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SUMMARY
Embryonic stem cell (ESC) pluripotency is controlled by defined transcription factors. During cellular differentiation, ESCs undergo

a global epigenetic reprogramming. Female ESCs exemplify this process as one of the two X-chromosomes is globally silenced during

X chromosome inactivation (XCI) to balance the X-linked gene disparity with XY males. The pluripotent factor OCT4 regulates XCI

by triggering X chromosome pairing and counting. OCT4 directly binds Xite and Tsix, which encode two long noncoding RNAs

(lncRNAs) that suppress the silencer lncRNA, Xist. To control its activity as a master regulator in pluripotency and XCI, OCT4 must

have chromatin protein partners. Here we show that BRD4, amember of the BET protein subfamily, interacts with OCT4. BRD4 occupies

the regulatory regions of pluripotent genes and the lncRNAs of XCI. BET inhibition or depletion of BRD4 reduces the expression ofmany

pluripotent genes and shifts cellular fate showing that BRD4 is pivotal for transcription in ESCs.
INTRODUCTION

Master transcription regulators control the pluripotent gene

expression in embryonic stem cells (ESCs) (Avilion et al.,

2003; Chambers et al., 2003; Mitsui et al., 2003; Nichols

et al., 1998). X chromosome inactivation (XCI) is a crucial

epigenetic process that silences one of the two female X

chromosomes to ensure equal X-linked gene expression

with XY males (Payer and Lee, 2008; Lee and Bartolomei,

2013). XCI is tightly linked with pluripotency, as this epige-

netic silencing occurs upon cellular differentiation and con-

version of female somatic cells to the induced stem-ness

state is accompanied by a global epigenetic reprogramming

and reactivation of the silenced X (Maherali et al., 2007;

Navarro et al., 2008).

The transcription factor OCT4 lies at the top of the XCI

hierarchy regulating the pluripotent-associated long non-

coding RNAs (lncRNAs): Xite (the enhancer for Tsix) and

Tsix (the anti-sense repressor of Xist) (Donohoe et al.,

2009). Together Xite and Tsix mediate X-X homologous

pairing and inhibit the silencerXist prior to X chromosome

choice (Xu et al., 2006). In addition to their roles in the

study of pluripotency and cellular differentiation, mouse

ESCs are established as ex vivo models of XCI, faithfully

recapitulating XCI in the embryo (Clerc and Avner, 1998;

Lee and Jaenisch, 1997; Lee and Lu, 1999; Penny et al.,

1996; Rastan and Robertson, 1985). In undifferentiated

ESCs, the single male X and both female X chromosomes

are active. The lncRNAsXite, Tsix, andXist are all expressed

on these active X chromosomes in the pluripotent state.

ESCs can be differentiated by suspension culture for

4 days without leukemia inhibitory factor (LIF) and main-
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tained thereafter under adherent conditions (Martin and

Evans, 1975). Following differentiation, the male X chro-

mosome loses expression of these lncRNAs to retain activ-

ity of the single X,whereas the female ESCs have a choice of

active versus inactive X. On the future active X, Xite and

Tsix expression persists to keep Xist levels low. In contrast,

on the future inactive X, Xite and Tsix are extinguished,

and Xist levels are greatly upregulated. OCT4 partners

with the chromatin insulator CTCF, specifying the early

decisions of XCI (counting, X-X pairing, and choice) (Xu

et al., 2006, 2007; Donohoe et al., 2009).

During differentiation, ESC chromatin shifts from a tran-

scriptionally permission, euchromatic, to a more hetero-

chromatic state (Azuara et al., 2006; Meshorer and Misteli,

2006; Niwa, 2007). These changes in chromatin packaging

are accompanied by alterations in histone post-transla-

tionalmodifications (PTMs) crucial formodulation of chro-

matin structure and gene expression (Bernstein et al.,

2006). Histone PTM writers such as the Polycomb group

proteins (Boyer et al., 2006) and erasers such as the deme-

thylases (Adamo et al., 2011; Loh et al., 2007; Mansour

et al., 2012;Wang et al., 2011) play important roles in early

development. We postulate that histone readers together

with OCT4 play a role in the transcriptional control of

the XCI lncRNAs as well as pluripotent genes. One candi-

date is the chromatin reader, BRD4.

BRD4 is a member of the BET (bromodomain and extra-

terminal domain) family of tandem bromodomain-con-

taining proteins that can bind acetylated histones H3 and

H4 and influence transcription (Chiang, 2009). BRD4 is

an epigenetic reader originally identified as a mitotic chro-

mosome-binding protein that remains associated with
ors
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acetylated chromatin throughout the entire cell cycle and

is thought to provide epigenetic bookmarking after cell di-

vision (Dey et al., 2000, 2003). BRD4 has a direct role in

transcription as it associates with positive transcription

elongation factor b (P-TEFb) to enhance RNA polymerase

II (RNAP II) and control productive mRNA synthesis

(Yang et al., 2008). At many developmental genes RNAP

II stalls or pauses after transcribing a nascent transcript

about 20–65 nucleotides in length (Adelman and Lis,

2012). Nearly 30% of the genes in human ESCs commence

transcription initiation but do not undergo transcriptional

elongation (Guenther et al., 2007). This suggests that tran-

scriptional pausing is an additional checkpoint control

during development (Levine, 2011). The release from tran-

scriptional pausing is associated with P-TEFb recruitment,

the eviction of pause factors, the phosphorylation at serine

2 of the carboxyl-terminal domain (CTD) in RNAP II, and

the production of elongated mRNAs.

Although BRD4 is known to play crucial roles in the

oncogenic and viral programs, very little is known about

its function in early normal development. The loss of

Brd4 in the mouse results in peri-implantation lethality,

with an ablation of the inner cell mass the source for

ESCs (Houzelstein et al., 2002), suggesting a role for this

gene in the cell differentiation-linked processes of XCI

and pluripotency. Here we investigate BRD4’s function in

these crucial developmental processes. Our studies show

that Brd4 interacts with the pluripotent factor OCT4 and

is important for maintaining stem cell fate and the expres-

sion of the lncRNAs controlling XCI.
RESULTS

The Epigenetic Reader BRD4 Is Expressed during ESC

Differentiation and Binds the Pluripotent Factor OCT4

We postulate that a co-activator such as BRD4might play a

role in epigenetic memory for binary cell fate (‘‘stem-ness’’

versus differentiation) and XCI (active versus inactive X

chromosome) status in ESCs. To explore this possibility,

we examined the developmental expression pattern for

the BRD4 protein in differentiating female and male

ESCs. To differentiate the ESCs, we removed LIF andmouse

embryonic feeders on nonadherent plates as previously

described (Donohoe et al., 2007). Our results show that

the BRD4 protein is expressed at similar levels during differ-

entiation day 0 (d0) (pre-XCI), day 4 (d4) (time of the estab-

lishment of XCI), and day 8 (d8) (post-XCI) in both female

andmale ESCs (Figure 1A). In contrast, the OCT4 protein is

present at d0 and d4 and is greatly reduced by d8 in these

cells. Because the loss of mouse Brd4 has a peri-implanta-

tion phenotype (at the time random XCI takes place in

the epiblast) and given the tight linkage between XCI
Stem C
and differentiation, we questioned whether BRD4 might

interact with pluripotent factors. Using a candidate ap-

proach, we tested BRD4 for partnering with ‘‘stem-ness’’-

associated transcription factors. Full-length Myc-tagged

BRD4 and Flag-OCT4 were co-transfected into human em-

bryonic kidney (HEK) cells and tested for their interaction.

We observed a specific OCT4-BRD4 interaction following

co-immunoprecipitation (co-IP) (Figure 1B).

Next, we queried whether an endogenous partnering of

BRD4 and OCT4 occurs in undifferentiated male and fe-

male ESCs. BRD4 co-IPs with a specific OCT4 antibody in

female ESCs confirming in vivo BRD4-OCT4 interaction

(Figure 1C). Reciprocal co-IP confirms the endogenous

OCT4-BRD4 complex (Figure 1D). Similar results were

observed in male ESCs (Figures 1E and 1F). Although there

are three BRD4 isoforms, the antibody used here recognizes

an epitope present only in the longest isoform, suggesting

that this is the isoform that partners with Oct4. Taken

together, the chromatin reader BRD4 is expressed through-

out cellular differentiation in both male and female ESCs

and partners in vitro and in vivowithOCT4, a key regulator

of pluripotency and XCI.

BRD4 Occupies Genes Controlling Pluripotency and

the lncRNAs Regulating X-Chromosome Inactivation

We determined that BRD4 interacts with OCT4. To further

investigate the genes that it targets, we examined BRD4

occupancy in undifferentiated male ESCs using chromatin

immunoprecipitation followed by massive parallel se-

quencing (ChIP-seq). First, we validated the BRD4 and

OCT4 occupancy at Oct4 and Nanog regulatory regions in

d0 male ESCs using quantitative chromatin immunopre-

cipitation (qChIP) (Figure S1A). Using a stringent statistical

criteria (p < 0.05) we identified significant enrichment of

ChIP-seq peaks (Figure S1B). As shown in Figure 2A,

BRD4 binds the gene body and regulatory regions ofNanog,

Pou5f1/Oct4, Sox2, c-Myc, Fgf4, and the lncRNAs Tsix and

Xist. An enhanced peak of BRD4 binding is situated over

Sox2.

To investigate whether BRD4 is involved in XCI, we

examined BRD4 occupancy inmale and female day 4 of dif-

ferentiation (d4) ESCs using qChIP. We used the OCT4-

binding sites within the pluripotency-associated Xite and

Tsix lncRNAs (Xite enhancer, Tsix site D, and Xist intron

1B) as guides for potential BRD4 in vivo binding in the

XCI locus (Donohoe et al., 2009; Navarro et al., 2008,

2010), as well as several known OCT4-regulated promoters

(Nanog and Sox2) (Chew et al., 2005; Rodda et al., 2005) and

enhancers (Oct4) (Chew et al., 2005). In addition to BRD4,

these loci were tested for OCT4 binding and the acetylated

histone 4 (H4Ac), a PTM associated with gene activation

and a mark that bromodomain-containing proteins can

bind and read (Chiang, 2009). Among the BET family
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Figure 1. BRD4 Is Expressed in Differentiating Female and Male ESCs, Interacts with OCT4, and the Expression of Many Pluripotent
Genes Rely on the BRD4 Protein Partner P-TEFb
(A) Western blot analysis of BRD4 (top) and OCT4 (middle) in WT female and male ESCs whole cell extracts (WCEs) on differentiation d0, d4,
and d8. Histone 3 (H3) (bottom) is used as a load control for protein expression.
(B) HEK cells were co-transfected (Tf) with full-length Myc-tagged BRD4 and Flag-tagged OCT4. WCEs were immunoprecipitated (IP) with
anti-Flag antibodies and western blot analysis with anti-Myc antibodies. The arrow denotes BRD4 binding OCT4 in the upper panel. The
lower shows Flag-OCT4 expression detected by western blot.
(C) Co-IP of BRD4 and OCT4 in ESCs. Immunoprecipitation with anti-OCT4 or control antibodies to test interaction with endogenous BRD4
in d0 female ESCs. Arrow marks BRD4 detected by anti-BRD4 western.
(D) Reciprocal immunoprecipitation using anti-BRD4 or control antibodies to test interaction with OCT4 in female ESCs. Arrow marks OCT4
detected by anti-OCT4 western.
(E) Endogenous BRD4 co-immunoprecipitates with endogenous OCT4 in d0 male ESCs. Arrowmarks BRD4 following western with anti-BRD4.
(F) Reciprocal immunoprecipitation using anti-BRD4 or control antibodies to test binding to OCT4 in male ESCs. Arrow marks OCT4
following anti-OCT4 western.
members, BRD4’s bromodomains have the highest affinity

for H4Ac (Jung et al., 2014).

Chromatin was prepared from d4 male ESCs and sub-

jected to qChIP. BRD4 is enriched nearly 16-fold at Tsix

site D chromatin (Figure 2B). Tsix site D resides in the repeat

region DxPas34, the epigenetic switch/control region for

XCI. Deletion of DxPas34 on one of the two female Xs

nearly always results in this X chromosome to be chosen

for inactivation (Lee and Lu, 1999). Xite and Xist intron

1B, a known strong OCT4 binding domain chromatin

shows enhanced BRD4 and OCT4 occupancy over control

at d4 in male ESCs. In contrast the immunity gene Toll-

like receptor 9 (TLR9), a negative control for OCT4 occu-

pancy (Mochizuki et al., 2008), is not enriched for either
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OCT4 or BRD4. The Oct4 enhancer chromatin shows a

10- and 25-fold enrichment of BRD4 and OCT4 binding,

respectively. At d4 H4Ac PTM shows high levels at all plu-

ripotency-associated regulatory chromatin. We next exam-

ined BRD4,OCT4, andH4Ac in vivo occupancy in differen-

tiating d4 female ESCs. Here we observe similar dynamic

changes. At d4, the time of XCI establishment in female

ESCs, we see BRD4 and OCT4 enrichment compared with

background at Xite, Xist intron 1B, Oct4, Nanog, and Sox2

(Figure 2D). The TLR9 regulatory region is an exception,

showing a lack of BRD4 or OCT4 occupancy. All of these

chromatin sites tested show enrichment of H4Ac PTM.

Collectively, our data confirm that BRD4 binding to the

OCT4-associated regulatory regions in both male and
ors



female ESCs. These results suggest that both BRD4 and

OCT4 can occupy the same regulatory elements in XCI

and pluripotency.

OCT4 Recruits BRD4 to Selective Regulatory Regions

Although BRD4 can directly recognize and bind acetylated

histones, recent studies show that its interaction partners

can stabilize its binding to chromatin (Chiang, 2009;

Stewart et al., 2013). Therefore, we asked whether OCT4

could tether and enhance BRD4 binding to pluripotent

regulatory regions facilitating active transcription. To

address this, we utilized the OCT4-regulated ESC line,

ZHBTc4 (Niwa et al., 2000), which depletes OCT4 protein

expression upon addition of doxycycline (Dox) (Fig-

ure 2D). Following exposure to Dox, ZHBTc4 ESCs

ablate OCT4 protein, whereas BRD4 and ACTIN levels

do not change (Figure 2E). We performed qChIP for

OCT4 and BRD4 on these OCT4-regulated sites in the

absence and presence of Dox. As shown in Figure 2F,

we observe a reduction of OCT4 occupancy on all regula-

tory regions following OCT4 protein depletion. After

OCT4 removal, the Nanog promoter shows a statistically

significant reduction (�50%) in BRD4 binding, as does

the Tcl1 promoter (data not shown). In contrast, the

Fgf4 enhancer, the Xist intron 1B, the Oct4 enhancer,

Tsix site D, and the Xite enhancer do not show a signifi-

cant change in BRD4 occupancy. Ablation of OCT4 pro-

tein reveals preferential changes in H4Ac levels at the

Fgf4, Oct4, and Xite enhancers (Figure 2G). Our qChIP re-

sults suggest that BRD4 binding is dynamic and that

OCT4 can recruit or stabilize BRD4 to particular pluripo-

tent regulatory regions.

Inhibition of the BET Domain Diminishes Pluripotent

Gene Expression and Enhances the P-TEFb Inhibitor

Complex Genes Hexim1 and Sesn3

The BET domain proteins can be inhibited by the small

molecule JQ1, which selectively binds the tandem bromo-

domains displacing BRD4 and P-TEFb from acetylated

chromatin leading to a decrease in RNAP II elongation at

active genes (Filippakopoulos et al., 2010). Because BRD4

can associate with the regulatory regions of the pluripotent

genes, we hypothesize that BET inhibition alters the ex-

pression of pluripotent-associated genes. To test this, we

first performed a dose curve using JQ1 and DMSO con-

trol in both male and female d6 ESCs. We found that JQ1

treatment of male ESCs can inhibit the c-MYC protein

expression in a dose-dependent manner without the

accompaniment of cell death as reported (Filippakopoulos

et al., 2010) (Figure 3A). Intriguingly, the pluripotency

trans-factor OCT4 is decreased as compared with BRD4

and ACTIN levels following BET inhibition in male ESCs

(Figure 3A).
Stem C
We queried BRD4 and P-TEFb occupancy by qChIP

following JQ1 BET inhibition. BRD4 and CDK9 occupancy

are lost at the Oct4 enhancer, Sox2 promoter, and the Nanog

promoter as well as Xite, Tsix Site D, Xist intron 1B, and the

Xist promoter transcriptional start site (TSS) (Figures S2A

and S2B). In contrast, the histone 4 acetylation (H4Ac)

levels at these sites did not consistently show a diminution

after JQ1 BET inhibition (Figure S2C). Next, we asked

whether JQ1 treatment might alter BRD4’s ability to part-

ner with OCT4. Indeed, BET inhibition diminishes BRD4

binding to OCT4 (Figure S3A). These results suggest that

JQ1 exposure specifically displaces BRD4 binding to the

pluripotent and XCI regulatory regions without altering

the H4Ac levels and BET inhibition alters its partnering

with OCT4.

The XCI lncRNAs Xist and Tsix were greatly depressed

after BET inhibition (Figure 3B). BRD4 recruits P-TEFb to

chromosomes to promote G1-phase gene transcription

and progression to S phase in fibroblast cell cycles (Yang

et al., 2008). Consistent with this, we find that the cell cycle

regulator p21 (Figure 3B) and Cyclin D1 (Figure 4B) are

diminished in male ESCs following BET treatment. Next

we examined a panel of pluripotency genes levels to see

whether they were altered by BET displacement. Undiffer-

entiated ESCs show a great reduction of Oct4, Nanog, Tsix,

and Xist after JQ1 exposure (Figure S3B). Consistent with

a diminished protein level, Oct4 mRNA levels were vastly

depressed following JQ1 treatment as well as the Nanog

gene (Figure 3C). The endodermal marker Gata4 was re-

pressed inmale ESCs (Figure 3C). Sox2, another pluripotent

factor, was not depressed. Nor was 7sk snRNA, a P-TEFb

inhibitor (Yang et al., 2001; Nguyen et al., 2001). Interest-

ingly theHexim1, another component of the P-TEFb inhib-

itor complex (Li et al., 2005; Hong et al., 2012), and Sesn3

(Chen et al., 2010) genes were greatly enhanced following

JQ1 exposure (Figure 3C).

Next we tested female ESCs with various doses of JQ1.

Consistent with the male ESC BET inhibition, the female

ESCs also show a dramatic diminution of c-MYC and

OCT4 protein levels as compared with BRD4 and ACTIN

(Figure 3D). We observed a loss of Xist, Tsix, and p21

mRNA levels after BET inhibition (Figure 3E). Next, we

asked whether BET inhibition in the female ESCs altered

the pluripotency genes. Similar to what we observed

with male cells, the female ESCs show a loss of Oct4 and

Nanog expression upon JQ1 exposure (Figure 3F). In

contrast to what we saw with BET treatment of male

ESCs, Sox2 levels were slightly enhanced, and Gata4 levels

did not exhibit a change in the female ESCs (Figure 3F).

Hexim1 and Sesn3 levels were upregulated following JQ1

treatment, and the P-TEFb inhibitor 7sk snRNA was

enhanced in female ESCs. Considering the role of OCT4

in ESC pluripotency, we asked whether providing ectopic
ell Reports j Vol. 4 j 390–403 j March 10, 2015 j ª2015 The Authors 393
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Figure 2. BRD4 Occupies Regulatory Regions within the Pluripotency Genes and the lncRNAs Involved in XCI
(A) ChIP-seq binding profiles for BRD4 at the Nanog, Pou5f1/Oct4, c-Myc, Fgf4, and Tsix/Xist loci in undifferentiated male ESCs. The y axis
denotes peak reads of BRD4 binding.

(legend continued on next page)

394 Stem Cell Reports j Vol. 4 j 390–403 j March 10, 2015 j ª2015 The Authors



OCT4 can reverse the BET inhibition. Interestingly, over-

expression of OCT4 in ESCs is not sufficient to rescue the

effect of JQ1 treatment on pluripotent gene expression

(Figures S3C and S3D).

Inhibition of the BRD4 Protein Partner P-TEFb Blocks

Most Pluripotent Gene Transcription In Vivo

BRD4 is unique among the BET family proteins in that it

can bind and recruit the kinase active form of P-TEFb to

gene promoters (Jang et al., 2005; Yang et al., 2005). The

active P-TEFb complex consists of two proteins, CYCLIN

T (CYCLIN T1, 2, or 3) and CDK9 (Zhou et al., 2012) (Fig-

ure 3G). CDK9 kinase phosphorylates RNAP II and pause

control factors (Larochelle et al., 2012). This allows active

transcriptional elongation by increasing the number of

RNAP II molecules that can synthesize full-length mRNAs

(Zhou et al., 2012). We asked whether productive pluripo-

tency and XCI mRNA transcription relies on BRD4’s ability

to recruit P-TEFb. First, we tested the genes occupied by

BRD4 for endogenous CDK9 binding. CDK9 binding is

enriched at Tsix site D, the Xist TSS, Xist intron 1, the Oct4

enhancer, Nanog, and Sox2 promoter chromatin as com-

pared with the background IgG negative control in d4

male ESCs (Figure 3H). In contrast, the Xite enhancer

does not show CDK9 occupancy. To further investigate

whether P-TEFb is involved in their regulation, we treated

male ESCs with flavopiridol (FP). FP is a cyclin-dependent

kinase inhibitor that can specifically inactivate P-TEFb

and block most RNAP II transcription in vivo, as evident

by a loss in phosphorylated serine 2 RNAP II (pSer2 RNAP

II) (Chao et al., 2000; Chao and Price, 2001). As shown in

Figure 3I, FP treatment (1 mM for 3 hr) results in ablation

of pSer2 RNAP II levels as compared with actin protein

levels. Interestingly, the OCT4 protein does not decrease

following FP treatment (Figure 3I), nor does the BRD4 pro-

tein (Figure S4A). We examined the stem-ness-associated

gene mRNA levels in these male ESCs after FP exposure.

As compared with control, Oct4 and Xist levels show a

20% reduction, whereas Tsix, c-Myc, Nanog, and as Sox2
(B) qChIP analysis of BRD4, OCT4, and IgG (left) and acetylated hist
(TLR9), Xist intron 1B, Oct4 enhancer, Nanog promoter, and the Sox2 p
(C) qChIP analysis of BRD4, OCT4, and AcH4 at Tsix Site D, Xite, Toll-like
the Sox2 promoter sites in d4 female ESCs.
(D) Schematic of the Dox-regulated OCT4 transgenic ESC. The addition
transgene and depletes OCT4 levels.
(E) Western blot analysis of OCT4-inducible ESCs following vehicle (No
were tested on WCEs following treatment.
(F) qChIP of OCT4 and BRD4 on chromatin prepared from ESCs in (E
enhancer, Tsix site D, and the Xite enhancer.
(G) qChIP of total acetylated histone H4 (H4Ac) on the chromatin pre
control IgG. Graphs indicate three independent biological replicates. E
Student’s t test analysis.

Stem C
expression levels are greatly decreased after FP exposure

(Figure 3J).

In addition, we tested the effects of FP in d4 (the differen-

tiation time for XCI establishment) female ESCs and

observe similar results as male ESCs (Figure S4B). Collec-

tively, our studies show that many pluripotency-associated

genes rely on the BRD4 interacting complex P-TEFb for pro-

ductive transcriptional elongation.

BET Domain Inhibition Shifts ESC Fate from

Pluripotency to Neuroectoderm

Because BET inhibition can dramatically repress pluripo-

tent genes, we next asked what was the consequence of

the loss of pluripotency and whether the ESCs differenti-

ated to a particular lineage. Following BET inhibition,

male ESCs lost stem-ness and exhibited a gain of neuroec-

toderm fate with the upregulation of Sox1, N-cadherin, and

Pax6 neural genes (Figure 4A). In contrast, Gata6 (endo-

dermal marker) was decreased upon JQ1 exposure. The

female ESCs show a loss of stem-ness fate with a concom-

itant enrichment of Sox1, N-cadherin, and Pax6 and a

decrease in Cyclin D1 and Gata6 (Figure 4B). Additional

neuroepithelial mRNAs such as Zfp521, Isl1, Neurog2,

and Msx1 are elevated, whereas Nodal (a mesodermal

marker) was depleted in response to BET inhibition (Fig-

ure 4C). The N-CADHERIN and SOX1 proteins are

induced providing further evidence for ESC conversion

into neural progenitors following JQ1 treatment (Fig-

ure 4D). We also investigated the JQ1 effects on retinoic

acid-induced (RA) ESC differentiation and found that

the presence of BET inhibitor can facilitate the process

of neuroectoderm fate as compared with RA alone (Figures

S4D and S4E).

Together, these data implicate BET bromodomains with

the pluripotent state in both male and female ESCs. We

observe a loss of the XCI status with JQ1 exposure in female

cells with a strong reduction in Xist and Tsix expression.

Our results indicate that BET family members repress the

RNAP II inhibitors Hexim1 and Sesn3. Together, these
one 4 (AcH4) and IgG (right) at Tsix Site D, Xite, Toll-like receptor
romoter in differentiating d4 male ESCs.
receptor (TLR9), Xist intron 1B, Oct4 enhancer, Nanog promoter, and

of Dox interferes with the tetracycline activation (tTA) of the OCT4-

Dox) versus Dox. Anti-OCT4, anti-BRD4, and anti-ACTIN antibodies

) at the Nanog promoter, Fgf4 enhancer, Xist intron 1B, the Oct4

pared from ESCs in (E). The background is calculated compared with
rror bars represent 1 SD from the mean. *p < 0.05, as determined by
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Figure 3. Inhibition of BET Domain Diminishes Pluripotent Gene Expression
(A) Western blot analysis of d6 male ESCs following 48-hr treatment with DMSO control and JQ1 BET inhibitor dose curve. Anti-cMYC,
anti-OCT4, anti-BRD4, and anti-ACTIN antibodies were tested on WCEs following BET inhibition.
(B) Xist, Tsix, and p21 mRNAs levels in male ESCs after two different doses of JQ1 treatment.
(C) RT-qPCT of the Oct4, Sox2, Nanog, Gata4, Hexim1, Sesn3, and 7sk snRNA genes following JQ1 or DMSO treatment in male ESCs.

(legend continued on next page)
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Figure 4. Interference with the BET
Domain Strongly Promotes Neural Differ-
entiation in ESC Culture
(A) Expression in male ESCs of the Sox1, N-
Cadherin, and Pax6 neuroectoderm markers
as well as Cyclin D1 and Gata6 (endodermal
marker) after vehicle (DMSO) or JQ1 BET
inhibitor treatment.
(B) Expression of the Sox1, N-Cadherin, and
Pax6 (neuroectoderm genes) with Cyclin D1
and Gata6 mRNA levels in female ESCs upon
DMSO versus JQ1 exposure.
(C) qRT-PCT of Zfp521, Isl1, Neurog2, Msx1,
Sox3, and Nodal following vehicle (DMSO) or
JQ1 BET inhibitor in male ESCs.
(D) Anti-N-CADHERIN, -SOX1, -OCT4, and
-ACTIN antibodies were tested on WCEs
prepared from male ESCs following vehicle
(DMSO) or BET inhibitor JQ1.
Graphs indicate three independent biolog-
ical replicates. Error bars represent 1 SD
from the mean.
findings show that inhibition of BET domain proteins re-

sults in a loss of the pluripotent fate and a shift toward neu-

roectoderm identity.

Loss of Xist by BET Inhibition Does Not Reactivate

Genes along the Silenced Female X Chromosome

Next we queried whether the loss of Xist expression

following BET inhibition correlates with an increase or

reactivation of the genes on the silenced female X chromo-

some. To test this, we treated WT d6 female ESCs (post-

XCI) with the BET inhibitor JQ1 versus control and

examined protein and mRNA levels 24 hr later (day 7 [d7]

harvest). As shown in Figure 5A, the levels of OCT4 protein

are greatly diminished following JQ1 as compared with

control (DMSO) treatment. Consistent with what we

observed at earlier and later days of cellular differentiation,

Xist expression is greatly reduced in the female ESCs

following JQ1 treatment, with relative mRNA levels less

than 10% that of control treated cells. The Tsix, Oct4,

c-Myc, and Nanog pluripotency genes show decreased
(D) Western blot analysis of d6 female ESCs following JQ1 inhibitor do
WCEs following JQ1 exposure.
(E) Xist, Tsix, and p21 gene levels following two different doses of JQ
(F) Expression of the Oct4, Sox2, Nanog, Gata4, Hexim1, Sesn3, and 7
(G) The active P-TEFb complex consists of CDK9, CYCLIN T, and BRD4
(H) qChIP analysis of CDK9 and IgG at the Xite, Tsix Site D, Xist TSS, Xist
d4 male ESCs.
(I) Western analysis using a-phosphorylated serine 2 RNAP II (pSer2 R
d4 male ESCs treated with Flavo or DMSO control.
(J) RT-qPCR of the Xist, Tsix, Oct4, c-Myc, Nanog, and Sox2 genes prep
Graphs indicate three independent biological replicates. Error bars re

Stem C
mRNA levels following treatment with the BET inhibitor

(Figure 5B).

Next we examined Xist RNA levels in these female ESCs

by fluorescent in situ hybridization (FISH) together with

immunostaining for the inactive X-chromosome-associ-

ated histone PTM, histone 3 lysine 27 trimethylation

(H3K27me3). Consistent with a diminution of Xist

mRNA levels by quantitative RT-PCR (RT-qPCR), we ob-

serve a dramatic reduction in Xist and H3K27me3 foci us-

ing immuno-FISH following JQ1 treatment (Figure 5C).

Following JQ1 exposure, theXist RNA is reduced to approx-

imately half that of control (Figure 5D), as is theH3K27me3

intensity (Figure S5).

A number of genes along the female mouse X chromo-

some were investigated including genes subject to XCI:

Kdm6a, Mecp2, Zfx, Ogt, and Rnf12, as well as genes that

escape XCI, Eif2s3x, and Kdm5c (Carrel and Willard, 2005)

(Figure 5E). We examined genes harbored upstream and

downstream of the X chromosome inactivation center (Xic),

the region that controls dosage compensation in female
se curve c-MYC, -OCT4, -BRD4, and -ACTIN antibodies were tested on

1.
sk snRNA genes in female ESCs.
.
intron1B, Oct4 enhancer, Nanog promoter, and Sox2 promoter sites in

NAP II), a-OCT4, and a-ACTIN antibodies on WCE prepared from WT

ared from the d4 male ESCs shown in (I).
present 1 SD from the mean.
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Figure 5. BET Inhibition Dramatically Decreases Xist Levels but Does Not Reactivate X-Linked Genes
(A) Western blot analysis for OCT4 and ACTIN from d7 female ESCs following JQ1 or control treatment.
(B) Real-time RT-qPCR for designated sites after BET inhibition and DMSO control treatment.
(C) Immunostaining and RNA-FISH (Immuno-FISH) on vehicle DMSO (top row) versus JQ1 (bottom row) treated d7 female ESCs. Xist RNA-
FISH (red) (left), H3K27me3 immunostaining (green) (middle), and merged image (right). Scale bar represents 20 mM.
(D) Xist signal intensity was quantified by counting 60 cells following DMSO or JQ1 treatment and displayed as a Box plot. p < 53 10�15.
(E) Map of the mouse X chromosome with genes tested for expression. The X chromosome inactivation center (Xic) is shown as a pink box.
The X chromosome scale is in centimorgans (cM) with the centromere depicted as a circle.
(F) Treatment with the BET inhibitor, JQ1 and the expression of the X-linked genes shown in (E): Kdm6a, Mecp2, Zfx, Eif2s3x, Ogt, Rnf12,
and Kdm5c.
Graphs indicate three independent biological replicates. Error bars represent 1 SD from the mean.
cells. Global X chromosome silencing emanates from the

Xic during female ESC differentiation with the process

nearly complete atd7.As shown inFigure5F,X-linkedgenes

show a reduction in expression following BET inhibition.

Overall,we conclude thatBET inhibitiongreatlydiminishes

Xist expression in differentiated female cells but does not

result in a chromosomal-wide reactivation of the X.
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Overexpression of BRD4 Protein in ESCs Enhances

Pluripotent Genes

Approximately 50% of cellular P-TEFb is sequestered in an

inactive complex consisting of HEXIM1 and 7sk snRNA

(Yang et al., 2005). The active P-TEFb complex is associated

with BRD4. Because inhibition of BRD4’s BET domain

markedly reduced pluripotent mRNAs, we asked whether
ors
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D E

Figure 6. Brd4 Overexpression Induces while Brd4 Depletion Causes a Reduction in Pluripotent Gene Expression
(A) Undifferentiated (d0) male ESCs were transfected with Myc-tagged BRD4 or Myc-only control and harvested at d2. Western blot analysis
shows that the full-length Myc-BRD4 is expressed.
(B) qRT-PCR of the c-Myc, Oct4, Nanog, Xist, and Tsix genes following the overexpression of myc-BRD4 versus myc-only empty vector.
(C) Western blot analysis confirms knockdown in WT d0 male ESCs with scramble (Ctl) and Brd4 siRNA. RT-qPCR shows the expression of
Brd4, Oct4, Nanog, Tsix, N-cadherin (N-cad), Nodal, and Gata6 genes.
(D) Western blot confirms BRD4-knockdown in d6 WT male ESCs. RT-qPCR shows expression levels of the Brd4, Cyclin D1 (CycD1), cMyc, Tcl1,
Oct4, Nanog, Xist, Tsix, and Xite genes.
(E) Brd4 knockdown is confirmed in WT d6 female ESCs. Gene expression analysis (qRT-PCR) of the Brd4, Cyclin D1 (CycD1), cMyc, Tcl1, Oct4,
Nanog, Xist, Tsix, and Xite genes.
Graphs indicate three independent biological replicates. Error bars represent 1 SD from the mean.
forced expression of BRD4 would alter P-TEFb’s stoichiom-

etry and drive the expression of stem-ness genes. Full-

length Myc-tagged BRD4 was transfected into d0 male

ESCs. Whole-cell extracts (WCEs) and mRNA were har-

vested after 48 hr (d2). Western blot shows that the

Myc-fused BRD4 protein (180 kDa) is overexpressed as

compared with the Myc-only control (Figure 6A). Forced

expression of BRD4 induced cMyc, Oct4, Nanog, Xist, and
Stem C
Tsix expression (Figure 6B). These results suggest that

BRD4 induction can activate the pluripotent and XCI

genes in ESCs.

Depletion of Brd4 Reduces Pluripotent Gene

Expression

Targeted disruption of mouse Brd4 results in an early

lethality that precludes the analysis of XCI and
ell Reports j Vol. 4 j 390–403 j March 10, 2015 j ª2015 The Authors 399



pluripotency (Houzelstein et al., 2002). Therefore, to

examine the mechanistic in vivo function for BRD4 in

male and female ESCs, we used small interfering RNAs

(siRNAs). Two different regions of Brd4 were targeted for

knockdown (a second siRNA targeted to a different region

of Brd4 shows a similar result; data not shown). First, we

examined depletion of BRD4 in undifferentiated ESCs by

transfection with Brd4 siRNA and harvested for protein

and RNA analysis. Efficacy of the Brd4 knockdown was

confirmed by western blot analysis of WCEs from siRNA

control (scramble) versus Brd4 (Figure 6C, left). Brd4,

Oct4,Nanog, and Tsix show decreased expression following

Brd4 knockdown. In contrast, the N-Cadherin gene shows a

reproducible upregulation. In contrast, the Nodal and

Gata6 genes do not show repression. Interestingly, Brd4

but not another BET family member, Brd2, knockdown in

undifferentiated ESCs mimics the effect of JQ1 BET inhibi-

tion, suggesting the importance of Brd4 in pluripotency

(Figure S6A).

Day 4 male ESCs were transfected with Brd4 siRNA and

harvested for protein and RNA analysis 48 hr later. As

shown in Figure 6D, BRD4 protein is depleted (approxi-

mately 60%; Figure S6B) following Brd4 siRNA compared

with the actin protein expression in male ESCs. A panel

of genes was tested for expression following Brd4 versus

control siRNA treatment. Brd4, Cyclin D1 (CycD1), cMyc,

Tcl1 (the T cell leukemia oncogene, an OCT4 target, and

pluripotent gene) (Matoba et al., 2006), Oct4, Nanog, and

Xist mRNA levels were decreased following knockdown of

Brd4 in the male ESCs (Figure 6D, lower). In contrast, Tsix

andXite did not show a diminution of expression in knock-

down versus control in the male ESCs. To investigate XCI,

we examined Brd4 knockdown in female ESCs. A dramatic

decrease (�70%; Figure S6C) in Brd4 protein was observed

following Brd4 siRNA (Figure 6E, upper). RT-qPCR shows

that the Brd4, CycD1, Tcl1, Oct4, Nanog, Xist, Tsix, and

Xite expression levels all decrease in the Brd4 knockdown

as compared with the control (Figure 6E, lower). Taken

together, we show that the specific removal of Brd4 in

bothmale and female ESCs corroborates the BET inhibition

with a decrease in XCI- and pluripotency-associated genes.
DISCUSSION

Stem cells have a fundamental feature in that they have

molecular determinants to specify cell fate after mitosis:

retain pluripotency versus differentiate. Histone PTMs

and epigenetic bookmarkers may facilitate genes regula-

tion in ESCs.

Histone PTMs play a crucial role in modulating chro-

matin structure and transcription (Sterner and Berger,

2000; Zeng and Zhou, 2002). Acetylation of histones is
400 Stem Cell Reports j Vol. 4 j 390–403 j March 10, 2015 j ª2015 The Auth
used as a cellular signaling mechanism. The BET proteins

bind and read acetylated histones, but to date, it is un-

known how they function in early developmental pro-

cesses. Data presented here reveal a crucial role for the

histone reader BRD4 in maintaining pluripotency and

XCI status in stem cells. Inhibition or loss of Brd4 results

in a shift away from stem-ness to the neural fate. Neural

fate is postulated to be a default state as it is the intrinsic di-

rection of ESCs when the exogenous signals are minimized

in differentiation culture (Kamiya et al., 2011; Muñoz-San-

juán and Brivanlou, 2002). Our results reveal that BRD4

fortifies this decision to retain pluripotent fate by binding

OCT4 at pluripotent regulator regions. OCT4 is one of

the core pluripotent factors that occupies super-enhancers;

regulatory region clusters in genes that control the plurip-

otent state, suggesting transcriptional control of cell state

(Hnisz et al., 2013; Whyte et al., 2013). As a transcriptional

facilitator, BRD4 at these sites could enhance these plurip-

otent genes transcription either by recruiting P-TEFb or by

other P-TEFb-independent mechanisms. Although BRD4

can directly recognize and bind acetylated histones, our re-

sults show that BRD4 binding can be enhanced or stabi-

lized by OCT4 at particular regulatory regions such as the

Nanog promoter, supporting the hypothesis that BRD4

may be stabilized by other transcription factors.

The X chromosome inactivation center has a plethora of

lncRNAs that are transcribed in the sense and antisense

orientation (Payer and Lee, 2008; Lee and Bartolomei,

2013). This suggests that tight control of RNAP II is neces-

sary for their regulation. OCT4 can partner with the chro-

matin insulator CTCF, and both proteins mediate the X-X

homologous pairing in XCI (Xu et al., 2007). Active tran-

scription is required for pairing (Xu et al., 2007). Data

here suggest that both BRD4 and P-TEFb are additional fac-

tors for the transcription of the lncRNAs in mouse XCI.

Interestingly, human XCI does not correlate with the

pluripotent state as in the mouse (reviewed in Lessing

et al., 2013); therefore, future studies are necessary to

ascribe roles for BRD4 and P-TEFb for XCI in human

ESCs.While this manuscript was in revision, the Hernando

lab reported a role for BRD4-dependent transcriptional

elongation in human ESCs at super-enhancers of pluripo-

tency genes (Di Micco et al., 2014).

JQ1 small-molecule inhibition can displace the other BET

bromodomain familymembers Brd2, 3, and 4 frombinding

acetylated histones (Delmore et al., 2011). The Young lab

recently investigated genome-wide JQ1 binding using

ligand-affinity capture followed by massive parallel DNA

sequencing (Chem-Seq) and showed that the pattern of

JQ1 occupancy is best associated with Brd4 occupancy (An-

ders et al., 2014). We believe that BRD4 is the most impor-

tant BET-containing protein for ESC pluripotency and XCI.

First, deletion of mouse Brd4 is a peri-implantation lethal
ors



(Houzelstein et al., 2002) during the time of lineage segrega-

tion and XCI establishment in female cells. Second, BRD4

was identified in an RNAi screen of chromatin regulators

necessary for maintaining pluripotency (Fazzio et al.,

2008). Third, the BET family member BRDT is specifically

expressed in male germ cells (Shang et al., 2004). Fourth,

the Brd2 mouse mutation results in embryonic lethality

by day 11.5 with proliferative and neural tube closure de-

fects, suggesting that it plays later roles in development

(Shang et al., 2009). Although there is a possibility of redun-

dancy with the other BET proteins, our Brd4 knockdown

data confirm the JQ1 inhibition data establishing its func-

tion for pluripotency. Taken together, BRD4 binds with

OCT4 at many stem-ness gene regulatory regions, in-

cluding the lncRNAs involved in XCI. BRD4 and its recruit-

ment of P-TEFb exert crucial roles in stem cell identity and

the transcription of lncRNAs in XCI.
EXPERIMENTAL PROCEDURES

Cell Lines, Chemicals, and Chromatin

Immunoprecipitations
The ESC lines, fibroblast, and cell culture conditions have been

described (Lee and Lu, 1999). For these studies, we used three

different male (J1, R1, and ZHBTc4) and two different female

(EL16.7 and LF2) ESCs. The Dox-regulated Oct4 transgenic ESC

line ZHBTc was treated with 1 mg/ml Dox for 24 hr (Niwa et al.,

2000). JQ1 (BPS Biosciences) was diluted in DMSO with various

dosages. Flavipiridol (Santa Cruz) was diluted in DMSO and used

at 1 mM for a 3-hr treatment. Chromatin immunoprecipitations

were performed as previously published (Donohoe et al., 2009)

with the PCR primers described in Table S1. A total of 40 ng of

amplified DNA was used to prepare sequencing libraries using

the Illumina ChIP-seq HT Sequencing Library preparation proto-

col. Sequencing was performed performed at the Weill Cornell

Medical College Epigenemics Core using the Illumina HiSeq2000

system (Illumina) with each library sequenced in a 50 bases sin-

gle-read run. Reads were aligned to the mouse genome (mm10/

GRCm38) using SeqMonk (www.bioinformatics.babraham.ac.

uk). Peak calling was normalized to input DNA sequencing data.

Tracks were viewed using the Integrative Genomics Viewer (Broad

Institute). The accession number for the BRD4 ChIP-seq data in

this paper is SAMN0332740.

Gene Silencing by RNA Interference and Expression

Analysis
Murine Brd4 and MISSION Universal Negative Control siRNAs

were purchased from Sigma-Aldrich. Brd4 siRNA1 and siRNA2 tar-

geted the sequences 50- CCTGATTACTATAAGATTA-30 and 50-CA
GACAAACCAACTGCAAT-30, respectively. ESCs were transfected

using Lipofectamine 2000 (Invitrogen) with 200 pmol of siRNA

and theWCEs and RNAwere collected 48 hr later.Western analysis

of WCEs confirmed protein knockdown. RNA was prepared using

Trizol (Life Technology) and reverse transcribed to cDNA as

described (Donohoe et al., 2009) using the Applied Biosystems
Stem C
7500 Fast Real-Time PCR System. PCR was performed using the

primers described in Table S1.
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