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Abstract 

Background: Antimicrobial peptides including various defensins have been attracting considerable research interest 
worldwide, as they have potential to substitute for antibiotics. Moreover, AMPs also have immunomodulatory activity. 
In this study, we explored the role and its potential mechanisms of β-defensin 118 (DEFB118) in alleviating inflamma-
tion and injury of IPEC-J2 cells (porcine jejunum epithelial cell line) upon the enterotoxigenic Escherichia coli (ETEC) 
challenge.

Results: The porcine jejunum epithelial cell line (IPEC-J2) pretreated with or without DEFB118 (25 μg/mL) were chal-
lenged by ETEC (1×106 CFU) or culture medium. We showed that DEFB118 pretreatment significantly increased the 
cell viability (P<0.05) and decreased the expressions of inflammatory cytokines such as the interleukin-1β (IL-1β), inter-
leukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in IPEC-J2 cells exposure to ETEC (P<0.05). Interestingly, DEFB118 
pretreatment significantly elevated the abundance of the major tight-junction protein zonula occludens-1 (ZO-1), 
but decreased the number of apoptotic cells upon ETEC challenge (P<0.05). The expression of caspase 3, caspase 8, 
and caspase 9 were downregulated by DEFB118 in the IPEC-J2 cells exposure to ETEC (P<0.05). Importantly, DEFB118 
suppressed two critical inflammation-associated signaling proteins, nuclear factor-kappa-B inhibitor alpha (IκB-α) and 
nuclear factor-kappaB (NF-κB) in the ETEC-challenged IPEC-J2 cells.

Conclusions: DEFB118 can alleviate ETEC-induced inflammation in IPEC-J2 cells through inhibition of the NF-κB 
signaling pathway, resulting in reduced secretion of inflammatory cytokines and decreased cell apoptosis. Therefore, 
DEFB118 can act as a novel anti-inflammatory agent.
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Introduction
The intestinal epithelium not only acts as the major 
site for nutrient absorption but also acts as the primary 
physical barrier against a wide variety of endogenous 
and exogenous harmful substances in the gastrointes-
tine [1–3]. Disruption of the intestinal epithelium by 

various bacterial pathogens may result in inflamma-
tion and severe diarrhea in neonatal animals [4, 5]. For 
instance, the enterotoxigenic Escherichia coli (ETEC) 
has been identified as the most critical bacterial causing 
post-weaning diarrhea (PWD) [6–8]. Colonization and 
proliferation of ETEC strains in the intestine produce a 
large number of enterotoxins that act on the small intes-
tine and lead to the secretion of fluids and electrolytes, 
causing diarrhea [9, 10]. In last decades, antibiotics have 
been widely used to prevent PWD. However, long-term 
or overdose utilization of antibiotics may lead to the 
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developing of drug resistance [11–13]. Therefore, novel 
avenues to prevent various bacteria-induced inflamma-
tion and intestinal epithelium disruption are urgently 
needed.

Previous studies indicated that the intestinal epithe-
lium can also serve as a vital immune organ, and the 
intestinal epithelial cells can secrete a variety of bioactive 
substances (e.g. antimicrobial peptides) that play impor-
tant roles in regulating immunity and intestinal health 
[14–17]. Defensins are diverse members of a large family 
of antimicrobial peptides, contributing to the antimicro-
bial action of granulocytes, mucosal host defence in the 
small intestine and epithelial host defence in the skin and 
elsewhere [18]. Previous studies indicated that defensins 
can be divided into α, β, and θ subclasses according to 
their disulfide bonding, genomic organization, and tis-
sue distribution [19–22]. Amongst the three types of 
defensins, the β-defensins have been the most extensively 
studied to date. β-defensins are usually translated from 
characteristic two exon gene structures, the first of which 
encodes a prepropeptide while the mature peptide is 
encoded by the second exon, containing the six-cysteine 
motif [23]. Importantly, β-defensins were traditionally 
viewed as exclusively antimicrobial molecules, as their 
induction in response to diverse bacterial, viral, parasitic, 
and fungal infections was widely reported [24–26]. There 
are also reports showing that β- defensins can also inhibit 
inflammation. For instance, β-defensin 129 was reported 
to attenuate intestinal inflammation and epithelial atro-
phy in rat exposure to bacterial endotoxin [27]. Human 
β-defensin 114 regulates lipopolysaccharide (LPS)-medi-
ated inflammation and protects sperm from motility loss 
[28].

β-defensin 118(DEFB118) is a novel antimicrobial pep-
tide that can obtain from caput and efferent ducts of 
epididymis [29]. Interestingly, DEFB118 can disrupt the 
membrane of E. coli and change their morphology of 
the bacterial surface [30]. Moreover, our previous study 
found that DEFB118 exhibited antimicrobial activity 
against both Gram-negative and Gram-positive bacteria 
[31]. Although DEFB118 has shown antimicrobial activ-
ity, the exact role of DEFB118 in regulating mucosal 
immunity and intestinal health are unknown. In the 
present study, we explored the role of DEFB118 in alle-
viating inflammation and injury of intestinal epithelial 
cells during exposure to ETEC. The mechanisms behind 
the DEFB118 regulated actions have also been partially 
investigated.

Materials and Methods
Strains and Vectors
The E. coli DH5α and E. coli Orgami B (DE3) strains were 
purchased from TIANGEN (Beijing, China). The pET32a 

(+) was purchased from Merck KGaA (Darmstadt, Ger-
many). ETEC (O149: K91, K88ac) was purchased from 
China Veterinary Culture Collection Center (Beijing, 
China).

Plasmid Construction, Expression, and Purification 
of DEFB118
The target gene DEFB118 was synthesized and intro-
duced Eco RΙ and Not Ι restriction sites at the 5’and 
3’ends of the target gene by Tsingke Biological Technol-
ogy Co., Ltd. (Chengdu, China). The DEFB118 fragment 
was cloned into the expression vector pET32a (+) after 
double enzymatic digestion by Eco RI and Not I (Japanese 
Takara). The resulting plasmid pET32a(+)-DEFB118 was 
transformed into E. coli Orgami B (DE3) and induced by 
1.0 mM isopropyl β-d-1-thiogalactoside (IPTG). After 
incubation for 4 h at 28°C, the bacteria were collected 
by centrifugation at 8000×g for 20 min at 4°C and lysed 
by lysis buffer [500 mM NaCl, 20 mM Tris, 0.1% Tri-
ton X-100, 1 mM PMSF, Lysozyme 0.2 mg/mL, 10 U/
mL DNase (pH 7.5)] for 30 min at 4°C. Then, schizolytic 
cells were sonicated (4 s pulse and 8 s interval; 30 cycles; 
Sonics-Vibra cell, USA). The supernatant of the cell lysate 
resulting from centrifugation at 15000 × g for 30 min was 
applied to a  Ni2+-NTA column (Sangon Biotech, Shang-
hai). After washing to baseline absorbance with Binding 
buffer (20 mM Tris-HCI, 8 M urea, 0.5 M NaCl, 5 mM 
imidazole, pH 8.0), the column was washed with Elu-
tion Buffer (20 mM Tris-HCI, 8 M urea, 0.5 M NaCl, 500 
mM imidazole, pH 8.0) at a flow rate of 1 mL/min. The 
fractions were collected and dialyzed with sterile saline 
solution (0.09% [wt/vol] NaCl in distilled water). The 
purified DEFB118 was run on 12% SDS-PAGE. The rest 
was stored at −80°C after quantified with the BCA assay 
(Beyotime, China).

Cell culture and treatment
The porcine jejunum epithelial cell line (IPEC-J2) was 
obtained from the American Type Culture Collection 
(ATCC, Manassas, VA, USA). The cells were cultured 
in DMEM F12 medium supplemented with 10% FBS 
(Fetal bovine serum), 100 U/mL penicillin, and 100 μg/
mL streptomycin at 37°C with 5%  CO2 in a humidified 
atmosphere. In addition, the cells were seeded in plates 
once every 2–3 days to achieve 80% confluence. After 
incubated with antimicrobial peptide DEFB118 (25 μg/
mL) for 12 h or BAY11-7082 (an inhibitor of IκB-α phos-
phorylation and NF-κB) for 2 h, then cells were chal-
lenged with 1×106 CFU/well ETEC for 1 h or 2.5 h (only 
for assessment of apoptosis), It is worth noting that when 
challenged with ETEC, the cells were cultured in DMEM 
F12 medium supplemented with 2% FBS (without any 
antibiotics).
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Cell viability assay
MTT (Sigma, USA) was used to evaluate cell viability. 
Briefly, IPEC-J2 cells seeded in 96-well plates (Corning, 
USA) were incubated with 20 μL MTT for 4 h immedi-
ately after treatment. Next, the culture medium contain-
ing MTT was aspirated, 150 μL DMSO was added and 
oscillated at low speed for 10 min. Last, the optical den-
sity (OD) of the wells was read at 570 nm by a microplate 
reader (SpectraMax 190, Molecular Devices, California, 
USA). Cell viability (%) =  (ODtreatment group -  ODblank group)/
(ODcontrol group -  ODblank group) × 100.

RNA extraction and RT‑PCR
The total RNA was extracted from the IPEC-J2 cells by 
RNAiso Plus (Takara, Dalian, China) according to the 
manufacturer’s instructions. RNA concentration and 
purity were determined by the NanoDrop 2000 spectro-
photometer at 260 and 280 nm (Thermo Fisher Scientific 
Inc., Waltham, MA, USA). And then cDNA was syn-
thesized by a Reverse Transcriptase kit (Takara, Dalian, 
China). Quantitative PCR was performed by QuanStudio 
6 Flex Real-Time PCR detection system (Applied Bio-
systems, Foster City, CA, USA) with a total of 10 μL of 
assay solution containing 5 μL SYBR Green mix (Takara), 
0.2 μL Rox, 3 μL deionized H2O, 1 μL cDNA template, 
and 0.4 μL each of forward and reverse primers (Sangon, 
China). The relative gene expressions compared with the 
housekeeping gene β-actin were calculated by  2- ∆∆ct [32]. 
The primer sequences show in Table 1.

Assessment of apoptosis by flow cytometry
Apoptotic IPEC-J2 cells were detected by an Annexin 
V-PE/7-AAD Apoptosis Detection Kit (B&D Pharmin-
gen, USA) or an Annexin V-FITC/PI Apoptosis Detection 
Kit (BD Biosciences, USA) according to the manufactur-
er’s instructions. Cells seeded in 12-well plates (Corning, 
USA) were harvested by 0.25% trypsin without EDTA 
after the treatment. After centrifuged at 350 ×g for 10 
min, the cells were washed with ice-cold PBS, centrifuged 
again, and resuspended with 100 μL 1× binding buffer. 
Next, 2 μL PE Annexin V or AnnexinV-FITC and 2 μL 
7-ADD or PI were added into the cells and they were 
incubated for 15 min at room temperature in the dark. 
Finally, 400 μL 1× Binding Buffer was added to the mix-
ture and cell apoptosis was evaluated by CytoFlex flow 
cytometer (Beckman Coulter, Inc., Brea, CA, USA).

Immunofluorescence
IPEC-J2 cells were seeded on coverslips treated with 
concentrated sulfuric acid placed in 12-well cell culture 
plates at a density of 2 ×  105 cells/well and cultured to 
80–90% confluence. Subsequently, the cells were treated 

with reagents (DEFB118 and BAY11-7082) and ETEC 
according to the experimental design. After washed with 
ice-cold PBS, cells were fixed with 4% paraformaldehyde 
15 min at room temperature. After washed three times 
with PBS (pH 7.4) for 2 min each time, cells incubated 
overnight with the primary antibody at 4°C in the dark 
(rabbit anti-ZO-1; Novus; Cat no.: NBP1-85047; 1:200). 
Next, cells were washed three times with PBS (pH 7.4) 
for 2 min each time and incubated for 2 h at room tem-
perature with the appropriate secondary antibody (Alexa 
Fluor 488 conjugated goat anti-rabbit immunoglobu-
lin; CST; Cat no.:4412S; 1:1000). Finally, the cells were 
washed three times with PBS (pH 7.4) for 2 min each 
time and counterstained with DAPI (Sigma-Aldrich). 
cells were imaged using a confocal scanning microscope 
(NIKON ECLIPSE TI-SR)

Total protein extraction and western blot analysis
The total protein was extracted from the IPEC-J2 cells 
by cell lysis buffer for western blot (WB) analysis. After 
the protein concentration was determined by a BCA 
assay kit (Beyotime Institute of Biotechnology, Shanghai, 
China), the supernatants were diluted with 4 × Laemmli 
sample buffer (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA) containing 10% β-mercaptoethanol and denatured 
at 98°C for 10 min. Then, equal amounts of proteins in 
boiled samples were separated via 10% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred onto 0.45 μm polyvinylidene fluoride 
(PVDF) membranes (Merck Millipore Ltd., Tullagreen, 
Ireland). Next, the PVDF membranes were blocked with 
5% non-fat dry milk at room temperature for 1 h. After 
being washed in TBS/T three times for 10 min each, the 

Table 1 Primer sequences for quantitative real-time polymerase 
chain reaction

a  IL-1β interleukin-1β, IL-6 interleukin-6, TNF-α tumour necrosis factor-α, CASP3 
caspase 3, CASP8 caspase 8, CASP9 caspase 9, β-actin, beta-actin

Genea Primer sequence (5′‑3′) Accession Number.

IL-1β Forward: AAA GCC CAA TTC AGG GAC CCTAC 
Reverse: CCA TCA CTT CCT TGG CGG GTT 

NM_214055.1

IL-6 Forward: AGG GAA ATG TCG AGG CTG TGC 
Reverse: CCG GCA TTT GTG GTG GGG TT

NM_214399.1

TNF-α Forward: TTC GAG GTT ATC GGC CCC CA
Reverse: GTG GGC GAC GGG CTT ATC TG

NM_214022.1

CASP3 Forward: GGA ATG GCA TGT CGA TCT GGT 
Reverse: ACT GTC CGT CTC AAT CCC AC

NM_214131.1

CASP8 Forward: TCT GCG GAC TGG ATG TGA TT
Reverse: TCT GAG GTT GCT GGT CAC AC

NM_001031779.2

CASP9 Forward: AAT GCC GAT TTG GCT TAC GT
Reverse: CAT TTG CTT GGC AGT CAG GTT 

XM_003127618.4

β-actin Forward: TGG AAC GGT GAA GGT GAC AGC 
Reverse: GCT TTT GGG AAG GCA GGG ACT 

XM_003124280.5



Page 4 of 14Fu et al. BMC Veterinary Research          (2022) 18:142 

membranes were incubated with specific primary anti-
bodies [ZO-1 (Novus; Cat no.: NBP1-85047; 1:1000), 
p-NF-κB p65 (CST; Cat no.:3033S; 1:1000), NF-κB p65 
(CST; Cat no.:6956S; 1:1000), IκBα (CST; Cat no.:4814S; 
1:1000), p-IκBα (Invitrogen; Cat no.:MA5-15224; 1:1000), 
GAPDH (CST; Cat no.:2118S; 1:1000)] at 4°C for over-
night under gentle agitation. After being washed in 
TBS/T three times for 10 min each, the membranes were 
incubated with the corresponding secondary antibodies 
[anti-rabbit IgG (CST; Cat no.7074S; 1:2500), anti-mouse 
IgG (CST; Cat no.7076S; 1:2500)] for 1 h at room temper-
ature. Finally, after washing thrice with TBS/T, the PVDF 
membranes were treated with Clarity™ Western ECL 
Substrate (Bio-Rad Laboratories, Inc.). The protein bands 
were photographed by the ChemiDocTMXRS+ Imager 
System (Bio-Rad Laboratories, Inc.). The intensity of the 
protein bands was quantified with Quantity One soft-
ware (Bio-Rad Laboratories, Inc.), and the results were 
expressed as the abundance of the target protein relative 
to that of the reference protein (GAPDH).

Statistics analysis
All statistical analysis was performed using SPSS26.0 
software. Data were expressed as the mean ± standard 
error (SEM). Statistical analysis was carried out using 
Two-way analysis of variance (ANOVA) followed by LSD 
multiple comparison test. P<0.05 was considered statis-
tically significant. Image production using GraphPad 
Prism software (Version 8. GraphPad Software Inc., CA, 
USA).

Results
Expression and purification of DEFB118
As shown in Fig. 1, the cell extracts from E. coli Origami 
B (DE3) harboring the plasmid pET32a (+)-DEFB118 
showed a clear band with molecular weight about 30 
kDa. No bands were observed in the extract from the 
un-induced control strain or E. coli harboring the empty 
plasmids. The molecular weight of DEFB118 is consist-
ent with the predicted size. The crude recombinant pro-
teins were extracted from E. coli and then purified by 
 Ni2+-NTA affinity chromatography. The result from SDS-
PAGE verified successful purification, as only one clear 
band with molecular weight about 30 kDa was observed 
(Fig. 1).

Influences of ETEC challenge on the viability 
and inflammatory response of IPEC‑J2 cells
To explore the influence of ETEC challenge on cell viabil-
ity, the IPEC-J2 cells were treated with ETEC at different 
concentrations (0,  105,  106,  107,  108 CFU/well) for 3 h. 
As shown in Fig. 2A, the viability of the cells was signifi-
cantly decreased upon ETEC challenge at a moderate or 

higher dose  (106,  107, and  108 CFU/well) (P<0.05). How-
ever, there were no significant differences in cell viability 
among the three groups (P>0.05). We also determined 
the influences of different doses of ETEC on the inflam-
matory response in the IPEC-J2 cells. As shown in Fig. 2B 
and C, the expression levels of inflammatory cytokines 
such as the IL-1β and TNF-α were significantly elevated 
in the cells upon ETEC challenge at a dose of  106 CFU/
well (P<0.05). As compared to this dose, a higher dose 
 (107 and  108 CFU/well) significantly decreased their 
expression levels in the IPEC-J2 cells (P<0.05). Therefore, 
a moderate dose  (106 CFU/well) was used for further 
construction of challenge model.

Effect of DEFB118 on cell viability and inflammatory 
responses of IPEC‑J2 cells upon ETEC challenge
To explore the influence of DEFB118 on cell viability, 
the IPEC-J2 cells were treated with DEFB118 at different 
concentrations (0, 4, 20, and 100 μg/mL) for 12 h. Results 
showed that treatment with the cells with DEFB118 rang-
ing from 4 to 100 μg/mL had no negative influence (toxic 
effect) on cell viability (Fig.  3A). Therefore, a moderate 
dose 25 μg/mL was used for further studies. As shown 
in Fig. 3B, ETEC challenge decreased the viability of the 
IPEC-J2 cells; however, pretreatment of the cells with 
25 μg/mL DEFB118 significantly increased the cell via-
bility upon ETEC challenge (P<0.05). Moreover, ETEC 

Fig. 1. SDS-PAGE analysis of DEFB118 produced by E. coli Rosetta. M, 
250 kDa protein markers. 1, purification of DEFB118; 2, E. coli Origami 
B (DE3)-pET32a(+) did not induce by 1 mmol/L IPTG for 4 h at 28°C. 3, 
E. coli Origami B (DE3)-pET32a(+) induced by 1 mmol/L IPTG for 4 h at 
28°C. 4, E. coli Origami B (DE3)-pET32a(+)- DEFB118 did not induce for 
6 4 at 28°C; 5, E. coli Origami B (DE3)- pET32a(+)-DEFB118 induced by 
1 mmol/L IPTG for 4 h at 28°C
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challenge significantly elevated the expression levels 
of inflammatory cytokines such as the IL-1β, IL-6, and 
TNF-α in IPEC-J2 cells (P<0.05). However, DEFB118 pre-
treatment significantly downregulated their expressions 
in the IPEC-J2 cells upon ETEC challenge (Fig. 3C).

Effect of DEFB118 on tight junction protein abundance 
in IPEC‑J2 cells upon ETEC challenge
As shown in Fig. 4A, there was less staining of the major 
tight junction protein ZO-1 in the ETEC-challenged 
cells. However, the staining of the ZO-1 was enhanced 

by DEFB118 pretreatment in the ETEC-challenged cells. 
We also investigated the abundance of ZO-1 by using 
western blot assay. As shown in Fig. 4B, ETEC challenge 
decreased ZO-1 abundance in the IPEC-J2 cells; however, 
DEFB118 pretreatment significantly elevated its abun-
dance in the ETEC-challenged cells (P<0.05).

Effect of DEFB118 on apoptosis of IPEC‑J2 cells upon ETEC 
challenge
As shown in Fig. 5A and B, ETEC challenge increased 
the early and total apoptosis rate in the IPEC-J2 cells; 

Fig. 2. Influences of ETEC challenge on viability and inflammatory response of IPEC-J2 cells. The IPEC-J2 cells were treated with ETEC at different 
concentrations (0,  105,  106,  107,  108 CFU/well) for 1 h or 3 h. A Cell viability; B the expression of IL-1β; C the expression of TNF-α. n=3. Data were 
presented as mean ± standard error (SEM). a-c Values within a column differ if they do not share a common superscript (P<0.05)

Fig. 3. Effect of DEFB118 on cell viability and inflammatory responses of IPEC-J2 cells upon ETEC challenge. The IPEC-J2 cells were treated with 
DEFB118 at different concentrations (0, 4, 20, and 100 μg/mL) for 12 h. A Cell viability. The IPEC-J2 cells were treated with DEFB118 (25 μg/mL) for 12 
h, followed by co-treatment with ETEC (1×106 CFU) for 1 h. B Cell viability. C the expressions of IL-1β, IL-6 and TNF-α. n=3.Data were presented as 
mean ± standard error (SEM). a-c Values within a column differ if they do not share a common superscript (P<0.05). “ CON ” stand for “ Control ” “ DEFB 
” stand for “ DEFB118 ” “ ETEC ” stand for “ ETEC ” “ ETECD ” stand for “ ETEC+DEFB118 ”
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however, DEFB118 pretreatment significantly reduced 
the early and total apoptosis rate in the ETEC-chal-
lenged cells (P<0.05). ETEC challenge significantly ele-
vated the expression levels of critical apoptosis-related 
genes such as caspase 3, caspase 8, and caspase 9 in the 

cells (Fig.  5C). However, both the expressions of cas-
pase 8 and caspase 9 were significantly downregulated 
by DEFB118 in the ETEC-challenged cells (P<0.05).

Fig. 4. Effect of DEFB118 on tight junction protein distribution and abundance in IPEC-J2 cells upon ETEC challenge. IPEC-J2 cells pretreated with 
DEFB118 (25 μg/mL) for 12 h, followed by co-treatment with ETEC (1 ×  106 CFU) for 1 h. A Zonula occludens-1 (ZO-1) distribution in the IPEC-J2 
cells (Immunofluorescence). B Western blot analysis of ZO-1 in the IPEC-J2 cells. Scale bar = 50 μm. n=3. Data were presented as mean ± standard 
error (SEM). a-b Values within a column differ if they do not share a common superscript (P<0.05). “ CON ” stand for “ Control ” “ DEFB ” stand for “ 
DEFB118 ” “ ETEC ” stand for “ ETEC ” “ ETECD ” stand for “ ETEC+DEFB118 ”



Page 7 of 14Fu et al. BMC Veterinary Research          (2022) 18:142  

DEFB118 suppressed ETEC‑induced cell apoptosis 
and inflammatory response via suppressing the IκB‑α/
NF‑κB signaling
NF-κB is the most critical transcription factor involved in 
various inflammatory signaling. So, we explore that if the 
DEFB118-modulated inflammatory response in IPEC-J2 
cells were associated with the NF-κB signaling pathway. 
The results showed that both DEFB118 and BAY11-7082 

significantly abolished the ETEC-induced inflamma-
tory responses, indicated by decreases in cell apop-
tosis such as apoptosis rate, critical apoptosis-related 
genes (caspase 3, caspase 8, and caspase 9) and inflam-
matory cytokines such as the IL-1β, IL-6, and TNFα 
(Fig.  6). Moreover, both the DEFB118 and BAY11-7082 
improved the abundance of ZO-1 in IPEC-J2 cells upon 
ETEC (Fig.  7A). Finally, we investigated the impacts of 

Fig. 5. Effect of DEFB118 on apoptosis of IPEC-J2 cells upon ETEC challenge.

IPEC-J2 cells pretreated with DEFB118 (25 μg/mL) for 12 h, followed by co-treatment with ETEC (1 ×  106 CFU) for 1 h or 2.5 h. A Flow cytometry 
analysis of apoptotic cells (Annexin V-PE/7-AAD). B Quantification of apoptotic cells from flow cytometry data. C the expressions of Caspase 
3, Caspase 8 and Caspase 9. n=3. Data were presented as mean ± standard error (SEM). a-b Values within a column differ if they do not share a 
common superscript (P<0.05). “ CON ” stand for “ Control ” “ DEFB ” stand for “ DEFB118 ” “ ETEC ” stand for “ ETEC ” “ ETECD ” stand for “ ETEC+DEFB118 ”

(See figure on next page.)
Fig. 6. DEFB118 suppressed ETEC-induced cell apoptosis and inflammatory response via suppressing the IκB-α/NF-κB signaling. IPEC-J2 cells were 
pretreated with DEFB118 (25 μg/mL) for 12 h or with BAY11-7082 for 2 h , followed by co-treatment with ETEC (1 ×  106 CFU) for 1 h or 2.5 h. A the 
expressions of IL-1β, IL-6 and TNF-α. B Flow cytometry analysis of apoptotic cells (Annexin V-FITC/PI). C Quantification of apoptotic cells from flow 
cytometry data. D the expressions of Caspase 3, Caspase 8 and Caspase 9. n=3. Data were presented as mean ± standard error (SEM). a-c Values 
within a column differ if they do not share a common superscript (P<0.05). “ CON ” stand for “ Control ” “ BAY ” stand for “ BAY11-7082 ” “ DEFB ” stand 
for “ DEFB118 ” “ ETEC ” stand for “ ETEC ” “ ETECB ” stand for “ BAY11-7082+DEFB118 ” “ ETECD ” stand for “ ETEC+DEFB118 ”
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Fig. 6. (See legend on previous page.)
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Fig. 7. DEFB118 suppressed ETEC-induced the jury of IPEC-J2 and phosphorylation of IκB-α and NF-κB. IPEC-J2 cells were pretreated with DEFB118 
(25 μg/mL) for 12 h or with BAY11-7082 for 2 h, followed by co-treatment with ETEC (1 ×  106 CFU) for 1 h. A Zonula occludens-1 (ZO-1) distribution 
in the IPEC-J2 cells (immunofluorescence). B Western blot and quantitative analysis of phosphorylation of IκBα and NF-κB. Scale bar = 50 μm. n=3. 
Data were presented as mean ± standard error (SEM). a-b Values within a column differ if they do not share a common superscript (P<0.05). “ CON ” 
stand for “ Control ” “ BAY ” stand for “ BAY11-7082 ” “ DEFB ” stand for “ DEFB118 ” “ ETEC ” stand for “ ETEC ” “ ETECB ” stand for “ BAY11-7082+DEFB118 ” 
“ ETECD ” stand for “ ETEC+DEFB118 ”
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DEFB118 on the abundance of critical signaling proteins 
involved in the NF-κB -induced inflammatory response. 
As shown in Fig. 7B, ETEC challenge acutely elevated the 
abundance of phosphorylated IκB-α and NF-κB; however, 
IPEC-J2 cells treated with DEFB118 and BAY11-7082 sig-
nificantly decreased their phosphorylation.

Discussion
Enterotoxigenic Escherichia coli (ETEC) is one of the 
main pathogens that cause post-weaning diarrhea (PWD) 
[33, 34]. Post-weaning diarrhea is an acute and highly 
contagious disease in piglets and characterized by watery 
diarrhea, dehydration and even death [35, 36], resulting in 
significant economic loss to the global pig industry [37]. 
Among the different ETEC, those expressing the F4+ 
fimbrial antigen are the most prevalent form of ETEC 
infection [38]. These fimbriate mediate the adhesion of 
ETEC to the host epithelial cells, enabling colonization 
of the small intestine [39]. Subsequently, heat-labile (LT) 
and heat-stable (STa/b) enterotoxins are secreted, which 
induce severe diarrhea [40]. In addition, ETEC derived 
endotoxins (such as the lipopolysaccharide) can stimulate 
the release of a variety of proinflammatory cytokines and 
other soluble factors, leading to systemic inflammation 
[41]. IPEC - J2 cell line has typical epithelial cell charac-
teristics, which is a permitted host of symbiotic bacteria 
and intestinal pathogens, and is an excellent model for 
studying the interaction between bacteria and pig intesti-
nal epithelial cells [42, 43]. Previous studies indicated that 
LT enhanced adherence of ETEC to IPEC-J2 cells [44, 
45], STa may play a major role in ETEC-induced cell pro-
liferation, cell apoptosis, destroyed cell barriers in IPEC-
J2 cell [46, 47]. In addition, LT could increase expression 
level of pro-inflammatory cytokines (IL-8 and TNF-α) by 
activating NF-κB in HCT-8 cells [48], STb could induce 
intestinal barrier dysfunction in T84 cell [49–51], and 
induce apoptosis in intestinal epithelial cell lines (HRT-
18 and IEC-18 cells) [52]. More studies are required to 
understand the effect of different virulence factors in pigs 
and other species. In the last decades, antibiotics have 
been widely used to treat the ETEC-induced diarrhea and 
inflammation in the swine industry. However, antibiotics, 
the most commonly applied control strategies, have been 
restricted in many countries due to the induction of anti-
microbial resistance [53–55]. Therefore, novel avenues 
to prevent various bacteria-induced inflammation and 
intestinal epithelium disruption are urgently needed.

Previous studies have indicated that antimicrobial pep-
tides (AMPs) are one of the most promising alternatives 
to antibiotics due to broad spectrum and a low propen-
sity for developing resistance [56–66]. Moreover, AMPs 
can also act as an immunomodulator that plays a criti-
cal role in regulating the host innate immunity [67–69]. 

DEFB118 is a novel AMP, identified from epididymal 
epithelium and showed antibacterial activity against E. 
coli [31]. In the present study, we explored its protec-
tive effect on intestinal epithelial cells exposure to ETEC. 
We showed that DEFB118 can alleviate ETEC-induced 
inflammation in intestinal epithelial cells through inhibi-
tion of the NF-κB signaling pathway, resulting in reduced 
secretion of inflammatory cytokines and decreased cell 
apoptosis.

Mucosal epithelial barrier is the first line of defense 
against the invasion of intestinal pathogenic microorgan-
isms and toxins [70]. As an important part of the intesti-
nal mucosal barrier, changes of tight junction protein can 
cause abnormal intestinal barrier function and affect the 
intestinal health [71]. Pathogenic microorganisms (such 
as pathogenic Escherichia coli, epidemic diarrhea virus, 
etc.) can cause the expression of tight junction protein in 
intestinal epithelial cells decrease and increase the per-
meability [49, 50, 72, 73]. It is well known that the defec-
tive intestinal TJ barrier allows paracellular permeation 
of luminal antigens which can initiate or propagate the 
inflammatory responses [74]. ZO-1 (zonula occludens-1) 
is an important tight junction protein [75]. In this study, 
we found that DEFB118 pretreatment restored the abun-
dance of ZO-1 in IPEC-J2 cells induced by ETEC. There-
fore, the protective effect of DEFB118 on the intestinal 
barrier may be partly explained by the increased abun-
dance of ZO-1 protein.

Apoptosis is known as programmed cell death (PCD). 
It is a kind of suicidal behavior under physiological and 
pathological conditions, which occurs after cell death 
process activated by various intracellular and extracel-
lular signals [76]. Caspase is a cysteine protease family, 
which plays a key role in the process of apoptosis. Cas-
pase-3 is the most critical protease downstream of the 
apoptosis cascade. It plays a central role in controlling 
apoptosis and plays a key role in activating the specific 
morphological and physiological changes of apoptosis 
[77]. Caspase-3 mediates apoptosis through exogenous 
activation pathway and endogenous activation pathway 
[78]. Exogenous pathway is mainly mediated by the death 
receptor; the endogenous activation pathway is mediated 
by mitochondria [79]. Caspase 3 is activated by Caspase 8 
in the death receptor pathway and Caspase 9 in the mito-
chondrial pathway [80]. Previous studies have shown that 
ETEC can induce apoptosis [81–83]. The present study 
suggest that ETEC causes an increase in the expressions 
of caspase-3, caspase-8, and caspase-9. At the same time, 
the number of IPEC-J2 cells with early apoptosis, late 
apoptosis, and total apoptosis was also increased. How-
ever, these changes could be counteracted by DEFB118 
pretreatments, suggesting the protective role of DEFB118 
against intestinal barrier damage. This may be due to 
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inhibition of caspase-3 gene expression by inhibiting 
caspase-8 gene expression in the death receptor path-
way and caspase-9 gene expression in the mitochondrial 
pathway, thus inhibiting apoptosis induced by ETEC.

In order to further explore the anti-inflammatory 
mechanism of DEFB118, we used BAY11-7082 (an inhib-
itor of IκB-α phosphorylation and NF-κB) to investigate 
whether NF-κB signaling pathway is involved. Nuclear 
factor kappa B (NF-κB) is a multi- subunit nuclear 
transcription factor, which plays an important role in 
the regulation of many genes, including immune and 
inflammation, promoting or inhibiting the expression of 
chemotaxis and related apoptotic proteins, cell prolifer-
ation and tumorigenesis [84, 85]. When cells are in the 
resting state, NF-κB is inactive due to the existence of 
IκB-α. When cells are stimulated, IκB-α phosphorylates 
and rapidly degrades, activating NF-κB and transferring 
to nucleus. This translocation leads to the transcription 
and expression of inflammation-related genes [86, 87]. In 
agreement with previous studies [88, 89], elevated level 
of phosphorylated NF-κB protein expression was docu-
mented in the IPEC-J2 cells induced by ETEC. However, 
the pretrement of DEFB118 inhibited NF-κB phospho-
rylation. Additionally, it also inhibited IκB-α phospho-
rylation, which further downregulated NF-κB activity. 
BAY11-7082 was described as an irreversible inhibitor of 
the NF-κB pathway. It acts by inhibiting TNF-α-induced 
phosphorylation of IκB-α, resulting in decreased NF-κB 
and decreases expression of adhesion molecules [90]. 
And BAY11-7082 has been reported to display broad-
spectrum anti-inflammatory activities and influence 
various physiological processes [91, 92]. In this study, we 
found that BAY11-7082 alleviate ETEC-induced inflam-
mation in intestinal epithelial cells through inhibition of 
the NF-κB signaling pathway, which results in suppress-
ing of inflammatory cytokines secretion and cell apopto-
sis. Interestingly, the effect of BAY11-7082 pretreatment 
was similar to that of DEFB118 pretreatment.

Conclusion
DEFB118 can alleviate ETEC-induced inflammation in 
IPEC-J2 cells through inhibition of the NF-κB signaling 
pathway, which results in suppressing of inflammatory 
cytokines secretion and cell apoptosis. The beneficial 
effect of DEFB118 will help for rational section of novel 
anti-inflammatory agent for piglets
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