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ABSTRACT

Genomic identification of driver mutations and
genes in cancer cells are critical for precision
medicine. Due to difficulty in modelling distribution
of background mutation counts, existing statistical
methods are often underpowered to discriminate
cancer-driver genes from passenger genes. Here
we propose a novel statistical approach, weighted
iterative zero-truncated negative-binomial regres-
sion (WITER, http://grass.cgs.hku.hk/limx/witer or
KGGSeq,http://grass.cgs.hku.hk/limx/kggseq/), to
detect cancer-driver genes showing an excess of
somatic mutations. By fitting the distribution of
background mutation counts properly, this approach
works well even in small or moderate samples. Com-
pared to alternative methods, it detected more sig-
nificant and cancer-consensus genes in most tested
cancers. Applying this approach, we estimated 229
driver genes in 26 different types of cancers. In silico
validation confirmed 78% of predicted genes as likely

known drivers and many other genes as very likely
new drivers for corresponding cancers. The techni-
cal advances of WITER enable the detection of driver
genes in TCGA datasets as small as 30 subjects and
rescue of more genes missed by alternative tools in
moderate or small samples.

INTRODUCTION

It is well known that genomic aberration in somatic cells
makes important contribution to development of cancers
(1). Mutations that confer selective growth advantage to
cancer cells are called as cancer-driver mutations (2,3);
a gene harboring driver-mutations is named as a cancer-
driver gene. It has been established, for example, that mu-
tations in the two driver genes TP53 and PIK3CA con-
tribute to many types of cancer (4). However, cancers
are also known to be highly heterogeneous (5) and many
driver genes of most cancers-specific remain to be identified.
Therefore, a full landscape of driver-genes remains unavail-
able for most cancers, although the genes are fundamental
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for early diagnosis, identification of effective drug targets
and precise treatments (2).

There are generally two existing strategies to detect can-
cer driver genes with somatic mutations, background mu-
tation rate (BMR) and ratiometric. The BMR-based meth-
ods evaluate whether a gene has more somatic mutations
than expected; examples include MutSigCV (6) and Mu-
SiC (7). The expected number of mutations is estimated by
multiple predictors including base context, gene size and
other variables of genes. The ratiometric-based methods de-
tect cancer-driver genes according to the composition of
mutation types normalized by the total number of muta-
tions in a gene. For instance, the ratiometric 20/20 rule
assessed the proportion of inactivating mutations (includ-
ing synonymous mutations) and missense mutations (3).
Oncodrive-fm (8) and OncodriveFML (9) integrated mu-
tations’ functional impact into the ratiometric evaluation.
OncodriveCLUST considered the positional clustering of
mutation patterns (10). A method named 20/20 plus (11) ex-
tended the ratiometric idea in the 20/20 rule and integrated
18 additional features to predict cancer-driver genes by a
machine learning approach. It also generated statistical P-
values of the prediction scores by Monte Carlo simulations.
Recently, negative binomial (NB) regression was used to es-
timate the synonymous mutations and then test the dN/dS
ratio for detecting driver genes in multiple studies (12–14).

Although the general principles of both strategies are
simple, three key technical issues remain unsolved. First,
the statistical P-values produced by existing cancer-driver
gene methods did not follow uniform distribution gener-
ally (11), implying the underfitting of background muta-
tions. Although simulation or permutation can be used to
produce valid P-values, a good fitting of background genes
is critical for accurate discrimination of true driver genes
from noise background genes. Second, existing statistical
tests are generally underpowered to detect driver-genes with
small or moderate effect size. This issue will become more
severe when the sample is not large. It seems the NB regres-
sion is a promising framework for estimating cancer-driver
genes (12–14). However, when sample size is not large, an
inflation of zero-mutation genes may distort the NB dis-
tribution and their estimated dN/dS ratio may be unsta-
ble. The above-mentioned supervised machine learning ap-
proaches’ integration of common gene features beyond lo-
cal samples may help enhance the power (11). However,
given the high heterogeneity in cancers (6), adding more
common features may not work for unique driver genes of a
cancer. The trained model for known driver genes may also
have limited power for detecting new driver genes. Finally,
the predicted cancer-driver genes by different tools do not
generally agree with each other (2). It is often laborious and
subjectively biased to combine their results. Therefore, more
powerful methods are pressingly needed for unraveling a full
spectrum of cancer-driver genes.

Here, we describe an extended negative-binomial regres-
sion, weighted iterative zero-truncated negative-binomial
regression (WITER), to detect cancer-driver genes by
somatic mutations [including single nucleotide variants
(SNVs) and short insertions and deletions (InDels)]. This
approach belongs to the unsupervised method category and
therefore does not suffer from training bias. The method

has a unique three-tier structure for fitting the somatic mu-
tations of background genes even in small samples. We
then systematically compare its performance with alterna-
tive methods in 11 cancers. A comprehensive landscape of
driver-genes is constructed by WITER and analyzed to in-
vestigate the common and unique insights across 26 cancers.

MATERIALS AND METHODS

The statistical framework for detecting cancer-driver genes
by somatic mutations in cancers

We propose a statistical framework, WITER, for detecting
cancer-driver genes by somatic mutations in cancers. The
main input is somatic mutations (including SNVs and In-
Dels) in samples from cancer patients. The main output is
a list of P-values for excess of somatic mutations at genes;
a significant P-value suggests a gene that has excessive so-
matic mutations probably because these mutations confer
selective growth advantages to cancer cells. The framework
has a three-tier structure to improve the modelling of back-
ground mutations in passenger genes for a more powerful
estimation of driver genes (See the diagram in Figure 1). In
theory, the framework and the model are independent of
types of somatic variants to be tested. However, the present
paper focuses on non-synonymous and splicing variants
because of abundant validation data and resource data in
public domains. The approach and auxiliary functions have
been implemented into a user-friendly software tool which
is publicly available at http://grass.cgs.hku.hk/limx/witer.

Tier I: an iterative zero-truncated negative-binomial regres-
sion to model background somatic mutations. The core
method in the frame is an iterative zero-truncated negative-
binomial regression (ITER), which estimates baseline so-
matic mutation counts of genes on the genome. The dif-
ference between the observed mutation counts and the esti-
mated counts of a gene measures the excess of somatic mu-
tations at a gene in a cancer. The assumption is that a gene
with significant excess of somatic mutations may confer se-
lective growth advantage in cancer as a driver gene (6). De-
note the mutant allele counts at a variant j in a background
gene i as ci, j and the total alleles of mi variants in this gene
is, yi. We observed a large over dispersion in the distribution
of yi (See examples in Supplementary Figure S1). Therefore,
we assume yi follows an NB distribution:

yi =
∑mi

j=1
ci, j ∼ NB (μi , θ ) ,

where μi is the expected number of mutations and θ is a dis-
persion parameter. The probability mass function (PMF)
is f (x|μi , θ ) = �(x+θ )

�(θ)•x! • μx
i θθ

(μi +θ )x+θ , where �() is the gamma
function and x = 0,1,2, . . . .

As somatic mutation may be a rare event, many genes
have no somatic mutations in a sample of typical size. The
proportions of genes without somatic mutations in real data
are then much larger than the probability of the NB model
at x = 0 (See examples in Supplementary Figure S2). There-
fore, we proposed to use a zero-truncated negative binomial
(ZTNB) distribution to model the mutant allele counts of
background gene i. We showed the ZTNB model fitted the

http://grass.cgs.hku.hk/limx/witer
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Figure 1. The diagram of the statistical framework for detecting cancer-driver genes. This framework includes three tiers denoted by the dashed rectangles.
The first tier is an ITER. The second tier is a WITER. The third tier is the integration of reference samples. The unique components of each tier are
marked by different colors. The major inputs are somatic mutations in different cancer patients. The outputs are P-values for excess of somatic mutations
of individual gene in the cancer samples.

mutations counts better than the NB and other alternative
models in the ‘Results’ section (Table 2). The PMF of ZTNB
is:

g (x|μi , θ ) = f (x|μi , θ )
1 − f (0|μi , θ )

, x = 1, 2, · · · .

Based on the ZTNB, we constructed a generalized lin-
ear regression model to estimate mutant allele of non-
synonymous and splicing variants in a gene i by multiple
covariables:

ηi = log (μi ) = β0 + β1
×[x1, length of genomic regions of the variant types ]
+β2 × [x2, . . .] + . . . + βm × [xm, . . .] ,

where log(μi ) is the link function and the
βi (i = 0, 1, 2, . . . , m) are the regression coefficients.

The ZTNB regression is proposed to model somatic
mutations in background or passenger genes. Besides the
length of genomic regions, predictors in the regression
model are flexible and depend on mutation types. Previous
studies showed somatic mutation rates tend to be higher in
genes with low expression levels, repressed chromatin, DNA
modification and late replication times in cancer cells (6,15–
17). Therefore, the four types of predictors are adopted
in the prediction models. Besides, copy number variations
(CNVs) occur in cancer cells frequently (18). It may be nec-
essary to recalibrate the background mutation rate by the

CNVs of background genes although the CNVs of driver
genes may also contribute to cancers (18). In addition, as-
suming the synonymous and non-synonymous mutations in
the same passenger genes have similar mutation rate for pas-
senger genes, we also consider the number of synonymous
mutations in local cancer samples as a predictor. Besides,
we add gene’s constraint scores for non-synonymous muta-
tions in natural populations as a predictor (19), which as-
sumes a gene having higher mutation potential in germline
cells tends to have higher mutation potential in somatic cells
as well. There are in total 10 predictors in the present paper,
half of which are cancer-specific (See details in Supplemen-
tary Table S2). All the 10 predictors are used to estimate
log(μi ). This model is also open for other types covariables
as long as they can improve the prediction accuracy. Statis-
tically insignificant predictors will have little contribution
to the estimation.

The coefficients of the predictors are estimated by max-
imum likelihood with a quasi-Newton method. With the
estimated coefficients, the deviance residues are calculated
and standardized as éi (See the detailed methods in the sup-
plementary notes). A large éi means the observed number
of somatic mutations is larger than the expected mutation
counts under null hypothesis. The corresponding P-value is
then approximated by,

pi = 1 − �(éi ),
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where �(x) is the cumulative distribution function of the
standard normal distribution. We demonstrate the P-values
follow uniform distribution in real and simulated data ap-
proximately [Figures 2 and 3A; Supplementary Figures S3
and S4].

Note the above ZTNB-based regression model esti-
mates somatic non-synonymous mutations among passen-
ger genes. The mutations in true driver genes, although they
may be only a small fraction of the entire genome, might
harm the estimation to some extent. In order to reduce dis-
tortion from driver genes, we further propose to perform
the regression under an iterative procedure:

Step 1: fit the ZTNB regression model and calculate P-
vales for all genes.

Step 2: exclude significant genes by a loose P-value cutoff
corresponding to Benjamini–Hochberg (BH) false discov-
ery rate (FDR) q value ≤ 0.1.

Step 3: fit ZTNB regression model with the retained genes
and calculate P-values.

Step 4: repeat Step 2 and 3 until there is no extra signifi-
cant genes according to the same P-value cutoff.

The fitted ZTNB regression model in the last iteration is
closest to the null hypothesis model and is then used to re-
calculate deviance residuals and P-values of all genes (in-
cluding the ones excluded during iteration).

Tier II: a weighting scheme to prioritize variants of high so-
matic mutation potential in cancer samples. As the muta-
tions are not functionally equal, we further extend ITER
to WITER which integrates prior weights of mutations to
boost power. Assume a variant j of gene i has a score,
si, j ∈ [0, 1], indicating its cancer driver potential. We bin si, j
as an integer score, wi,i, by the ceiling function of si, j/c, i.e.,
wi, j = [si, j/c], where c ∈ [0, 1]. The integer scores are then
used as prior weights for the mutation. The weighted muta-
tion allele count is:

ỳi =
∑mi

j=1
ci, j ∗ wi, j .

We also assume the weighted counts ỳi approximately fol-
low a ZTNB distribution:

ỳi ∼ ZTNB
(
μ̀i , θ̀

)
,

where μ̀i is the expected weighted count of mutations and
θ̀ is a dispersion parameter of the ZTNB distribution. The
ITER is a special case of WITER when wi, j = 1 for all vari-
ants. After replacement of original counts (yi) with weighted
counts (ỳi ), the above iterative ZTNB regression procedure
is carried out to test whether a gene has excess of weighted
mutation alleles. The bin width c is empirically determined
by an automated exploration procedure in 100 values from
0.01 to 1.00 with an interval of 0.01. An optimal c is defined
as the value minimizes the departure of P-values from uni-
form distribution measured by the mean absolute log2 fold
change (MLFC) (11) and maximizes number of significant
genes (FDR q ≤ 0.05), according to a balanced ranking.

In the present study, we built a model to predict can-
cer driver potential of variants, by a random forest model
trained with a large cancer somatic mutation database,
COSMIC (V83). (See details in the Supplementary Notes).

One can also resort to other approaches to produce the
prior weights.

Tier III: a strategy of integrating independent reference sam-
ples to stabilize the regression model for small samples.
When the sample size is small, it is difficult to build a sta-
ble regression model. Note that the key idea of ITER and
WITER is to build a prediction model for background pas-
senger genes. When the mutation rates of passenger genes
of two cancers are similar, it may be workable to integrate
background genes of one cancer into another cancer. So we
propose a strategy to integrate somatic mutations from ref-
erence sample for constructing a stable ITER or WITER
model in small samples. This is carried out at two stages.

i. The above ITER or WITER is used to produce P-values
for excess of somatic mutations at genes in a reference
sample which have enough variants. Genes with P-values
less than a very loose cutoff, say FDR q 0.3, are then
excluded.

ii. The somatic mutations of retained genes are integrated
with the local small sample and input into ITER or
WITER to build a new model. The excess of somatic
mutations and corresponding P-values at genes are cal-
culated based on the new model.

Curation of cancer-specific predictors of somatic mutations

We collected four types of cancer-specific predictors for so-
matic mutations, CNV, gene expression, DNA methylation
and chromatin accessibility by ATAC-Seq. All data were
produced from TCGA cohorts and the pre-processed data
were downloaded from https://xenabrowser.net. The down-
load links and processing methods of the data are described
in the Supplementary Notes.

Performance comparison with alternative tools

There have been multiple tools for detecting cancer-driver
genes (2). According to an evaluation study (11), three tools
(MutSigCV (6), OncodriveFML (9) and 20/20plus (11))
having relatively better performance were chosen for com-
parisons in the present study. We compared their P-value
distributions and number of significant genes to ITER and
WITER. As MutSigCV and OncodriveFML were also de-
veloped under an unsupervised strategy, we chose them as
the main comparison targets. The 20/20plus belongs to a
supervised strategy which may be more suitable for known
cancer-driver genes. To be fair, we only used it as supple-
mentary comparison. In addition, a recent tool dNdScv (12)
which used NB regression to model synonymous mutations
for cancer-driver gene estimation was also considered for
the comparison. The details of the usage of the alternative
methods are described in Supplementary Notes.

Evaluation metrics in the performance comparison

We adopted four evaluation metrics for performance com-
parison, observed versus theoretical P-values, number of
significant genes, the number and percentage of signifi-
cant genes registered in Cancer Gene Census (CGC) (20).

https://xenabrowser.net
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Figure 2. QQ plot of background gene P-values produced by four methods in 11 cancers. The P-values less than a cutoff according to FDR q 0.05 were
excluded. Among the 34 collected cancers, 11 cancers have 25 000 variants with somatic mutations in the datasets and are used for the comparison.

The former three were also major metrics in an evaluation
framework of cancer driver gene prediction method (11).
The CGC dataset contained 699 manually curated cancer
genes. The departure of P-values from uniform distribution
was measured by MLFC (11). When there is no departure,
the MLFC is zero. An approximately valid statistical test
should lead to a MLFC close to zero in background (or
passage) genes. MLFC greater than 0.3 indicates serious de-
flation or inflation problem (11). We also used the distribu-
tion of Quantile-Quantile (QQ) plot to examine the distri-
bution of P-values, particularly that of the small P-values.
The Benjamini–Hochberg procedure was used to control
false discovery rate (q≤0.05) for reporting significant genes.

Dataset of somatic mutations

We partitioned a curated full somatic mutation dataset by
Tokheim et al., (11) into 34 sub-datasets according to the
cancer types (See Supplementary Table S1). Eleven cancer
types contained 2,800 or more variants (See the full list in
Supplementary Table S1). These cancer samples were called
relatively larger dataset throughout the paper and used for
the method comparison. Their sample sizes ranged from
142 to 1093. The ratios of variant number to sample size
in the 11 cancers ranged from 50 to 327. The remaining 23
cancers with a smaller number of variants were only used in
the application analysis. The names, variant numbers and
sample sizes of all the cancers can be seen in Supplemen-
tary Table S1.

In silico validation by PubMed search

We used PubMed search function to coarsely validate
the implication of detected significant genes to the cor-
responding cancers. The underlying assumption is that
the papers co-mentioning a gene and a cancer name
in the title or abstract are likely to implicate the relat-
edness between the gene and the cancer. The more hit
papers, the more likely the gene is related to the cancer.
This is a quick in-silico validation although it may be
rough. We employed the web application programming
interfaces (APIs) of PubMed to execute the search. The
search link was, http://eutils.ncbi.nlm.nih.gov/entrez/
eutils/esearch.fcgi?db=pubmed&term=‘DiseaseNames
(inlcuding homonymies)’[tiab]%29+AND+‘GeneSymbol
(including RefSeq mRNA IDs)’ [tiab]. The search terms
of each cancer types are in Supplementary Table S1. The
query engine responded PubMed IDs and relevant data of
the papers, if available.

RESULTS

Features correlated with somatic mutations of genes in cancer
samples

We first investigated association of the 10 explanatory fea-
tures (or predictors) with somatic mutation counts under
the ZTNB regression in 11 cancers (See coefficients and P-
values in Table 1). While confirming previous findings that
somatic mutations tend to be more frequent in genes with

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=%E2%80%98DiseaseNames
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Figure 3. Performance comparison of different methods for detecting cancer driver mutation in 11 cancers. (A) The MLFC of four methods; (B) the number
of significant genes; (C) cancer consensus significant genes; (D) the number of unique significant genes. The P-values less than a cutoff according to FDR
q 0.05 are excluded. The full names of cancers are in Supplementary Table S1.

low expression levels, repressed chromatin, and late repli-
cation times in most cancer (6,15–17), there were also four
other interesting patterns. First, for gene expression and
chromatin state, it seemed the cancer non-specific features
were more significantly correlated with the somatic muta-
tions than the cancer-specific ones in most cancers. For ex-
ample, the averaged expression level in cancer cell lines had
much more significant P-values in 10 out of the 11 cancers
than the gene expression level in the matched cancer tis-
sues. The chromatin state assayed by HiC from the K562
cell line was much more significant than that assayed by
cancer-matched ATAC-Seq in 10 out of the 11 cancers. The
absolute coefficient values of the former were also larger
than that of the latter in the 10 cancers. Note all the fea-
ture values were standardized to make the coefficients com-
parable. Second, the significance level of most features var-
ied from cancers to cancers. This was particularly true for
three features, CNV, methylation and constraint score. For
instance, CNV had a very significant P-value, 9.71E-20, in
LUAD while its P-value was only 0.16 in BLCA. For methy-
lation, its smallest P-value occurred in KIRC (P = 1.57E-9)
while it had large P-values (>0.3) in four cancers. Third,
besides the varied significance level, some features’ associa-
tion directions were also different in different cancer types.
The constraint score had positive significant coefficients in
BRCA, KIRC and UCEC while it had negative significant
coefficients in LUAD, LUSC and SKCM. While genes with
higher CNV tended to have more somatic mutations in four
cancers (BRCA, HNSC, LUAD and LUSC), the tendency

got reversed in KIRC. The underlying mechanisms are un-
clear. Fourth, five cancer non-specific features (exon length,
number of synonymous mutations, replication timing and
cell line expression levels and HiC) had extremely signifi-
cant P-values for all cancers. These features dominated the
prediction performance in the ZTNB model. The dominant
impact of these cancer non-specific features makes the pro-
posed method independent of cancer-specific resources and
thus more feasible in practice.

Distributions of P-values and fitness of the ZTNB model for
background mutation genes

We then investigated the type 1 errors of WITER and ITER
according to the distribution of P-values. When the overall
deviation from uniform distribution was measured as the
MLFC for insignificant P-values (FDR q>0.05) (11), the
WITER had very small MLFC (<0.066) in all the 11 tested
cancers (Figure 3A). The smaller MLFC, the closer to uni-
form distribution. We also chose two alternative approaches
[MusigCV (6) and OncodriveFML (9)] which achieved the
best performance among seven widely used unsupervised
tools (11) and one recent popular method [dNdScv (12)]
for the comparison. Among the five compared methods,
ITER had the second smallest MLFC. MusigCV (6) had the
largest MLFC values, in which most values were over than
0.5. In terms of the MLFC, the OncodriveFML was bet-
ter than MusigCV but worse than ITER. dNdScv had sim-
ilar MLFC with OncodriveFML. As shown in the QQ plot
(Figure 2), the main problem in MusigCV, OncodriveFML
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Table 1. The significance level of covariates in 11 cancer datasets

Predictors BLCA BRCA COAD HNSC KIRC LUAD LUSC OV SKCM STAD UCEC

RegionLength 0.23 (0) 0.27 (0) 0.23 (0) 0.27 (0) 0.21 (0) 0.29 (0) 0.26 (0) 0.21 (0) 0.29 (0) 0.24 (0) 0.24 (0)
SynonymousVariant 0.31

(1.37E-247)
0.43 (0) 0.35

(3.65E-225)
0.47 (0) 0.31

(1.13E-264)
0.65 (0) 0.53 (0) 0.33

(8.95E-230)
0.73 (0) 0.43 (0) 0.34

(7.49E-265)
TissueExpression 0.04

(7.09E-05)
0.06
(1.92E-11)

-0.08
(6.78E-09)

-0.05
(8.97E-07)

0.07
(4.02E-11)

-0.21
(1.16E-99)

-0.17
(1.42E-52)

-0.02 (0.10) -0.36
(6.06E-166)

-0.09
(2.35E-14)

0.07
(4.16E-13)

CellLineExpression -0.07
(2.52E-14)

-0.12
(4.12E-40)

-0.20
(2.94E-79)

-0.21
(2.49E-137)

-0.04
(1.15E-05)

-0.32 (0) -0.28
(3.95E-235)

-0.08
(9.26E-17)

-0.28
(2.97E-206)

-0.23
(1.43E-154)

-0.11
(4.79E-33)

ReplicationTiming 0.10
(9.00E-19)

0.16
(5.05E-56)

0.25
(1.90E-90)

0.28
(1.89E-172)

0.04
(1.37E-04)

0.43 (0) 0.37
(2.63E-295)

0.13
(1.99E-29)

0.39
(2.92E-283)

0.30
(1.51E-177)

0.12
(6.69E-26)

CNV 0.01 (0.16) 0.02
(1.95E-04)

-5.25E-03
(0.30)

0.04
(8.51E-10)

-0.04
(3.44E-14)

0.07
(9.71E-20)

0.07
(7.16E-18)

-8.85E-03
(0.48)

NA 0.02
(1.35E-03)

9.71E-03
(0.04)

HiC -0.08
(7.05E-18)

-0.13
(5.99E-43)

-0.19
(4.53E-59)

-0.23
(1.16E-127)

-0.02 (0.03) -0.34 (0) -0.30
(3.16E-213)

-0.10
(1.47E-20)

-0.30
(2.05E-233)

-0.24
(3.87E-129)

-0.07
(1.42E-14)

ConstraintScore 0.02 (0.02) 0.05
(5.10E-11)

0.02 (0.02) -8.64E-03
(0.26)

0.04
(2.63E-06)

-0.05
(1.23E-12)

-0.07
(8.70E-17)

9.34E-03
(0.31)

-0.09
(6.37E-31)

-0.01 (0.07) 0.11
(5.25E-39)

ATACSeq -9.23E-03
(0.02)

-0.02
(2.66E-11)

-0.02
(1.56E-06)

-0.03
(1.27E-13)

1.65E-03
(0.67)

-0.06
(7.49E-47)

-0.04
(1.59E-21)

NA -0.05
(2.13E-24)

-0.03
(1.67E-11)

-5.32E-03
(0.13)

Methylation -2.27E-04
(8.63E-03)

-3.35E-04
(1.08E-06)

4.04E-05
(0.67)

2.74E-05
(0.73)

-4.26E-04
(1.57E-09)

2.55E-04
(0.02)

-6.81E-05
(0.34)

-3.05E-04
(7.06E-04)

-1.83E-04
(2.49E-03)

9.46E-05
(0.41)

-2.14E-04
(0.01)

Note: The coefficients are derived under the ZTNB model. The predictors are centered at median and scaled by median absolute deviation for standardization. The values in the brackets are P-values for the
significance of the coefficients calculated by Wald test. The full names of cancers are in Supplementary Table S1.

and dNdScv is their deflated P-values although the defla-
tion at small P-values genes is mitigated. Therefore, the pro-
posed ZTNB model produces relatively more valid uniform
distribution of P-values, which is a challenge in most exist-
ing approaches (11).

We also compared the goodness-of-fit of the ZTNB
model with three widely-used alternative models for mu-
tation counts of genes (Table 2). It turned out the ZTNB
model had the smallest Akaike information criterion (AIC)
values in all the 11 cancers, suggesting the best goodness of
fit among the four models (Table 2). The NB distribution
was the second-best model although its AIC values were
over 1000 larger than that of the ZTNB model in all cancers.
This comparison suggested the zero-truncation effectively
enhanced the fitting. The Poisson, either in the original ver-
sion or the zero-truncated version, fitted data poorly. Their
AIC values are much larger than that of the ZTNB. This
comparison suggested the usage of NB distribution mod-
eled the overdispersion better than the Poisson distribution.

WITER detected more significant genes in 11 cancers

We then compared the number of significant genes de-
tected by the five unsupervised approaches (WITER, ITER,
MutSigCV, OncodriveFML and dNdScv) in the 11 can-
cer datasets. Instead of following the conventional ‘pan-
cancer’ (all cancers) evaluation strategy (11), we made the
comparison for individual cancers, a more challenging sce-
nario because of smaller sample sizes. The significant genes
are determined according to FDR q-value 0.05. Among
four approaches (WITER, ITER, MutSigCV and Onco-
driveFML), WITER and ITER estimated the largest and
the second largest number of significant genes in 10 can-
cers (Figure 3B), respectively. WITER also detected more
significant genes than dNdScv and equal number of sig-
nificant genes in six and two cancers, respectively. dNdScv
was ranked in the second place according to the number
of significant genes and was followed by ITER. The Onco-
driveFML detects the minimal number of significant genes
in 10 out of the 11 cancers although it also integrates func-
tion prediction score CADD as priors (21). Given the cor-
rect type 1 errors, the more significant genes by WITER

than ITER suggests the integration of prior weights has a
potential to improve statistical power. Note that all the sub-
jects in the testing cancer datasets were excluded from the
COSMIC database to reduce circular reasoning when build-
ing the prior weights for WITER.

A critical next question is that whether the increased
number of significant genes by WITER or ITER are true
driver genes. As there are almost few true answers in the real
data, we adopted the Cancer Gene Census (CGC) list (20)
to partly answer this question. Among the four approaches
(WITER, ITER, MutSigCV and OncodriveFML), WITER
always led to the largest number of CGC significant genes
in 10 cancers (Figure 3C). It detected on average 4.5 and
8.7 more CGC significant genes in the 11 cancers than Mut-
SigCV and OncodriveFML, respectively. It also detected on
average 0.8 more CGC significant genes in the 11 cancers
than dNdScv. dNdScv was still the second-best method ac-
cording to the number of CGC genes. It detected the largest
number of CGC genes in two cancers. Again, ITER de-
tected more CGC significant genes than MutSigCV and
OncodriveFML. Moreover, besides the absolute number of
CGC significant genes, we also checked their percentage,
which might be proportional to the false positive rates to
some extent. The percentage varied from cancers to cancers
generally (See details in Table 3). Compared to MutSigCV
and dNdScv, WITER had higher or equal percentage in 6
out of the 11 cancers. However, the averaged percentages of
the five tools in the cancers are comparable generally while
MutSigCV and ITER had slightly higher percentage, 90.9%
and 88.5%, respectively.

Note that the genes beyond CGC list are not necessar-
ily spurious driver genes although the high percentage and
number of CGC genes are a strong sign of higher power.
Take two non-CGC genes for examples. The AJUBA gene
(P = 7.0E-9 in HNSC) is involved in the regulation of
NOTCH/CTNNB1 signaling and is an important driver
gene of HNSC (22,23). TLR4 (P = 5.0E-5 in STAD) is an
important member of Toll-like receptor (TLR) pathway and
mutations in the gene may disrupt innate immune signaling
and promote a microenvironment that favors tumorigenesis
(24) and it was associated with gastric cancer (25).
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Table 2. Akaike information criterion (AIC) of the various regression models

Poisson Zt- Poisson Negative Binomial Zt-Negative Binomial

BLCA 50439.28 49991.30 42766.17 40965.04
BRCA 93502.18 93343.70 60491.40 58701.48
COAD 55069.59 54675.87 40495.83 38459.15
HNSC 91759.62 91608.29 60737.90 59131.56
KIRC 49696.06 49152.82 38404.63 36484.36
LUAD 140194.62 140168.95 79081.09 78048.05
LUSC 79647.23 79409.43 55650.58 54129.60
OV 53288.73 52812.71 40753.37 38623.84
SKCM 126186.28 126133.21 70968.39 69622.20
STAD 63094.87 62754.31 48865.94 47114.14
UCEC 66024.20 65665.04 48584.07 46526.46

Note: The glm() function in R was used to fit the generalized linear model (GLM) of Poisson distribution. The glm.nb() function in the R package of
MASS was used to fit the GLM of NB distribution. The other two models were fitted by the R package of countreg. The full names of cancers are in
Supplementary Table S1.

Table 3. The percentage of the cancer consensus gene in the significant genes by different methods

WITER ITER MutSigCV oncodriveFML dNdScv

BLCA 56.7 63.2 83.3 100 77.3
BRCA 95.5 94.7 88.2 100 100
COAD 65.2 92.9 88.9 66.7 92.9
HNSC 73.7 73.3 83.3 77.8 72.2
KIRC 100 100 100 100 100
LUAD 90.9 100 84.6 100 64.7
LUSC 88.9 100 100 NA 72.7
OV 100 100 100 100 100
SKCM 78.6 80 71.4 57.1 80
STAD 100 88.9 100 NA 81.8
UCEC 85 81 100 66.7 90
Average 85 88.5 90.9 87.7 84.7

Note: The full names of cancers are in Supplementary Table S1.

Uniquely significant genes by individual approaches

We also investigated genes only significant in one of the
compared tools. WITER detected the largest number of
uniquely significant genes (FDR q≤0.05) in 7 out of the
11 cancer types. These genes were insignificant by Mut-
SigCV, OncodriveFML and dNdScv and would be ignored
(Figure 3D, See details in Supplementary Table S8). It also
detected the largest total number of uniquely significant
genes, 44, in all the 11 cancers, among which 21 (48%) genes
were in the CGC list, (enrichment P < 1E-16, by hyperge-
ometric distribution test in 19 198 protein coding genes).
The BLCA had the largest number of uniquely significant
genes, 12, by WITER among which four genes were CGC
genes. Some genes were well-known driver genes for BLCA,
e.g. ERBB2 (26,27). ERBB2 had 10 non-synonymous so-
matic mutant alleles in the BLCA samples. WITER cal-
culated a P-value 7.5E-5 at this gene. The P-values by
MutSigCV, OncodriveFML and dNdScv were 0.08, 0.96
and 0.003, respectively. dNdScv detected the second-largest
number of uniquely significant genes, 21, in all cancers
among which 16 ( = 76%) genes were in the CGC list. For
example, FAT1 was a dNdScv-unique significant and CGC
gene in 3 cancers (BLCA, LUSC and UCEC). However, it
had a long coding region (13.9 kb) and repressed chromatin
state (HiC score −13). After correction by the covariables,
WITER produced insignificant P-values 0.30,0.76 and 0.37
in BLCA, LUSC and UCEC, respectively. Therefore, it may
be questionable whether FAT1 is a true driver for the three

cancers. MutSigCV did not detect unique significant genes
in seven cancers. It detected in total eight uniquely signif-
icant genes in four cancers among which two ( = 25%)
genes were in the CGC list. For example, the gene, FBN2,
had 76 non-synonymous or splicing mutant alleles in the
LUAD samples and MutSigCV produced a P-value 4.28E-
07. However, it had a 9.1 kb coding region, 10 synonymous
mutant alleles and late replication timing and low expres-
sion in LUAD, WITER produced an insignificant P-value
0.17 for its excess of the adjusted non-synonymous or splic-
ing mutant alleles by the regression model. OncodriveFML
also detected in total eight uniquely significant genes in the
cancers, among which four (50%) genes were in the CGC
gene list. In the comparison, we ignored ITER because all
significant genes by ITER were also significant by WITER.

Rescued significant genes in smaller samples

As above CGC genes and literature survey might be biased
to known cancer genes, we further designed a sample-size
rescue experiment to compare their performance. We in-
vestigated how many significant genes detected in a large
sample were missed in smaller samples by a tool can be res-
cued by another tool in the same small samples. We ran-
domly drew six sub-samples of half size from the largest
dataset, BRCA and estimated cancer-driver genes by four
tools, MutSigCV, OncodriveFML, dNdScv and WITER.
As shown in Supplementary Table S6, using half samples,
WITER missed only ∼22% genes on average which were
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significant in the full sample by the same method. The us-
age of three other tools in the sub-sample rescued <1 of the
genes missed by WITER on average. dNdScv missed ∼33%
genes on average which were significant in the full sam-
ple by the same method. When the same half-size samples
were analyzed by WITER, it rescued ∼44% of the missed
genes by dNdScv. MutSigCV and OncodriveFML almost
rescued no genes missed by dNdScv on average. MutSigCV
missed ∼46% genes on average which were significant in
the full sample by the same method. When the same half-
size samples were analyzed by WITER, it rescued ∼47%
of the missed genes by MutSigCV. The usage of dNdScv
and OncodriveFML rescued 30% and 4% of genes missed
by MutSigCV. OncodriveFML missed ∼39% genes on av-
erage which were significant in the full sample by the same
method. When the same half-size samples were analyzed
by WITER, it rescued ∼65% of the genes missed by On-
codriveFML. The usage of MutSigCV and dNdScv rescued
∼19% genes missed by OncodriveFML. The higher propor-
tions of significant genes and rescued genes by WITER in
the sub-samples again showed that WITER had enhanced
power to detect driver genes that would be missed by alter-
native methods.

Performance in 23 cancer datasets with relatively small sam-
ples

Another important advantage of WITER is its ability to
detect cancer-driver genes in small samples with a usage
of reference samples. We applied it to other 23 cancers of
small samples and variants. We deliberately used two dif-
ferent reference cancers samples (BRCA and SKCM) with
low and high-background mutation rates to investigate how
WITER was sensitive to the reference samples. The results
showed three major patterns. First, the usage of the ref-
erence datasets substantially improved the distribution of
P-values. According to the QQ plots (Supplementary Fig-
ure S4), the P-value distributions of the background genes
(FDR q>0.05) with reference samples were very close to the
uniform distributions. In contrast, the P-values of the back-
ground genes without reference sample were weird and did
not follow the uniform distribution. Second, WITER with
reference samples detected significant genes even in cancers
with very small sample size (See the results in Supplemen-
tary Table S7). Among the 18 cancers with one or more sig-
nificant genes (FDR q≤0.05), two cancers had <60 subjects,
i.e. LUSE (n = 30) and DLBCL (n = 56). Third, it seemed
the difference in reference samples had small and simple
influence on the number of significant genes. A low back-
ground mutation rate reference sample (e.g. the BRCA) led
to slightly more significant genes than the one (SKCM)
of high-background mutation rate for the tested sample.
Moreover, we noted that almost all significant genes accord-
ing to the high background mutation rate reference sam-
ple were also significant according to the low background-
mutation rate reference sample. Therefore, false positive
findings can be easily controlled by using a high background
mutation rate reference sample in practice although this
may result in false negatives. Anyhow, the overlapping of the
significant genes according to the two extreme references
was high.

It should be also noted that the additional significant
genes according to the low background mutation rate ref-
erence sample are not necessarily spurious driver genes. For
instance, KIT is a significant driver gene of LAML based on
the BRCA reference (P = 5.43E-5) but insignificant based
on SKCM reference (P = 8.9E-4). KIT is a well-known
driver gene of acute lymphoblastic leukemia (28,29). To re-
duce possible false positive results rigorously, we still used
the results from the conservative reference sample, SKCM,
for the subsequent analysis.

Factors influencing power of WITER

We also investigated factors influencing the number of sig-
nificant genes by WITER, which implies factors affecting
its power. In a linear regression model, the sample size was
correlated with the number of significant genes, with a co-
efficient of determination R2, 0.19 (Supplementary Figure
S5). According to the fitted model, an estimation of sam-
ple size, ∼410, was required to detect 10 significant genes
by WITER. Meanwhile, the number of significant genes
was also related with the exome-wide background mutation
rate, R2 = 0.12 (Supplementary Figure S6). For example,
the LUSC had a high exome-wide background mutation
rate, 305 mutations per exome. A relatively smaller sample,
175, had led to detection of 9 significant genes in real data.
Therefore, when the sample size and number of mutations
per sample enter as explanatory variables in a linear regres-
sion model, both have significant and positive correlation
with the number of significant genes (P = 1.8E-4 at the sam-
ple size and P = 1.8E-4 at number of mutations per exome).
The coefficient of determination R2 increased to 0.63.

The landscape of driver-genes at 26 cancer types

WITER’s effectiveness in small samples enabled the produc-
tion of a comprehensive landscape of driver-genes in multi-
ple cancer types. It detected one or more significant driver
genes in 26 cancer types, out of which 13 cancer types had
more than 5 genes (FDR q<0.05, See details in Figure 4
and the Supplementary Excel File). Three cancers had over
20 significant genes. The cancer with high-background mu-
tation rate, BLCA, had the largest number of significant
genes, 30. The cancer with the largest sample, BRCA, had
22 significant genes. COAD also had 23 significant genes.
Thirty-five genes were significant simultaneously in two or
more cancers. However, the number of overlapped signifi-
cant genes (Supplementary Table S3) in the cancers were too
small to produce sensible cancer clusters. As expected, the
famous tumor suppressor gene, TP53, was the commonest
significant genes (in 24 cancer types), followed by PIK3CA,
PTEN, KRAS, RB1 and NRAS, each of which was esti-
mated as driver genes for six or more cancer types.

Eighty-six genes were significant in only one of the 26
cancers (See details in Supplementary Table S4 and S5).
Cancers with more significant genes tended to have more
such specifically significant genes, implying high-genetic
heterogeneity. In the in silico validation analysis, 61 ( =
71%) out of the 86 genes had one or more hit papers for the
corresponding cancer types in the NCBI PubMed database
(Supplementary Table S4 and S5). Forty-seven ( = 55%)
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Figure 4. Circos plot displays 178 significant genes in 26 cancers. Notes: The innermost ring denotes dendrogram of genes. The next ring contains significant
genes (marked in red) of corresponding cancers. It is followed by a ring of cancers in which the genes are significant. The outmost ring contains gene symbols.
The full names of cancers are in Supplementary Table S1.

genes had more than three hit papers. There were 14 genes
having even 100 or more hit papers. The strong literature
supporting rate suggested the high accuracy of WITER for
estimating driver-genes at individual cancers even in small
samples. It should be noted that the specifically significant
genes of a cancer in the present analysis did not necessarily
mean specific driver genes of the cancer. As sample sizes in-
crease, some genes may become significant in other cancer
types. However, the specifically significant genes of a cancer
may imply genes’ relatively higher contribution to the corre-
sponding cancer. For instance, the BRCA had nine uniquely
significant genes. Six out of the eight genes had at least 20
hit papers in the NCBI PubMed database, an indication of
the strong relationship between the genes and BRCA. Inter-
estingly, although BRCA1 is an important tumor suppres-
sor gene for familiar BRCA, it was uniquely significant in
OV. While BRCA1 had an insignificant P-value (P = 2.17E-

4) in the BRCA dataset, it achieved a P-value 3.36E-10 in
the OV dataset. BRCA1 also had 100 hit papers for OV in
the NCBI PubMed database. Probably, for sporadic cases,
BRCA1 was a stronger driver for OV than BRCA.

There were 39 specifically significant genes having only
three or fewer hit papers in NCBI PubMed database. The
BLCA had 12 such genes. RARG, for example, encodes
a retinoic acid receptor that belongs to the nuclear hor-
mone receptor family. This gene was linked to leukemia
repeatedly by multiple studies (e.g. (30,31)). This is the
first time that it is suggested as a driver gene of BLCA.
ZNF624 is another interesting example gene, which encodes
a zinc finger protein 624. It had 19 non-synonymous mu-
tations and a high functional gene score 42 (P = 8.64E-
10 by WITER). This gene has not been well-studied yet.
There were few papers mentioning this gene in the PubMed
database. The COAD had eight such genes. The ZC3H13,
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a canonical CCCH zinc finger protein, is a promising col-
orectal cancer specific candidate driver gene. A very recently
study suggested it may suppress colorectal cancer prolifera-
tion and invasion via inactivating Ras-ERK signaling (32).
The HNSC had four such genes. Among the four genes,
ZNF750 is also a gene encoding a zinc finger protein. The
hit paper reported a downregulation of ZNF750 by gene
fusions in human papillomavirus (HPV) positive HNSC
samples (33). ZNF750 has been suggested to be associated
with esophageal squamous cell carcinoma (34), which indi-
rectly supports its cancer driver potential to HNSC. Both
SKCM and UCEC had 3 such genes. The specifically sig-
nificant gene of SKCM, SLC6A6, encodes protein trans-
ports taurine and beta-alanine. A recent study found ele-
vated SLC6A6 expression drove tumorigenesis and affected
clinical outcomes in gastric cancer (35). However, no stud-
ies linked this gene to SKCM. The specifically significant
gene of UCEC, LZTR1, was reported in multiple papers
in Science journal very recently (36–38). These studies sug-
gested LZTR1 acted as a conserved regulator of RAS ubiq-
uitination and MAPK pathway activation; and mutations
in this gene may dysregulate RAS ubiquitination and lead
to impaired protein degradation of oncoproteins (e.g., Ras
GTPase RIT1). The significant mutation burden in UCEC
added a direct evidence on its contribution to cancers. Both
KIRC and LGG had 2 specific genes with few hit papers.
A specifically significant gene, KDM5C, of KIRC has been
implicated to other cancers. For instance, Xu L et al. sug-
gested that overexpression of KDM5C can enhance the pro-
liferation and invasion of gastric cancer cells by decreasing
p54 expression (39). A specifically significant gene of LGG,
CIC, encodes capicua transcriptional repressor. A recent
study suggested that CIC may work with ATXN1-ATXN1L
as a potent regulator of the cell cycle related with develop-
ment of cancers (40). Four cancers had only 1 specific gene
with few hit papers. Although no publication directly linked
the genes to corresponding cancers, a search in PubMed
database showed all the four genes have been implicated to
other cancers. Given the literature evidences, it is very un-
likely that these genes had significant mutation burden for
the corresponding cancers just by chance and they were po-
tential driver genes for these cancers.

Among the above 39 uniquely significant genes, 24
also had mutation burden P-values by MutSigCV, Onco-
driveFML and dNdScv. Most of the genes had insignif-
icant P-values by MutSigCV and OncodriveFML in the
corresponding cancers(See details in Supplementary Tables
S8). The significance level by dNdScv was higher than Mut-
SigCV and OncodriveFML at most of the genes but was
lower than WITER and ITER. For instance, WITER led
to a significant P-value 2.95E-06 at the ZNF750 for HNSC,
which was down regulated by gene fusions in HPV positive
HNSC samples (33). The P-values by MutSigCV, Onco-
driveFML and dNdScv were only suggestively significant,
0.0044, 0.0011 and 4.69E-04. For the remaining 15 genes,
the driver gene analysis in the corresponding cancers was
not performed by the three alternative tools because the
sizes of cancer samples were too small to generate a reliable
estimation. WITER had the unique advantage of integrat-
ing reference samples to produce stable estimation in small
local samples.

DISCUSSION

Accurately modelling counts of somatic mutations at back-
ground genes has long been a fundamental technique chal-
lenge in genomic characterization of cancer-driver genes
(2,11). The proposed approach, WITER, has four technical
advances to address this issue. The first one is the advanced
model, ZTNB regression, that fits the number of somatic
mutations in background genes better. In samples of a typic
size, one often sees an inflation of zero mutation genes (Sup-
plementary Figure S2), which makes it difficult to fit the dis-
tribution of genomic counts. The ZTNB distribution prop-
erly addresses the zero-inflation issue. This is demonstrated
by the results that ZTNB model always achieved the mini-
mal AIC among four alternative models (Table 2) and sta-
tistically valid P-values distribution (Figure 2 and Supple-
mentary Figure S4). The valid P-values distribution solves
the common drawback in alternative methods that resort
to time-consuming simulation or permutation for statistical
inference. The other three technical advances include itera-
tive regression, integrating reference samples and imposing
prior weights at variants. The iterative regression relieves
distortion of driver genes to the background baseline es-
timation so that the residues of mutation counts at driver
genes are not shrunk. Its allowance of integrating reference
samples ensures a stable resulting model and thus a valid es-
timation in small sample. We find that the number of signif-
icant genes detected by WITER is generally not sensitive to
the reference samples in most cancers (Supplementary Table
S7). We showed that imposing prior weights at variants en-
ables detection of more cancer consensus driver genes in all
the tested datasets (Figure 3). These four technical advances
together determine the enhanced power of WITER for de-
tecting more cancer-driver genes than alternative methods
while effectively controlling statistical type 1 error.

The proposed approach is different from existing NB
models for estimating cancer-driver genes (12–14). First,
WITER is characterized with the four technique innova-
tions as mentioned above. The NB model is merely the ba-
sic framework. It was these innovations that led to an im-
proved driver-gene estimation in moderate and small sam-
ples. Second, the modelling targets of WITER and the exist-
ing methods are also different. WITER used NB distribu-
tion to model the distribution of mutation counts at non-
synonymous variants of background mutations. It then di-
rectly uses non-synonymous mutation burden to estimate
driver potential of genes. What these existing methods mod-
eled with the NB distribution was the synonymous vari-
ants of genes. With the estimated synonymous mutation
counts, the dN/dS ratio at genes was then estimated. The
dN/dS = 1 was then tested by likelihood ratio approach
for cancer-driver genes (12). So, these existing methods had
more parameters in the analysis, which may be less effective
in moderate or small samples. Therefore, WITER produced
more valid P-value distribution and detected more signifi-
cant cancer-driver genes.

The ZTNB model and three-tier framework are generic
and can be extended to other types of mutations. In the
present paper, we focus on the non-synonymous and splic-
ing variants (including SNVs and InDels). This is because
the availability of abundant data (e.g. exome sequencing
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data) in the public domains greatly facilitates the method-
ological validation. It is true that non-coding variants (usu-
ally discovered by whole genome sequencing) also con-
tribute to development of cancers (41). However, the public
resources of whole-genome sequencing are much fewer than
that of the exome sequencing. Theoretically, one can replace
the non-synonymous variants with non-coding variants like
upstream or downstream variants while the predictors are
replaced correspondingly. Nik-Zainal et al. suggested the
feasibility of NB regression to estimate cancer driver genes
with non-coding mutations (14). Similar to coding variants,
the four technical innovations on NB regression may also
have the potential to enhance power for non-coding vari-
ants. As the cost of high-coverage whole genome sequencing
is decreasing, more data will be available for an evaluation
of the method in non-coding variants in the future.

A slightly unexpecting finding is that some genomic fea-
tures (e.g. gene expression and chromatin accessibility) from
cancer non-specific cell lines are generally more relevant to
somatic mutations than that from cancer-matched primary
tumors. Lawrence et al. stated that matched normal tissues
led to similar results as the cancer non-specific cell lines for
the estimation of correlation between cancer somatic mu-
tation frequency and gene expression level in independent
normal tissues (6).The present study uses matched cancer
tissues instead of matched normal tissues, which may be the
cause of the difference. Polak et al. suggested cell-of-origin
chromatin features (including chromatin accessibility) were
stronger determinants of cancer mutation profiles of the en-
tire genome than chromatin features of matched cancer cell
lines (15). In the present study, our finding is in chromatin
accessibility in coding regions, which is not equivalent to
Polak et al. (15). Although the underlying causes of the dif-
ferences are subject to more and deeper study in the fu-
ture, the strong correlation between somatic mutations and
the cancer non-specific predictors makes WITER flexible in
practice.

We compared the proposed method with three widely
used and well-performed approaches (11), all of which be-
long to the unsupervised category. Another category of
methods is the supervised approaches for detecting cancer
driver genes. According to Tokheim et al. (11), the super-
vised method 20/20plus outperformed the best unsuper-
vised methods at that time (including MutSigCV and Onco-
driveFML) in terms of P-value distributions and the num-
ber of significant genes. However, a supervised strategy has
learning bias toward the training samples in nature (42).
If the training sample is not representative of all diseased
sample, the trained model may have low power in new sam-
ples. This would be particularly true for cancers because of
their high-genetic heterogeneity (5). Second, the 20/20plus
also used many common genomic features of a gene (e.g.
evolutionary conservation, predicted functional impact of
variants, and gene interaction network connectivity) in the
prediction (11). Although the usage of common genomic
features will add information to prioritize common cancer-
driver genes, it also runs the risk of diluting the informa-
tion in local sample for identifying unique cancer driver
genes, which would be important for a precision diagnosis
and treatment of a specific cancer. At last, the 20/20plus
resorts to time-consuming permutation procedure to gener-

ate P-values for statistical test. In contrast, the WITER and
ITER are much faster than 20/20plus because it calculates
P-values analytically. Nevertheless, we also made additional
comparisons between WITER and 20/20plus approach in
the 11 cancers. The P-value distributions of background
genes produced by both methods are similar and approx-
imately follow uniform distribution. (See QQ plots in Sup-
plementary Figure S7). Although WITER detected more
significant and cancer-consensus genes than 20/20plus in
only 2 cancers (See details in Supplementary Figure S8), it
rescued more missed genes in the half sample size experi-
ment (See details in Supplementary Table S6).

WITER used a new way of integrating prior weights into
the NB distributions. The rationale is to amplify the muta-
tions with high driver potential so that the true driver gene
can achieve higher statistical significance. This is similar
(though not equal) to a scenario in which genes with higher
driver potential mutations are stratified and are obtained
a less stringent multiple testing threshold to identify more
driver genes. The effectiveness of the prior-weight usage
was demonstrated by the controlled type 1 errors (see non-
inflated P-value in Figures 2, 3A and Supplementary Fig-
ure S4) and more significant genes (Figure 3B–D). However,
our proposed integration strategy does not exclude alterna-
tive ways of using prior weights. Alternatively, the Bayesian
approaches (43), stratified FDR or independent hypothesis
weighting approach (44) may be also potentially workable
strategies. However, stratified FDR has the disadvantage
that the weights must take a small number of discrete val-
ues (to ensure large strata), whereas our proposed method
uses continuously distributed weights. The independent hy-
pothesis weighting approach (44) adjusts for multiple test-
ing at the same time as introducing weights. This means that
P-values are differentially adjusted toward 1, so that sim-
ple diagnostics such as Q-Q plot would no longer be mean-
ingful. In contrast, for our method, the adjusted P-values
can be checked for consistency with a uniform distribution
by QQ-plot. Moreover, a tricky point is that the available
weights are often at mutation level while the hypothesis are
carried out at gene level. How the mutation level weights can
be optimally used for gene level hypothesis tests under the
conventical integration framework would be an interesting
future work.

A limitation of the present study is that many true cancer-
driver genes are generally unraveled for most cancers. Most
results suggesting the enhanced power of WITER in the pa-
per are indirect. We did not simulate datasets to quantify
the increased power of WITER relative to the alternative
methods by artificially setting ‘true’ driver genes because
there are many unknown factors shaping the landscape of
somatic mutations. An artificial model in simulation is of-
ten too subjective to represent the reality. The usage of real
data and in silico validation is widely adopted and effec-
tive in methodological studies (11). In the present study we
showed WITER detected more significant genes than alter-
native methods in most tested cancers. High coverages of
these genes in CGC list and co-mentioned with the corre-
sponding cancers in titles or abstracts of more than three pa-
pers in PubMed database were shown. The enhanced power
of WITER was further confirmed with more rescued genes
compared to alternative methods in half-size samples. These
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results strongly suggested that there was a high true discov-
ery rate in the significant genes by WITER and it detected
more genuine cancer-driver genes than alternative methods.

ITER and WITER are designed for individual cancer
types, which is usually a more challenging scenario than for
Pancancer due to much smaller sample sizes. ITER’s and
WITER’s basic assumption is that a small fraction of genes
are driver genes and their regression models are built on
background genes. When data of all cancers are merged into
a large Pancancer dataset, the proportion of cancer-driver
genes will increase substantially and the trained model will
shift from background genes toward driver genes. The shift-
ing may diminish the difference between observed muta-
tion counts and the estimated background baseline muta-
tions counts at cancer-driver genes, which may reduce the
power subsequently. To avoid miss-leading, we did not esti-
mate driver genes in a Pancancer dataset. For the large Pan-
cancer dataset, many existing tools have already had a good
statistical performance (11).

Applying the powerful approach, WITER, we generated
a landscape of driver genes in 26 cancers. Its unique ad-
vantage of integrating reference sample enables detection of
driver genes in samples of size as small as 30 although more
driver genes will be detected in larger samples. The anal-
ysis revealed many genes which are common driver genes
for multiple cancers. Most majority of the genes have many
literature supports. The common driver genes may be ef-
fective drug targets for treatment of cancers. Meanwhile,
there are also a lot of significant genes which are unique
for a single cancer. Some of these genes may be specific ma-
jor driver genes of the corresponding cancers although in-
creased sample sizes of other cancers may change the re-
sults. The cancer-specific driver genes are potentially effec-
tive for a precision diagnosis and treatment of correspond-
ing tumors.
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