria (39.44%) at the phylum level (see Fig. S4a),
and ITS2 sequences were mainly assigned to Dothideomycetes (17.04%), Sordariomyce-
tes (48.37%), and Agaricomycetes (7.85%) at the class level (Fig. S4b).

For microbial alpha diversity, season explained 25.2% and 17.2% of the variation,
and site explained 38.4% and 23.1% of the variation in soil bacteria and fungi,
respectively (Fig. 1a and b). Even though the alpha diversity (the number of ESVs) of
bacteria at ZhaoXian (ZX) and PingDu (PD) sites were similar between winter and
summer and that of fungi at ShangCai (SC) was significantly higher in winter than in
summer, the overall trend in bacterial and fungal alpha diversities was one of being
significantly lower in winter than in summer (see Fig. S5). When considering microbial
beta diversity (changes in species composition between sites) based on the abundance-
related Bray-Curtis distance, we found that site explained 39.6% of bacterial variance
and 36.1% of fungal variance, while season only explained 6.1% of bacterial variance
and 6.7% of fungal variance (Fig. 1c and d). For microbial beta diversity based on the
presence/absence-related Jaccard distance, we also found a much greater site effect
than season effect, in which 29.5% of bacterial variance and 27.5% of fungal variance
were explained by site, while only 4.8% of bacterial variance and 4.9% of fungal
variance were explained by season (see Fig. S6). Despite the soil microbial community
showing separation by winter and summer at each site (see Fig. S7 and S8), these
divergences were swamped by the impact of sampling sites. In all, we found a stronger
geographic location effect than seasonal effect upon both microbial alpha and beta
diversity estimates. Exploring the relationship between microbial community similarity
and geographic distance, we detected significant distance-decay relationships for
bacteria and fungi in both winter and summer. Surprisingly, both bacterial and fungal
communities showed higher turnover rates in winter than in summer (Fig. 2a and c).
The slight decline in microbial similarity with environmental distance (Euclidean dis-
tance between sites based on the measured environmental variables) (Fig. 2b and d)
indicated that those environmental variables covarying with season and space could
explain part of the observed microbial spatiotemporal variation along the large-scale
transect.

Role of environmental variables in shaping microbial spatiotemporal distribu-
tions. According to the stepwise multiple regression models, environmental variables
were able to explain 57% and 31% of the variation in bacterial and fungal alpha
diversities, respectively (see Table S1). The environmental variables pH, available po-
tassium (AK), total nitrogen (TN), TK, and Tem were the main factors which induced the
shift in bacterial alpha diversity, while DON, available phosphorus (AP), and Tem were
those that most changed fungal alpha diversity. Linking microbial beta diversity with
environmental variables, we found that pH, which is a highly localized variable, was the
main factor involved in shaping both bacterial and fungal beta diversities (see Table S2).

Given that environmental variables changed across space and between seasons,
using variation partitioning models let us tease apart the independent effects of season,
spatial distance, and environmental variables upon the spatiotemporal dynamics of
microbial beta diversity. For the bacterial community, we found that spatial distance,
season, and environmental variables together explained 32% of its variations (Fig. 3).
The effect of pure space explained 5% of bacterial spatiotemporal variation, whereas

Spatiotemporal Variation of Soil Microbial Community

May/June 2020 Volume 5 Issue 3 e00783-19 msystems.asm.org 3

https://msystems.asm.org


that of pure season did not influence the bacterial spatiotemporal distribution; when
combined with fast-changing environmental factors, season did explain 5% of this
variation. For the fungal community, 9% of its variation was explained by the effect of
pure space, while that of pure season explained just 1% of fungal spatiotemporal
dynamics. The fast-changing environmental factors were the main driver of fungal
seasonal variation in that they explained 6% of it (Fig. 3).

Partial correlations via redundancy analysis (Table 1) showed that season explained
2.2% of bacterial variation (P � 0.001) and 2.8% of fungal variation (P � 0.001) when
holding the space effect constant. However, when controlling the season effect, space
accounted for 15.5% of the bacterial variation (P � 0.001) and 16.8% of the fungal
variation (P � 0.001). Because environmental factors shift across space and over time,
they are likely the drivers for the microbial spatial and temporal variation in this study’s
data set. When controlling the effect of fast-changing environmental variables, season
explained a negligible 0.6% of bacterial variation (P � 0.012) and 0.7% of fungal
variation (P � 0.004), whereas space explained 11.6% of this bacterial variation

FIG 1 Boxplots showing the number of ESVs for bacteria (a) and fungi (b) in winter and summer among the 9 sampling sites in China. The
significant effect of seasons and site on microbial alpha diversity was detected by two-way ANOVA. The principal-coordinate analysis (PCoA) plots
were based on Bray-Curtis dissimilarity of bacterial (c) and fungal (d) communities in winter and summer. The significant effect of seasons and
sites on microbial beta diversity was detected by PERMANOVA. **, P � 0.01; DM, DaMing; LB, LinBa; PD, PingDu; SC, ShangCai; TH, TaiHe; TZ,
TengZhou; XY, XingYang; ZP, ZouPing; ZX, ZhaoXian.

Zhang et al.

May/June 2020 Volume 5 Issue 3 e00783-19 msystems.asm.org 4

https://msystems.asm.org


(P � 0.001) and 12.8% of this fungal variation (P � 0.001). After controlling for the
effect of slow-changing environmental attributes, season explained 2.2% of bacte-
rial variation (P � 0.001) and 2.5% of fungal variation (P � 0.001), and space
explained 11.1% of bacterial variation (P � 0.001) and 13.1% of fungal variation
(P � 0.001). The sharply diminished seasonal effect on microbial spatiotemporal
distribution when controlling the contribution of fast-changing environmental
factors revealed that the fast-changing factors figure prominently in determining
microbial seasonal variation.

Finally, a random forest model was used to distinguish those microbial ESVs which
could discriminate microbial community in the winter and summer. Ranked by their
importance value, the top 20 bacterial ESVs mainly belonged to Gammaproteobacteria
and Alphaproteobacteria (Fig. 4a), while the top 20 fungal ESVs mainly belonged to
Sordariomycetes (Fig. 4b). The relative abundance of those ESVs was strongly correlated
with the fast-changing environmental properties SM, DON, Tem, and Pre (Fig. 4). This
result also implied that seasonal variations in soil bacterial and fungal communities
were mainly induced by fast-changing environmental variables.

FIG 2 Distance-decay relationships of bacterial (a) and fungal (c) communities (based on Jaccard distances) in winter and summer, and
the linear relationships between bacterial (b) and fungal (d) similarities with environment distance (based on Euclidean distance). **, P �
0.01.
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DISCUSSION

Many studies investigating soil microbial communities through time at the local
scale have revealed large temporal variability in their structures (23, 24), while the
unexplained variation of large-scale biogeographic studies sampled over months or

FIG 3 UpSet plot showing the results from variation partitioning models that were used to identify the effects of season, space, and fast and slow
environmental variables. Fast, fast-changing environmental variables were soil moisture, dissolved organic nitrogen, available phosphorus, available
potassium, dissolved organic carbon, average monthly temperature, and average monthly precipitation; Slow, slow-changing environmental variables
consisted of pH, organic carbon, total nitrogen, total phosphorus, and total potassium.

TABLE 1 Partial correlations between bacterial or fungal beta diversity and season or
space in combination with fast and slow after controlling for each other’s effect by
redundancy analysisa

Variable(s)

Bacteria Fungi

Variance P value Variance P value

Control space
Season 0.022 0.001 0.028 0.001
Season�fast 0.075 0.001 0.075 0.001
Season�slow 0.072 0.001 0.067 0.001
Season�fast�slow 0.103 0.001 0.099 0.001

Control season
Space 0.155 0.001 0.168 0.001
Space�fast 0.209 0.001 0.215 0.001
Space�slow 0.205 0.001 0.208 0.001
Space�fast�slow 0.237 0.001 0.24 0.001

Control fast
Season 0.006 0.012 0.007 0.004
Season�slow 0.056 0.001 0.051 0.001
Space 0.116 0.001 0.128 0.001
Space�slow 0.145 0.001 0.153 0.001

Control slow
Season 0.022 0.001 0.025 0.001
Season�fast 0.069 0.001 0.079 0.001
Space 0.111 0.001 0.131 0.001
Space�fast 0.158 0.001 0.181 0.001

aPermutation testing was used to assess the significance of the constraints. Fast, fast-changing environmental
variables, namely, soil moisture, dissolved organic nitrogen, available phosphorus, available potassium, dissolved
organic carbon, average monthly temperature, and average monthly precipitation; Slow, slow-changing
environmental variables, namely, pH, organic carbon, total nitrogen, total phosphorus, and total potassium.
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years (4, 5, 7) can be attributed to temporal variance. However, few large-spatial-scale
studies of soil microbial biogeography actually sample the same locations at multiple
times. In this study, we investigated the spatiotemporal patterns of soil bacterial and
fungal communities along ca. 878-km in two contrasting seasons, because doing so can
help to evaluate the independent effects of time and space upon microbial community
variations. Our results provide solid empirical evidence that spatial heterogeneity is, by
far, more important than seasonality for predicting the spatiotemporal variation that
characterizes the microbial alpha and beta diversity of the studied landscape. Crucially,
our work showed that seasonal variation in microbial community composition was
driven by fast-changing environmental factors.

Although a few studies did point out that sampling time is less important than
sampling space on microbial community distributions over a large spatial scale (25, 26),
since microbial communities can differ even on the scale of meters or even centimeters
(27), no study to date provided the direct evidence required to compare the effects of
temporal and spatial dynamics on soil microbial community distributions on a large
spatial scale. Here, we provided field evidence that demonstrates spatial variability
exceeded seasonal variability on both bacterial and fungal spatiotemporal distributions
when assessed at a large spatial scale. However, the temporal signals could have been

FIG 4 Top 20 identity ESVs used for discriminating bacterial (a) and fungal (b) communities in winter and summer (detected by random forest model). The
assigned taxonomy of each taxon is displayed at the class level. The bubbles on the left show the relative abundances of those ESVs in winter and summer;
the middle bar plots show the importance value of each ESV estimated by random forest model; the right heat maps show the Spearman correlations between
the relative abundances of identity ESVs and environmental variables. SM, soil moisture; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; AP,
available phosphorus; AK, available potassium; TN, total nitrogen; TP, total phosphorus; TK, total potassium; Tem, average monthly temperature; Pre, average
monthly precipitation; *, P � 0.05; **, P � 0.01.
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masked by the presence of relic DNA (DNA released from dead microbes) in our data.
For example, in a study designed to disentangle the relationships of spatial, temporal,
and relic DNA effects on soil microbial communities on opposite hillslopes in Colorado
(USA), removing relic DNA from soil led to greater temporal variations (13). In our study,
total bacterial and fungal DNA was investigated without considering the effect of relic
DNA, which might underestimate the true extent of temporal variation in microbial
community dynamics.

We also uncovered evidence indicating that fast-changing environmental factors
underpin the mechanisms responsible for soil microbial seasonal variation in North
China Plain. Many previous studies that focused on seasonal variation in microbial
composition implicate that it is often induced by availability of nutrients, temperature,
and moisture (28, 29). However, not all taxa within the microbial community are equally
sensitive to temporal changes in the environment (30). In our study, we detected
certain taxa that contributed to the discrimination of winter and summer microbial
communities, most of them being Alphaproteobacteria, Gammaproteobacteria, and
Sordariomycetes, all of which had strong relationships to the fast-changing environ-
mental variables of soil moisture, dissolved organic nitrogen, temperature, and precip-
itation. Those temporally sensitive microbial taxa also support the findings that micro-
bial temporal variations were regulated by fast-changing environmental variables.
According to their life strategies, the Alphaproteobacteria and Gammaproteobacteria
have been assigned as copiotrophic bacteria (31). So, it is not surprising to find that
those copiotrophic bacteria responded to altered soil moisture, temperature, and
precipitation conditions, because their sensitivity to the first of these factors in partic-
ular has already been demonstrated (32, 33). Compared with microbial temporal
variation, microbial spatial variation is often affected by pH, an endemic soil property,
in both nature and agricultural ecosystems (34–36). Covariate environmental factors
likely were not the main mechanisms shaping microbial spatial variation, as we found
that controlling for their effects only marginally reduced the spatial effect. More than
60% of the variations in microbial composition were not explained by season, spatial
distance, or environmental variables in our study. The possible reason for this result
might be the existence of other unmeasured environmental factors that vary in space
and time (16, 17), including biotic interactions such as competition, mutualism, and
predation between microbial taxa (37, 38) and ecological processes such as dormancy
and persistence traits of microbial communities and their members (8).

Nonetheless, the bacterial and fungal communities both attained higher species
richness in the summer; they showed lower spatial turnover than in winter. Microbial
taxonomic richness is known to reflect metabolic diversity (39). Thus, the greater
species diversity in summer probably arose from high enzyme activity promoted by
favorable temperatures and light conditions characteristic of that season (40). The
higher similarity in community compositions across locations in summer versus winter
suggests that despite the higher richness of soil microbes in this season, many of these
microbes could be found across different locations, thereby reducing the beta diversity
of these organisms at the regional scale. Even though fungi and bacteria displayed
similar degrees of spatiotemporal variation in this study, the respective influence of
environment and spatial distance upon bacterial and fungal alpha and beta diversities
was distinct. Environmental variables were able to explain nearly twice the variation in
bacterial than in fungal alpha diversity; this might suggest that fungal communities are
less responsive to seasonal changes than bacteria. However, spatial distance exerted a
larger effect on the beta diversity of fungi than on that of bacteria. The weaker
environmental effect on fungal alpha diversity coupled to the stronger spatial effect on
fungal beta diversity could be linked and tied to the fact that bacteria are more apt to
be affected by local changes in soil properties (25), while the evolved life history of
fungi (hyphae formations and viable durable spores) make them more tolerant of
sudden environmental changes (41). Moreover, the generally greater individual body
size of fungal than bacterial members of the community would entail more severe
dispersal limitations (42, 43). This could result in larger spatial distance effect as well as
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the priority effect—those microorganisms first arriving at a site for colonization can
significantly affect the establishment of later arriving species—which would have
greater influence on the fungal community than on the bacterial community (41, 44),
thus contributing to the larger spatial effect we found in China.

Although the soil microbial community showed clear seasonal variability within
sampling sites, the effect of spatial heterogeneity was far more important than season
in regulating the compositions of both bacteria and fungi at the large spatial scale.
Fast-changing environmental factors affected by time were thus contributing to the
mechanisms driving microbial temporal variation. These results indicate that, to some
extent, microbial distribution patterns at a large spatial scale can be roughly predicted
by using data obtained in snapshot studies, since the temporal variation may be
explained by environmental factors. But caution should be taken when interpreting our
results, given that only two time points, summer and winter, were included in our
study. In the temperate zone, plant productivity peaks in the summer because of the
favorable temperature and light conditions, whereas photosynthate inputs are consid-
ered negligible in winter when it is cold and there is too little light (15). Accordingly,
examining only those two seasons would probably lead to the most pronounced
environmental difference in natural ecosystems. However, crop management practice
time points (e.g., fertilization, planting, and harvest of wheat) could also have induced
significant changes in microbial temporal variation (45, 46) in the wheat field landscape
studied here. The limited time points used in this study might thus underestimate true
microbial temporal variation; hence, more time points should be included when
designing future similar studies (including those of microbial biogeography). To con-
clude, investigations of soil microbial ecology in both space and time are those which
are most likely to provide a richer comprehensive understanding of the key factors
regulating the biodiversity of the soil ecosystems.

MATERIALS AND METHODS
Soil sampling. Our sampling sites were located in North China Plain, where winter wheat cultivation

has been ongoing for more than 40 years (36). To explore microbial spatiotemporal distributions during
the winter wheat growing season, 45 topsoil (0 to 15 cm) samples were collected from 9 sites at each
time point—in November 2014 after irrigation and fertilization, and again in May 2015, nearly 3 weeks
before harvest—for a total of 90 samples. The 9 sites located on North China Plain spanned ca. 878 km
(see Fig. S1 in the supplemental material). Since its soils are highly heterogeneous, 5 plots (4 in corners
and 1 in center) were set up for collecting soil samples within a 100-km2 quadrat in each site, with any
two plots at least 5 km apart. To collect representative soil samples per plot, a cost-effective and optimal
heterogenous site sampling method compositing (47) was used. Specifically, 12 cores were collected by
drill (3-cm diameter) in each plot and then mixed together to form a composite single sample (Fig. S1).
All these samples were then delivered on ice to the lab within 3 days. There, they were sieved through
a 2-mm mesh and divided into two subsamples: one stored at 4°C for the analysis of soil physical and
chemical properties and the other stored at �20°C for the DNA extractions. Latitude and longitude
information were collected by global positioning system (GPS) when sampling. Corresponding average
monthly temperature (Tem) data in November 2014 and May 2015 were downloaded from MOD11C3 in
Modis (https://terra.nasa.gov/about/terra-instruments/modis), and likewise, the average monthly precip-
itation (Pre) data for both times were acquired from the GPM_3IMERGM database (https://disc.gsfc.nasa
.gov/datasets/GPM_3IMERGM_06/summary).

Soil physical and chemical property analyses. Soil pH was measured with a pH meter (Thermo
Orion-868; Thermo Fisher Scientific, MA, USA) in a 1:5 soil-to-water ratio. Soil moisture (SM) was
measured by the gravimetrical method. Dissolved organic carbon (DOC) extracted by deionized water
and dissolved organic nitrogen (DON) extracted by 0.5 M K2SO4 were determined by an organic
carbon-nitrogen analyzer (Shimadzu, Kyoto, Japan). Available phosphorus (AP) extracted by 0.5 M
NaHCO3 and total phosphorus (TP) were measured by the molybdenum blue method, while available
potassium (AK) extracted by 1 M CH3COONH4 and total potassium (TK) were measured using the flame
photometry method. Organic carbon (OC) was determined by applying a traditional dichromate oxida-
tion titration. Total nitrogen (TN) was measured via combustion. All of these measurements were
according to the instructions described in our previous study of the biogeographical distribution of
bacterial communities in wheat fields (36).

Microbial community analysis. Soil nucleic acids of all the samples (n � 90) were extracted using
the FastDNA Spin kit for soil (MP Biomedicals, Santa Ana, CA) and purified by the Ultra Clean 15 DNA
purification kit (MO BIO, Carlsbad, CA, USA). Next, the DNA concentration of each sample was quantified
in a NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, Germany), after which it was
stored at �20°C for later sequencing.
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The primer pair 515F (5=-GTGCCAGCMGCCGCGGTAA-3=) and 806R (5=-GGACTACHVGGGTWTCTAAT-
3=) was used to amplify the 16S V4 hypervariable region (48), and likewise, the ITS3 (5=-GCATCGATGA
AGAACGCAGC-3=) and ITS4 (5=-TCCTCCGCTTATTGATATGC-3=) primer pair was used to amplify the fungal
ITS2 region (49). Each sample was amplified in a 30-�l reaction mixture with 15 �l Phusion high-fidelity
PCR master mix (New England BioLabs), 0.2 �l each of forward and reverse primers, and ca. 10 ng of
template DNA. The reaction conditions for the 16S V4 region consisted of 30 cycles of denaturation at
94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s; those for the ITS2 region consisted
of 30 cycles of denaturation at 98°C for 10 s, annealing at 50°C for 30 s, followed by extension at 72°C
for 30 s. All the PCR products were purified by a QIAquick PCR purification kit (Germany Qiagen) and
quantified in the NanoDrop ND-1000 spectrophotometer. These purified PCR products was amassed
together for Illumina MiSeq sequencing.

The paired-end raw reads were merged by FLASH (50), and ensuing merged reads were then
assigned to each sample based on unique barcodes. The QIIME2 2018.08 pipeline was used for sequence
quality control and to estimate their diversity. The Deblur algorithm was used, at single-nucleotide
resolution, to reduce the inherent noise in the PCR and DNA sequencing (51). According to the merged
sequence quality, all sequences were trimmed to 280 bp for 16S and 180 bp for ITS, to avoid introducing
study-specific biases. This resulted in exact sequences variants (ESVs) having a high resolution exceeding
the 97% identity threshold for operational taxonomic units (OTUs). After Deblur denoising, a de novo
chimera filtering method, applied with vsearch, was used to remove any chimeras. Taxonomic classifi-
cation of the ESVs was carried out by applying the prefitted sklearn-based taxonomy classifier to the Silva
database (132 release) for 16S, and likewise to the UNITE database (17-12 release) for ITS at a 99% shared
identity. Singletons were filtered out, and 9,127 sequences for 16S and 14,313 sequences for ITS were
randomly selected to rarify the data sets to the same sampling effort for alpha and beta diversity
comparisons.

Statistical analysis. The relative importance of the nine sites and two seasons for explaining the
variation in environmental variables and the number of microbial (bacteria and fungi) ESVs were
evaluated by two-way analysis of variance (ANOVA). The permutational multivariate analysis of variance
(PERMANOVA) in the R vegan package was used to test the variations in microbial community structure
as explained by sites and seasons. Relationships between the environmental variables and the number
of microbial ESVs were calculated by stepwise multiple regression models, while the contribution of
environmental variables to microbial community structure based on Bray-Curtis (relative abundance) and
Jaccard (presence/absence) distance matrices were assessed by PERMANOVA. Microbial distance-decay
relationships were estimated between microbial Jaccard dissimilarity and geographic distance.

Variation partitioning (52) was used to quantify the relative importance of four groups of predictors,
namely, fast-changing environmental properties (SM, DON, DOC, AP, AK, Tem, and Pre), slow-changing
environmental factors (pH, OC, TN, TK, and TP), season, and space, on the variation observed in soil
microbial community composition. Latitudinal and longitudinal site data of each site were transferred to
rectangular data to represent spatial distance by function pcnm(), and variation partitioning analyses
were conducted with function varpart() in the vegan package for R. All the environmental variables were
standardized by transforming their values to Z-scores, so as to remove the unit difference of each
variable. Visualization of the variation partitioning result was performed by function upset() in the UpSetR
package for R. Environmental distance was calculated as the Euclidean distance between sites based on
all the measured environmental variables. Partial correlations were performed by rda() in the R vegan
package to estimate one factor’s influence upon microbial variation when controlling the other ones. To
find the best discriminant microbial ESVs in the two seasons, classification random forest analysis was
applied by using sklearn module in Python v3.6. Spearman correlations were used to estimate the
relationships between those identity ESVs and the environmental variables. Plots were drawn by ggplot2
in R 3.4.3.

Data availability. The raw sequencing data for bacterial and fungal communities have been
submitted to the National Center of Biotechnology Information (NCBI) Sequence Read Archive under
accession number PRJNA508409.
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