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Abstract: The importance of sapienic acid (6c-16:1), a monounsaturated fatty acid of the n-10 family
formed from palmitic acid by delta-6 desaturase, and of its metabolism to 8c-18:1 and sebaleic
acid (5c,8c-18:2) has been recently assessed in cancer. Data are lacking on the association between
signaling cascades and exposure to sapienic acid comparing cell lines of the same cancer type. We
used 50 µM sapienic acid supplementation, a non-toxic concentration, to cultivate MCF-7 and 2 triple-
negative breast cancer cells (TNBC), MDA-MB-231 and BT-20. We followed up for three hours
regarding membrane fatty acid remodeling by fatty acid-based membrane lipidome analysis and
expression/phosphorylation of EGFR (epithelial growth factor receptor), mTOR (mammalian target of
rapamycin) and AKT (protein kinase B) by Western blotting as an oncogenic signaling cascade. Results
evidenced consistent differences among the three cell lines in the metabolism of n-10 fatty acids and
signaling. Here, a new scenario is proposed for the role of sapienic acid: one based on changes in
membrane composition and properties, and the other based on changes in expression/activation of
growth factors and signaling cascades. This knowledge can indicate additional players and synergies
in breast cancer cell metabolism, inspiring translational applications of tailored membrane lipid
strategies to assist pharmacological interventions.

Keywords: membrane fatty acids; breast cancer; membrane remodeling; fatty acid supplementation;
cancer signaling activation; membrane lipidome

1. Introduction

Cancer metabolism and invasiveness rely on monounsaturated and polyunsaturated
fatty acids (MUFA and PUFA), which play structural and functional roles, particularly as
hydrophobic residues of membrane phospholipids and sustaining signaling cascades [1–3].
The importance of fatty acids in the cancer cell membrane lipidome has been reported in
recent papers and reviews, highlighting the metabolic pathways shown in Scheme 1 [3–6],
i.e., the formation of the MUFA oleic acid from the saturated fatty acids (SFA) palmitic
and stearic acids. Moreover, in breast cancer, which has surpassed lung cancer as the most
commonly diagnosed cancer [7], fatty acid biomarkers have been studied and have been
found to give important clinical indications [4]. On the other hand, since eukaryotic cells,
and among them, cancer cells, cannot be formed without PUFA, the two families of n-6 and
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n-3 fatty acids are needed, starting from the dietary intakes of essential fatty acid (EFA)
precursors, linoleic and alpha-linolenic acids, respectively [3] (Scheme 2). More recently,
palmitic acid was found to be involved by an unusual pathway of delta-6 desaturation and
transformed into sapienic acid (SA) (Scheme 1) [8,9]. Indeed, the presence of SA was first
evidenced by us in lipid fractions isolated from human plasma [8], and its significantly
different levels were found in erythrocyte membrane phospholipids and plasma cholesteryl
esters when comparing an obese cohort to healthy subjects [9].
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It is worth noting that the SA transformation is considered a minor path since palmitic
acid is mostly transformed by elongase or delta-9 desaturase, as shown in Scheme 1, and
also because delta-6 desaturase is known to work mainly with PUFA (Scheme 2). On the
other hand, it is known that SA biosynthesis occurs in sebocytes and, according to Scheme 1,
proceeds with the formation of the elongation product 8cis-18:1 and the PUFA sebaleic
acid [10]. The three fatty acids in Scheme 1 (right side) represent the n-10 fatty acid family,
which are positional isomers of the n-9 and n-7 MUFA, i.e., oleic and palmitoleic acids
shown in Scheme 1, and of the n-6 PUFA linoleic acid shown in Scheme 2 [11,12]. After
our first detection and quantitation of SA in human blood [8], the “systemic” presence of
sapienic acid in membranes of blood cells was reported in phagocytic cells both of human
and murine origins, testing its anti-inflammatory activity but at a higher dose (25 µM) than
the one (10 µM) known for MUFA, such as oleic and palmitoleic acids [13]. Our objective
was to detect the impact of such pathways on human diseases, particularly in cancer.
Indeed, the desaturase enzyme known as stearoyl-CoA desaturase (SCD-1), carrying out
the transformation of stearic acid to oleic acid (Scheme 1), is crucial for cancer development
and invasiveness [14,15]. This finding led to specific desaturase inhibition strategies to
cause detrimental effects in cancer cell proliferation [16].

In Caco-2 cell lines, we demonstrated the occurrence of the full metabolism of SA to
sebaleic acid with a distinctive effect on membrane fluidity features detected by general
polarization measurements [11]. Further, we followed up the n-10 fatty acids in prostate
adenocarcinoma cell lines and found interesting differences in this metabolism in more
aggressive cancer cell types [17]. The expression of delta-6 desaturase and its ability to form
SA was then evidenced in different cancer cell types, demonstrating that proliferation is
connected with SA supplementation when this enzyme is inhibited [18]. On the other hand,
sebaleic acid metabolism was demonstrated in sebocytes via enzymatic oxidation that pro-
duces 5-hydroxy-(6E,8Z)-octadecadienoic acid (5-HODE), 5-oxo-(6E,8Z)-octadecadienoic
acid (5-oxo-ODE), 5S,18-dihydroxy-(6E,8Z)-octadecadienoic acid, and 5-oxo-18-hydroxy-
(6E,8Z)-octadecadienoic acid, with activity on neutrophil infiltration and induction of
inflammatory responses [19].

In cancer cells, no data are available on signaling cascades derived from n-10 fatty
acids. We found it intriguing that a strong expression of the epidermal growth factor
receptor (EGFR, also known as ERBB1 or HER1), belonging to a family of tyrosine kinase
receptors, was reported in undifferentiated sebocytes at the periphery of mouse and human
sebaceous glands [20]. Further studies concerning the effects of n-10 FA on signaling
cascades in the cellular environment, including cancer cells, are lacking.

Pursuing our interest in n-10 fatty acids, here we present the results of SA supple-
mentation in breast cancer cells, studied in terms of membrane FA incorporation and
remodeling, and associating for the first time the oncogenic signaling cascade of EGFR,
AKT (protein kinase B) and mTOR (mammalian target of rapamycin) [21]. We used 50 µM
SA concentration in 3 different breast cancer cell lines: MCF-7 as the hormone-dependent
cell line (both estrogen- and progesterone-receptor positive, ER and PR), and MDA-MB-231
and BT-20 as triple-negative breast cancer cells (TNBC). Membrane fatty acid remodeling,
expression and phosphorylation (activation) of EGFR, AKT and mTOR were followed
up in the first three hours and compared to untreated cells. The scope of this study is
to gather first indications in breast cancer cell lines that SA and its metabolism to n-10
MUFA and PUFA can affect both membrane composition due to phospholipid remodeling
and the expression/activation of cell signaling, expanding knowledge on fatty acid-based
mechanisms that can be involved in cancer invasiveness and escape.

2. Materials and Methods

Cis and trans FAME, dimethyl disulfide, iodine, cholesterol, sphingomyelin were
purchased from Merck-Sigma-Aldrich (Darmstadt, Germany) and used without further
purification; sapienic acid methyl ester, 8cis-18:1 methyl ester and sebaleic acid methyl
ester were purchased from Lipidox (Lidingö, Sweden). The solvents chloroform, methanol,



Cells 2022, 11, 225 4 of 16

isopropanol, diethyl ether and n-hexane (HPLC grade) were purchased from Carlo Erba
(Milan, Italy) and used without further purification. POPC (1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) and
POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine) were purchased from Larodan
(Solna, Sweden) and used without further purification. Silica gel analytical thin-layer
chromatography (TLC) was performed on Merck silica gel 60 plates of 0.25 mm thickness
(Merck, Darmstadt, Germany) and spots were detected by spraying the plate with a cerium
ammonium sulfate/ammonium molybdate reagent. Phospholipid classes were analyzed
by HPLC (Agilent 1200, Santa Clara, CA, USA) equipped with an RP18 column (EC 150/4.6,
Nucleodur C18 HTEC, 5 µM Macherey-Nagel, Düren, Germany) using the following
isocratic condition: buffer ammonium formate 1mM/ MeOH/ 2-propanol = 10/20/70,
detector UV 203. Phospholipids were identified by comparison with the retention times of
commercially available references. Values are expressed in relative quantitative percentages
(% rel. quant.), i.e., are obtained in µg/mL by calibration curves and converted to per-
centages of each lipid class over the total amount of lipid classes taken as 100%. The data
are shown in Tables S7–S9 together with a description of calibrations and measurement
procedures and parameters, and with a representative HPLC chromatogram (Figure S1) in
Supplementary Information.

Gas chromatography and detection with a flame ionization detector (GC-FID) were
carried out by Agilent 6850 equipment (Agilent, Milan, Italy) in splitless mode using a
60 m × 0.25 mm × 0.25 µm (50%-cyanopropyl)-methylpolysiloxane column DB23 and the
following oven program: temperature started from 165 ◦C, held for 3 min, followed by
an increase of 1 ◦C/min up to 195 ◦C, held for 40 min, followed by a second increase of
10 ◦C/min up to 240 ◦C, and held for 10 min. A constant pressure mode (29 psi) was chosen
with helium as the carrier gas. Fatty acid methyl esters (FAME) obtained from the mem-
brane phospholipids, as described in Section 2.5, were separated and quantified using pre-
viously published procedures and commercially available standard references [9,11,12,17].
A representative GC run is shown in Figure S2 in Supplementary Information. FAME are
expressed as relative percentages (mean ± SD) of the quantitative values of each fatty acid
obtained by calibration curves calculated directly by the software Chem Station Agilent of
GC instrument. The procedures for LOD, LOQ and calibration of GC instrument have been
reported previously [9,11,12,17]. FAME data are reported in Tables S1–S6 in Supplementary
Information and are shown as graphs in Figure 1 in the text.

2.1. Cell Culture and Treatment

MCF-7, MDA-MB-231 and BT-20 were purchased from American Type Culture Col-
lection (ATCC, Manassas, VA, USA). MCF-7, MDA-MB-231, and BT-20 were grown in
Dulbecco’s Modified Eagle’s medium (DMEM), in Roswell Park Memorial Institute (RPMI)
1640, and in Eagle’s minimal essential medium (EMEM), respectively. Cells were sup-
plemented with fetal bovine serum (FBS) (Sigma, Darmstadt, Germany), 1% L-glutamine
(Sigma, Germany) and 1% penicillin/streptomycin (Sigma, Darmstadt, Germany), and
incubated at 5% carbon dioxide and 37 ◦C in a humidified atmosphere. A day after seeding,
the culture medium was refreshed. A fresh sapienic acid batch was prepared in 100%
DMSO and used at 50 µM concentration for all the cultures, taking care that the final con-
centration of DMSO in the culture medium never exceeded 0.01% (v/v). The same DMSO
concentration was present in control experiments. Incubations were left for the established
times. In the “pulse and chase” experiment, used as control of the immediate effect of SA
(CTR-PC), the addition was carried out, and cells were kept in culture for 2–3 min, then
washed and used for further determination as described in the following sections.

2.2. Cell Proliferation Assay

Cell proliferation/viability were determined using MTT assay [22], as done previ-
ously [23]. Briefly, cells were seeded in 96-well plates at 10,000 cells/well. A day after seed-
ing, the culture medium was changed, and SA was incubated at different doses (0–500 µM)
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for 24 h, then incubated with MTT for 3 h. The absorbance at 570 nm was determined by a
microplate reader (BioTek, Instruments Inc., Winooski, VT, USA). To determine the viable
cells, the absorbance values were compared with the control group and calculated as the
percentage of viable cells. Viability analyses were carried out in SA-incubated cells in order
to calculate the IC50 for the three breast cancer cells.
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2.3. Western Blotting

After 24 h incubation of the three breast cancer cells at 37 ◦C under the experimental
conditions described in Section 2.1, the assay was carried out following previously reported
procedures [23,24]. Total proteins were extracted from each experiment with radioimmuno-
precipitation assay lysis buffer (Pierce; Thermo Fisher Scientific, Inc. Waltham, MA, USA).
Protein samples were then quantified with a Bradford Protein Assay kit (Pierce; Thermo
Fisher Scientific, Inc., Waltham, MA, USA). Proteins (30 µg/pore) were separated by 10%
sodium dodecyl sulphate-polyacrylamide (SDS-PAGE) gel and transferred onto polyvinyli-
dene difluoride membrane (PVDF membrane, Millipore, Darmstadt, Germany) using wet
electroblotting. The membrane was then blocked overnight with skimmed milk at 4 ◦C
and incubated with antibodies against phospho-EGF receptor (Tyr1068) (p-EGFR; 1:1000;
cat. no. 3777), EGFR (1:1000; cat. no. 4267), phospho-AKT (Ser473) (p-AKT; 1:1000; cat.
no. 4060), Akt (1:1000; cat. no. 4691), phospho-mTOR (Ser2448) (p-mTOR; 1:1000; cat.
no. 5536), mTOR (1:1000; cat. no. 2983), and beta-actin (1:10,000, cat. no. 5174) All primary
antibodies were purchased from Cell Signaling Technology (CST, Leiden, The Netherlands).
After washing with tris-buffered saline with Tween 20 (TBST), the membrane was incubated
with horseradish peroxidase-conjugated secondary antibodies (1:10,000; cat. no. 5450-0010;
Sera Care, Gaithersburg, MD 20878, USA) and visualized with an enhanced Luminata Forte
Western HRP Substrate (Millipore, Darmstadt, Germany). Beta-actin acted as an internal
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control and was quantified using the G:BOX Chemi XRQ system (Syngene, Cambridge, UK).
The data of all experiments are shown in Figures S3–S6 in Supplementary Information and
Figure 2 in the text.
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Figure 2. Calculation of the p-EGFR/EGFR ratio, (A) p-mTOR/mTOR and (B) p-AKT/AKT (C) for
each experimental group (n = 6 in each experiment) treated with 50 µM sapienic acid for the indicated
time; CTR-PC = pulse and chase experiment (see Section 2). Values were mean ± SD. * Values
significantly different from control (p < 0.001). Western blot analyses are shown in Figures S3–S5 in
Supplementary Information.

2.4. Preparation of Cells for Phospholipid Pellets

Petri dishes containing 3 × 106 cells were incubated in the conditions described in
Section 2.1 with 50 µM SA for the established times. Cells were detached using accutase,
thoroughly washed with phosphate buffer saline (PBS), and pellets were obtained as
described in the following Section 2.5.

2.5. Lipid Extraction and Fatty Acid Analysis of MCF-7, MDA-MB-231 and BT-20 Cell Lines

A sample (3 × 106 cells) of MCF-7, MDA-MB-231 or BT 20 (controls and supplemented
with sapienic acid) suspended in 1 mL PBS was added to 0.5 mL triple-distilled water and
centrifuged at 14,000 rpm for 5 min at 4 ◦C to obtain a membrane pellet. The membrane
pellet was reconstituted in triple-distilled water (1 mL), and 20 µL were injected in the
HPLC equipment, using the conditions described above, to determine lipid classes and
free cholesterol (see Supplementary Information—section “HPLC detection of lipid classes”
for details of calibration and protocol procedures. Data are reported in Tables S7–S9, and
Figure S1 is a representative HPLC run). The remaining membrane pellet underwent lipid
extraction with 2:1 chloroform:methanol (4 × 4 mL) according to the Folch method [25].
The organic layers, dried on anhydrous Na2SO4, were evaporated to dryness, and the total
lipid content (0.6–0.85 mg in each sample) was checked by TLC (n-hexane:diethyl ether 9:1).
To examine the fatty acid composition of the membrane pellet, extracts were converted
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into FAME (fatty acid methyl esters) by adding 0.5 M KOH in MeOH (0.5 mL), stirring the
reaction for 10 min and quenching by brine (0.5 mL). FAME were extracted with n-hexane
(4 × 2 mL), dried on anhydrous Na2SO4, evaporated to dryness, dissolved in n-hexane
(10 µL) and analyzed by GC using the standard references for peak identification and
quantitation as already described [9,11,12,17]. Tables S1–S6 in Supplementary Information
and Figure 1 in the text show the results of the fatty acid analyses.

2.6. Statistical Analysis

Results are given as mean ± SD (deviation standard). Statistical analysis was per-
formed using GraphPad Prism 8.0 software (GraphPad Software. Inc., San Diego, CA, USA).
To compare results, a nonparametric unpaired two-tailed t-test was used with a 95% confi-
dence interval. Correlations between protein activation and membrane fatty acids were
performed using Spearman correlation and visualized by heat map. Significance was given
for p < 0.05.

3. Results
3.1. Cell Cultures and Sapienic Acid Supplementation

Cultured MCF-7, BT-20, and MDA-MB-231 cells, in the conditions described in
Section 2, were treated with 50 µM sapienic acid for 24 h at 37 ◦C, analyzing in the first
3 h the expression and activation of EGFR, mTOR and AKT signaling in combination
with the analysis of the membrane fatty acid patterns. In order to decide about the SA
dosage, dose-dependent cytotoxicity at various concentrations of SA was determined in
MCF-7, MDA-MB-231, and BT-20 cells by MTT assay as described in Section 2. The IC50
values of SA were 128.9 µM, 147.8 µM, and 162.3 µM for MCF-7, MDA-MB-231 and BT-20
cells for 24 h, respectively, demonstrating that the IC50 concentrations for TNBC cells
were greater than in MCF-7 cells. In addition, the IC50 concentration of SA was higher in
BT-20 cells than MDA-MB-231 cells at 24 h. We followed cell viability over the 24 h and
at different concentrations of SA, finding that BT-20 cells were the most resistant to high
concentrations compared to MCF-7 and MDA-MB-231 cells (data not shown). We did not
further investigate the viability of the cell lines. These data were mainly used to establish
the SA concentration for the experiments. We decided to use 50 µM SA in the 3 cell lines
since the effects of sapienic acid were previously tested at 10 and 25 µM concentrations [13]
in normal cells (phagocytic cells). We thought that in cancer cells, the 50 µM concentration
could simulate increased production of this compound for the specific metabolism (delta-6
desaturase activation). However, it is still comfortable with the IC50 since it is 2–3 times
lower than the IC50 for all cell types tested in this work. Moreover, we demonstrated that
no lipid accumulation (production of triglycerides) was obtained at this concentration, and
at this concentration, it should trigger its metabolism to the other n-10 members.

3.2. Membrane Fatty Acid Remodeling under Sapienic Acid Supplementation in Three Breast
Cancer Cells

We were interested in monitoring the membrane fatty acid contents influenced by
SA supplementation. We performed follow ups at 0.5 h, 1 h, 2 h and 3 h after supple-
mentation in triplicated cell culture experiments, comparing with control cells in the same
conditions without SA supplementation. Each sample for membrane lipidome analysis,
containing a counted cell number of 3 × 106 cells, followed the procedure described in
Section 2 for phospholipid isolation, work-up for fatty acid methyl ester (FAME) formation
and detection using gas chromatography (GC), as previously carried out in Caco-2 cell
lines [11]. Fatty acids belonging to membrane phosphoglyceryl esters of the 3 cell lines
are shown in Tables S1–S3 in Supplementary Information, as mean ± SD, corresponding
to >97% of the total peaks detected in the GC analysis (see Figure S2 in Supplementary
Information for a representative GC run). Each fatty acid was calculated quantitatively
based on calibration curves and reported as percentages of the total fatty acid recognized
by appropriate standards (% rel. quant.).
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In Figure 1, the data of the main statistically significant FAs of the three cell lines are
reported as a function of the time (0–3 h) in order to have a snapshot of the changes for
(A) MCF-7; (B) MDA-MB-231 and (C) BT-20 cells (changes are reported as % of controls). It
is worth noting that control cells showed a different distribution among SFA, MUFA and
PUFA residues in membrane lipidomes which were different for each cell line, although they
were all of breast cancer type. SA supplementation induced different trends of membrane
fatty acid changes in the three cell lines, as follows:

(a) In MCF-7 cells (Table S1 and Figure 1A), the rapid incorporation of SA (0.5 h) brought
the increase of its levels 10 times compared to controls after 3 h (from 0.8% to 8.48%)
(p ≤ 0.0009); the sapienic/palmitoleic ratio after 3 h changed accordingly (p = ≤ 0.0009).
As shown in Figure 1A, the incorporation of 8cis-18:1 in membrane phospholipids,
implying the elongation of SA occurring in the cells, was immediate, bringing a
significant increment of total n-10 fatty acids from 0.5 to 3 h (p ≤ 0.04 to 0.007).
In this type of breast cancer cell, the level of the PUFA sebaleic acid in membrane
lipids remained untouched compared to controls. Membrane remodeling included
diminution of some MUFA levels, particularly oleic and vaccenic acids (Figure 1A),
and PUFAs, such as n-3 DHA and EPA, n-6 arachidonic acid, especially at 1 h, and
DGLA, but without significance;

(b) In MDA-MB-231 (Table S2 and Figure 1B), the incorporation of SA in membrane
fatty acids was also immediate at 0.5 h, but then remained almost constant up to
3 h (p ≤ 0.0009), together with elongation/incorporation of 8cis-18:1 also occurring
since 0.5 h and significant at 3 h (p ≤ 0.0009) and a low formation/incorporation of
PUFA sebaleic acid in the first 2 h, which was not significant. The total content of
n-10 fatty acids significantly increased at all incubation times with respect to controls.
The sapienic/palmitoleic acid ratio was significantly increased after 30 min and 3 h.
In the meantime, a profound and significant remodeling involved all the fatty acid
families, as shown in Figure 1B: (i) SFA (palmitic acid C16:0, stearic acid C18:0 and
C20:0) decreased; (ii) the MUFA oleic acid increased (p ≤ 0.0009); (iii) for n-6 PUFA
(Figure 1B, right graph), the decrease of arachidonic acid and DGLA (p ≤ 0.04; 0.007;
p ≤ 0.0009) was accompanied by the increase of linoleic acid up to the first 2 h
(p ≤ 0.0009); for n-3 PUFA, after 2 h of incubation, both 22:5 DPA (p ≤ 0.04) and 22:6
DHA (p ≤ 0.04) diminished with a recovery of both levels after 3 h;

(c) In BT-20 (Table S3 and Figure 1C), SA was significantly incorporated, also after
elongation to 8cis 18:1, during the 3 h incubation (p ≤ 0.0006) and, only in this cell
line, the level of sebaleic acid in membrane phospholipids significantly increased
after 30 min (p ≤ 0.007); the content of total n-10 fatty acids increased in the time and
doubled significantly after 2 h (p ≤ 0.0006), becoming almost 4 times more respect
to controls after 3 h of incubation (p ≤ 0.0006). The sapienic/palmitoleic acid ratio
significantly changed after 2 and 3 h of incubation (p ≤ 0.0006), reaching the highest
value in BT-20 cells compared to the other 2 cell lines. In this cell line, the remodeling
involved: (i) the diminution of total SFA and, in particular, palmitic acid (p ≤ 0.0006);
(ii) the MUFA oleic and vaccenic acids decrease (p ≤ 0.007 and p ≤ 0.0006); in the
PUFA family, we note the increase of n-6 DGLA and ARA in the first 30 min (p ≤ 0.007;
p ≤ 0.0006), together with the significant increase of the n-3 fatty acids, in particular
EPA (p ≤ 0.04 at 3 h).

We also quantified by HPLC, using calibration with standard references as described
in Section 2 and in Supporting Information, the main lipid classes of cell membranes, in
particular phosphatidylcholine (PC), phosphatidylserine (PS), sphingomyelins (SM) and
cholesterol (Tables S7–S9 in Supplementary Information), which represent almost 90% of
the total lipid classes in breast cancer cell lines [26,27]. A representative HPLC run is shown
in Figure S1. Differences among the three cell lines were evidenced, as follows: (a) in
MCF-7, a significant decrease of sphingomyelins (SM) was shown after 2 h (p ≤ 0.05); (b) in
MDA-MB-231, a decrease of cholesterol (CHO) after 3 h (p ≤ 0.05) and phosphatidylcholine
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(PC) was seen after 2 h (p ≤ 0.05); (c) in BT-20 a significant increase of SM was seen after
1 h (p ≤ 0.03) and 3 h (p ≤ 0.004).

Finally, we also performed pulse-and-chase experiments at 50 µM SA in the 3 cell
lines and compared the effects of membrane fatty acid remodelling with control cells at
a short exposure time of 2–3 min (CTR-PC). The results are shown in Supplementary
Information Tables S4–S6. MCF-7 did not show any significant changes in fatty acid
composition. Instead, MDA-MB-231 responded immediately with variations of n-10 FA,
incorporating SA and its elongated metabolites, including the endogenous PUFA, sebaleic
acid. This incorporation was accompanied by remodeling with specific diminution of
di-homo gamma-linolenic acid (C20:3 n-6). Lastly, the brief exposition for BT-20 cells did
not show significant n-10 incorporation but responded immediately with the remodeling
of SFA and PUFA residues, decreasing the former and increasing the latter in the n-6 (ARA)
and the n-3 (EPA and DPA) series.

3.3. Expression and Phosphorylation of EGFR, AKT and mTOR in Breast Cancer Cells Treated
with Sapienic Acid

During incubation of MCF-7, MDA-MB-231, and BT-20 cells with 50 µM sapienic acid,
the expression of the proteins EGFR, AKT and mTOR and their activation by phospho-
rylation (p-EGFR, p-AKT, p-mTOR) were detected by Western blotting. Figures S3–S5 in
Supplementary Information show the results of the three cell lines regarding the three
proteins. Figure 2 shows graphics of the amounts of phosphorylated proteins at 0, 1, 2, 3 h,
as well as in the pulse and chase experiment (CTR-PC). In MCF-7 cells, treatment with
50 µM SA induced EGFR expression and increased its expression approximately 3-fold com-
pared to control for 2 h (Figure S3, top), whereas there was a significant decrease in EGFR
activation from the first hour (Figure 2A, left graph). On the other hand, EGFR activation
was already very high in MDA-MB-231 cells, a TNBC cell (Figure S3, middle), and there was
a significant increase in EGFR activation up to 3 h with SA treatment (Figure 2A, middle
graph). In BT-20 cells, another TNBC cell, there was a strong EGFR expression in controls,
which was also maintained for 2 h (Figure S3, bottom), together with a significant increase
in EGFR activation for 3 h with SA treatment (Figure 2A, right graph), as observed in
MDA-MB-231 cells. In the evaluation of mTOR in these cell lines, the expression increased
in the MCF-7 cell line after the SA supplementation, at least up to 2 h (Figure S4, top), and
the activation was also increased up to 3 h (Figure 2B, left graph).

For the MDA-MB-231 cell line, mTOR expression diminished compared to control cells
(Figure S4, middle), whereas mTOR activation steadily increased over the 3 h (Figure 2B,
middle graph). In the BT-20 cell line, we found an increase of mTOR activation with SA
treatment in 1 h (Figure S4, bottom) accompanied by strong activation (Figure 2B, right
graph). In evaluating AKT protein in the three cell lines, we observed the expression only
in the MCF-7 cell line in the first hour (Figure S5, top), but the activation increased up to 3 h
(Figure 2C, left graph). In MDA-MB-231 cells, we found that SA treatment increased AKT
expression (Figure S5, middle). Activation approximately increased 3-fold in the first and
second hours and then decreased in the third hour compared to the controls (Figure 2C,
middle graph). In BT-20 cells, AKT expression was maintained only in the first 1–2 h
(Figure S5, bottom), whereas AKT activation was significantly increased by SA treatment
along the 3 h (Figure 2C, right graph).

Follow-up of the instantaneous effect of SA on the signaling proteins, when it comes in
contact with cells for a few minutes (CTR-PC experiment), gives the extent of the sensitivity
in the three cell lines (Figure 2), mainly regarding the immediate membrane remodeling:
MCF-7 and MDA-MB-231 cell lines showed mTOR and AKT activation while BT-20 showed
only a significant diminution of AKT at this short time incubation (Figure 2).

We finally run a statistical evaluation of the data in our hands, particularly regarding
correlations between the n-10 FA levels and the activation/expression of signaling proteins,
to obtain a first map of the significant effects induced by the presence of n-10 FA in the
membrane phospholipids. As shown in Figure 3, 50 µM SA supplementation produced



Cells 2022, 11, 225 10 of 16

different results in each cell line. In particular, positive correlations were found as follows:
(a) in MCF-7 cells, sapienic and sebaleic acids and the total n-10 FA correlated positively
with p-AKT and p-mTOR (p < 0.005 and p < 0.05, respectively); (b) in MDA-MB-231 cells,
only total n-10 FA levels correlated positively with p-mTOR (p < 0.05); (c) in BT-20 cells,
total n-10 FA levels were positively correlated with p-EGFR. It is worth recalling that BT-20
showed the highest IC50, and this is the only cell line to have EGFR activation correlated
with the n-10 FA levels.
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4. Discussion

In the present study, we were interested in the effects of SA in ER-positive (MCF-7) and
-negative (MDA-MB-231 and BT-20) breast cancer cells in connection with the activation
of EGFR expression and the AKT/mTOR pathway. In our experiments, we chose to
follow up the time window of the first 3 h since the effects of fatty acid supplementation
have previously been shown to be connected to the fast membrane lipidome remodeling
sustained by the well-known Lands’ cycle [28]. Using a neuroblastoma cell line, we carried
out pulse-and-chase (PC) experiments. After a short time of fatty acid supplementation,
cells were washed and suspended in fresh medium to continue the culture. In these
conditions, we demonstrated that fatty acids induce immediate changes to membrane
composition and that, compared with cell cultures exposed to fatty acid supplementation
for an extended period, the PC cell fate is different [28].

In the present study, for the first time, membrane remodeling is followed up together
with EGFR, AKT and mTOR protein expressions and activation during SA supplementation
in three breast cancer cell lines (MCF-7, MDA-MB-231, BT-20) chosen for their different
characteristics of hormone responders and resistance. The incubation with 50 µM SA was
chosen since it did not affect cell viability. In literature, effects of sapienic acid were reported
in normal cells (phagocytic cells) at 10 and 25 µM concentrations, indicating that only the
latter has an anti-inflammatory effect [13]. We decided to use the 50 µM concentration,
considering that our experiment is in cancer cells. We wanted to simulate a more significant
production of this compound in cancer cells (delta-6 desaturase activation), which is still
comfortable with the IC50 (2–3 times higher concentrations in all cell types tested in this
work; see Section 3). Moreover, we demonstrated that no lipid accumulation (formation of
triglycerides) is obtained at this concentration, and transformation into its n-10 congeners
and incorporation in membrane lipids occur, as shown in Figure 1.

Under such supplementation, the first relevant result of our work is that the three
cancer cell lines did not have the same behaviour, showing important differences in
both membrane fatty acid remodeling and expression/activation of signaling proteins
(cf., Figures 1 and 2).

In MCF-7 cells, a decrease of EGFR activation was seen, but at the same time, p-mTOR
and p-AKT were increased (Figure 2A–C, left graphs); since increased levels of sapienic acid
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and total n-10 fatty acids were found in the membrane lipidome of this cell line, a “direct”
effect of the membrane asset can be connected with the propagation of this signaling
pathway. This was also confirmed by the correlation between fatty acids and signaling in
Figure 3A; among the three cell lines, MCF-7 was the one containing the highest level of
SFA (up to 70% of the total FA), whereas the other cell lines reached 50% SFA over the total
FA content. Since FA contents can vary according to the growth conditions, we attributed
these changes to the specific experimental conditions rather than a stable difference due
to the cancer types. On the other hand, culture conditions influence membrane lipidome
and fatty acid compositions, as firstly evidenced in neuroblastoma cell lines [28], and
requests for more attention for such an issue have been detailed by other authors [29]. In
our conditions, the MCF-7 cell line had strikingly different behavior in the membrane fatty
acid remodeling compared to the other two TNBC cell lines: the incorporation of n-10 FA
was accompanied by the incorporation of oleic acid, whereas PUFA moieties were involved,
but not significantly (Figure 2A). We recall that the enrichment of oleic acid in membrane
phospholipids is an important biomarker of SCD-1 activation and tumor proliferation,
whereas SCD-1 inhibition is obtained by exogenous supplementation of oleic acid [30].
Desaturase activity with MUFA increases, but without considering n-10 FA and their effects,
has been connected with the role of membrane fluidity in cancer to directly activate the
AKT cascade [14,15]. The formerly suggested role of membrane plasticity and desaturase
enzymes in the formation of unsaturated fatty acid moieties [14,15,31] has been recently
reaffirmed [32,33].

In the case of the two TNBC cell lines, membrane lipidome and protein signaling
changed by SA supplementation and in a distinctive manner for each cell line, as follows:
in MDA-MB-231 cells, EGFR activation occurred at 3 h, whereas the mTOR pathway
responded immediately and the p-AKT increase occurred in the first 2 h (Figure 2A–C,
middle graphs); at the same time, in the MDA-MB-231 lipidome, oleic acid increased
significantly together with n-6 linoleic acid in the first 2 h, while SFA and PUFA moieties
diminished (Figure 1B); here again, the MUFA increase can have the same significance
seen in MCF-7. Total n-10 levels correlate with mTOR levels, as shown in Figure 3B. In
BT-20 cells, the net increase of EGRF, together with strong activation of the other signaling
proteins, p-mTOR and p-AKT, were observed (Figure 2A–C, right graphs), coupled with the
incorporation of the highest amount of n-10 FA among all cell lines in the 3 h monitoring
(14.41 ± 1.82, see Table S3 in Supplementary Information). BT-20 was also the cell line with
the highest increase in the sapienic/palmitoleic acid ratio (7 folds) compared to the other
two cell lines, thus showing a specific delta-6 desaturase partition in this cell line. Only in
this case, the total n-10 levels were found to be correlated with EGFR (Figure 3C). Finally,
this cell line is the only one to show the net increase of n-3 EPA (Figure 1C).

Our results demonstrated that the n-10 fatty acid family is able to influence the
EGFR/AKT/mTOR cascade, which is a fundamental pathway ubiquitously present in
tumors to maintain growth, survival, and metastasis [34,35]. EGFR is overexpressed in
more than 20% of metastatic breast cancer cases and approximately half of TNBC cases [36].
We showed that in BT-20 cell lines, there is a correlation between the total n-10 fatty acid
level and EGFR expression. This result can also have an impact in anti-EGFR therapies and
in cases of resistance to EGFR inhibitors, suggesting to deepen the behavior of membrane
remodeling as synergies for cancer cell resistance [37]. Overexpression and activation of
AKT and mTOR, as sub-pathways of EGFR, are directly linked to the development of
breast cancer [38], and we demonstrated that n-10 fatty acids have an impact on these two
signaling proteins, in connection with but also independently from EGFR. It should be
noted that in previous studies, it was proven that EGFR activation can directly increase
mTOR-mediated cell growth by forming phosphatidic acid (PA) by phospholipase D [39]
and can also indirectly increase cell growth by activating mTOR via PI3K/AKT through
EGFR activation [1,5]. On the other hand, activation of AKT/mTOR is known to promote
tumor growth and metastasis with many mechanisms underlying the development of the
disease and the resistance to AKT/mTOR inhibitors in cancer cells [40,41].
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We wish to underline that examining the effects of the SA supplementation in the
pulse and chase manner, mimicking a short-time exposure to an “influencer” of the cell
metabolism, can help investigate how quickly consequences of SA can occur to the composi-
tion of the membrane fatty acids. The immediate transformation of SA into its metabolites,
especially in the BT-20 cell line, was observed, thus suggesting that n-10 FA should be
followed up in specific cancer-resistant cell lines. Additionally, we analysed lipid classes
evidencing different behavior in the three cell lines. The examined lipid classes account
for 90% of the species, and they have also been followed in other breast cancer cell experi-
ments [26,27]; however, we underline the need for systematic analytic work, as reported in
other studies [13].

Altogether, our results suggest that n-10 fatty acids can add important information,
especially in the development of new paradigms, particularly considering the emerging
role of SCD-1 desaturase and monounsaturated fatty acid (MUFA) biosynthesis in cell
resistance to ferroptosis [42].

We hypothesize that the dual role of n-10 fatty acids can proceed as shown in Figure 4,
i.e., (a) by direct EGFR interaction with the production of signaling cascade (in our case,
mTOR and AKT). In this case, we recall the known sebaleic acid interaction with EGFR
in sebocytes [20]; and (b) by the induction of membrane remodeling due to an increase
in the production of unsaturated fatty acid moieties, as recently highlighted in the de-
bate on desaturase activities and diversification of unsaturated fatty acid metabolites [43],
thus influencing membrane properties, such as fluidity, known to activate AKT signal-
ing [14,15,31]. Such mechanisms can be operative alone or synergically, depending on the
specific condition, and performing a fatty acid-based membrane lipidomic analysis will be
an important tool for gaining more insights on all factors influencing cancer cell growth.
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n-10 fatty acids in a membrane lipidome with changes to the membrane properties and activation of
signaling (p-mTOR and p-AKT).
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This is a preliminary study, and we are aware that further work is needed in order
to completely understand the scenario of membrane remodeling and membrane fluidity
changes with cell signaling regarding proliferation and invasiveness. Deepening the effects
of SA in the presence of different dietary fatty acid conditions can also be suggested to
study reprogramming of fatty acid metabolism in cancer, as well as for therapeutical
applications [44,45].

5. Conclusions

Our study highlights the importance of the newly discovered n-10 fatty acid family
in human cancer cells, clarifying its impact for membranes in both processes of fatty
acid remodeling and receptor interaction for signaling. Membranes are definitely not
spectators [46], and n-10 fatty acids can act by changing both their fatty acid composition
and biophysical properties, as well as by activating growth factors and signaling cascades.
We believe that knowledge on fatty acid-based membrane lipidome analysis will expand
the understanding of lipid metabolism and individuate related biomarkers which are
applicable as translational molecular medicine tools. Because lipids are an important part
of human nutrition, especially in evaluating unsaturated fatty acid intakes, integrated
molecular diagnostic profiles of breast cancer patients can be envisaged as easy-to-use
screening for the design of tailored dietary regimes, as is emerging in recent clinical
observational studies [47,48].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11020225/s1, Figure S1: Representative HPLC runs of the standard references and one
sample of the membrane pellet, eluted under the conditions indicated in the main text. Figure S2:
Representative GC analysis of the fatty acid methyl esters (FAME) obtained from membrane phospho-
lipid isolation and work-up as described in the Experimental Section. Figure S3: Levels of p-EGFR
and EGFR proteins (Western blot) in whole-cell lysates isolated from the breast cancer cell lines,
using β-actin as loading controls. A total of 30 µg of protein were loaded for both whole-cell lysates.
Detections were carried out at 0 (CTR), 1, 2, 3 h of incubation at 50 µM SA, and in the pulse-and-chase
experiment (CTR-PC). Figure S4: Levels of p-mTOR and mTOR proteins (Western blot) in whole-cell
lysates isolated from the breast cancer cell lines, using β-actin as loading controls. A total of 30 µg
of protein were loaded for both whole-cell lysates. Detections were carried out at 0 (CTR), 1, 2, 3 h
of incubation at 50 µM SA, and in the pulse-and-chase experiment (CTR-PC). Figure S5: Levels of
p-AKT and AKT proteins (Western blot) in whole-cell lysates isolated from the breast cancer cell lines,
using β-actin as loading controls. A total of 30 µg of protein were loaded for both whole-cell lysates.
Detections were carried out at 0 (CTR), 1, 2, 3 h of incubation at 50 µM SA, and in the pulse-and-chase
experiment (CTR-PC). Table S1: Fatty acid residues of phospholipids isolated from MCF-7 cells in
control culture experiments and in cultures where 50 µM sapienic acid was added, isolated after
the indicated times. Table S2: Fatty acid residues of phospholipids isolated from MDA-MB-231
cells in control culture experiments and in cultures where 50 µM sapienic acid was added, isolated
after the indicated times. Table S3: Fatty acid residues of phospholipids isolated from BT-20 cells
in control culture experiments and in cultures where 50 µM sapienic acid was added, isolated after
the indicated times. Table S4: Fatty acid residues of phospholipids isolated from MCF-7 cells in
control culture experiments and in cultures where 50 µM sapienic acid was added and washed after
2 min (CTR-PC, pulse and chase experiment). Table S5: Fatty acid residues of phospholipids isolated
from MDA-MB-231 cells in control culture experiments and cultures where 50 µM sapienic acid
was added and washed after 2 min (CTR-PC, pulse and chase experiment). Table S6: Fatty acid
residues of phospholipids isolated from BT-20 cells in control culture experiments and in cultures
where 50 µM sapienic acid was added and washed after 2 min (CTR-PC, pulse and chase experiment).
Table S7: Main lipid classes isolated from MCF-7 cells treated with 50 µM sapienic acid at the indicated
times. Table S8: Main lipid classes isolated from MDA-MB-231 cells treated with 50 µM sapienic
acid at the indicated times. Table S9: Main lipid classes isolated from BT-20 cells treated with 50 µM
sapienic acid at the indicated times.
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