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The ENCyclopedia of DNA Elements (ENCODE) consortium has generated transcription factor (TF) binding ChIP-seq data

covering hundreds of TF proteins and cell types; however, due to limits on time and resources, only a small fraction of all

possible TF-cell type pairs have been profiled. One solution is to build machine learning models trained on currently avail-

able epigenomic data sets that can be applied to the remaining missing pairs. A major challenge is that TF binding sites are

cell-type–specific, which can be attributed to cellular contexts such as chromatin accessibility. Meanwhile, indirect TF-DNA

binding and interactions between TFs complicate this regulatory process. Technical issues such as sequencing biases and

batch effects render the prediction task evenmore challenging. Many pioneering efforts have beenmade to predict TF bind-

ing profiles based on DNA sequence and DNase-seq footprints, but to what extent a model can be generalized to completely

untested cell conditions remains unknown. In this study, we describe our first place solution to the 2017 ENCODE-DREAM

in vivo TF binding site prediction challenge. By carefully addressing multisource biases and information imbalance across

cell types, we created a pipeline that significantly outperforms the current state-of-the-art methods. The proposed method is

sufficiently complex enough to model nonlinear interactions between TF binding motifs and chromatin accessibility infor-

mation up to 1500 bp from the genomic region of interest.

[Supplemental material is available for this article.]

Transcription factors (TFs) regulate gene expression by binding to
specific DNA sequence patterns (Pabo and Sauer 1992; Badis et al.
2009). The TF binding landscapes vary in different cell types and
genetic contexts (Kasowski et al. 2010). Understanding TF binding
behaviors is critical to decoding the regulatorymechanisms under-
lying transcription processes and diseases (Shilatifard et al. 2003;
Thomas and Chiang 2006; Hawkins et al. 2011; Kornblihtt 2012;
Yin et al. 2017). Chromatin immunoprecipitation followed by
DNA sequencing (ChIP-seq) is a widely used method for detecting
genome-wide in vivo TF binding profiles (Johnson et al. 2007;
Kulakovskiy et al. 2010). The ENCyclopedia of DNA Elements
(ENCODE) consortium has generated thousands of ChIP-seq pro-
files; however, these data only cover a small fraction of all possible
TF and cell-type pairs. Performing enough ChIP-seq experiments
to complete binding profiles for each cell type is unrealistic due
to constraints in time and resources. Therefore, accurate computa-
tional approaches for predicting TF binding sites are needed to
impute the missing data, not only acting as a complement to
ChIP-seq results but also for providing insights on regulatory geno-
mics (Bulyk 2003; Blanchette et al. 2006).

Many advances have beenmade in the computational predic-
tion of TF binding profiles (GuhaThakurta 2006). The position
weight matrix (PWM), as derived from experimental observations
of TF-DNA interactions, is a classicmethodof representingTFbind-
ing patterns, also known as motifs (Staden 1984; Berg and von
Hippel 1988; Stormo 2000). These probabilistic matrices assume
that each nucleotide is independent, ignoring the interdependen-
cy between nucleotide positions (Stormo 2000). Early neural
network approaches considering the nonindependence between
positions have shown improved performance, but data set sizes
limited the feasibility of these highly complex models (Horton

and Kanehisa 1992). Recent development of deep learning algo-
rithms takes advantage of large omics-scale data sets and predicts
genome-wide regulatory function de novo from sequences (Alipa-
nahi et al. 2015; Zhou and Troyanskaya 2015; Kelley et al. 2016;
Quang and Xie 2016). Unfortunately, these computational meth-
ods make predictions based on sequence alone, which does not
contain enough information to discriminate cell-type–specific
binding sites. In addition to sequence, TF binding is highly as-
sociated with cellular contexts such as chromatin accessibility
(Gross andGarrard 1988; Stormo and Fields 1998; Gaszner and Fel-
senfeld 2006). For example, a specific genome position may be
open and bound to a TF in one cell type, but the same genome po-
sitionmay be closed and unbound in another cell type (Neph et al.
2012). The DNase-seq assay has been developed to measure chro-
matin accessibility genome-wide (Sabo et al. 2004; Crawford et al.
2006; John et al. 2013). “Footprinting” algorithms attempt to re-
cover cell-specific TF binding sites (TFBSs) fromDNase cleavage sig-
nals (Zhang et al. 2008; Hesselberth et al. 2009; Boyle et al. 2011;
Pique-Regi et al. 2011; Cuellar-Partida et al. 2012; Piper et al.
2013; Gusmao et al. 2014, 2016; Sherwood et al. 2014; Sung et al.
2014; Yardımcı et al. 2014; Kähärä and Lähdesmäki 2015; Chen
et al. 2017; Schmidt et al. 2017; Quach and Furey 2017).

The ENCODE and NIH Roadmap Epigenomics Mapping
Consortium (The ENCODE Project Consortium 2012; Roadmap
Epigenomics Consortium et al. 2015) projects provide a large data
set of TF ChIP-seq and DNase-seq results in diverse cell types and
conditions,which is an invaluable sourceof information forunder-
standing the regulatory process. In 2017, the Dialogue on Reverse
Engineering Assessment and Method (DREAM) (Stolovitzky et al.
2007) organized the ENCODE-DREAM in vivo TF binding site
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prediction challenge (https://www.synapse.org/#!Synapse:syn613
1484/wiki/; accessed February 9, 2018). This challenge provides
a systematic benchmark to evaluate computational methods for
predicting cell-type–specific TF binding profiles. Here, we describe
our algorithm, Anchor, which shared a co-first place with J-Team
(Keilwagen et al. 2017) in this challenge. Our approach considers
both the interdependencies between neighboring nucleotide
positions andnonlinear interactions between TFmotifs. It advanc-
es the computational predictions of in vivo TF binding sites, and
key features used in our model are informative for future method
development and regulatory mechanism exploration.

Results

Overview of the experimental design for cross-cell type

TF binding predictions

In this paper, we use data sets provided by the ENCODE-DREAM
challenge, which consists of 84 ChIP-seq experiment results cover-
ing 32 TFs and 13 cell types (https://www.synapse.org/#!Synapse:
syn6131484/wiki/402033; accessed February 9, 2018). DNase-
seq data are available for all 13 cell types. A subset of the 13
ChIP-seq data sets were held out as the evaluation testing set on
which final rankings are based, 28 were held out for the “leader-
board” where competitors can compare results to each other in
real time, and the remainingChIP-seq data sets were used for train-
ing. For each 200-base pair (bp) interval at 50-bp sliding window
steps, a gold standard binary label “Bound” or “Unbound,” accord-
ing to the ChIP-seq signals, is assigned. “Ambiguous” labels may
also be assigned to a bin, but such bins are ignored in training
and evaluation. Binding data for Chromosome (Chr) 1, Chr 8,
and Chr 21 were excluded from all ChIP-seq data sets, including
the trainingChIP-seq data sets; final evaluation on the leaderboard
and testing set were based on the quality of predictions exclusively
on these three held-out chromosomes. Chr Y was ignored in train-
ing and evaluation, and ChIP-seq binding data for the remaining
20 chromosomes were available for training in select TF–cell type
pairs. GRCh37 was used as the reference genome. The test set con-
sists of ChIP-seq binding profiles of 13 TF-cell type pairs covering
12 unique TFs (CTCF, E2F1, EGR1, FOXA1, FOXA2, GABPA,
HNF4A, JUND, MAX, NANOG, REST, and TAF1) and four unique
cell types (liver, iPSC, PC-3, and K562). All test data were unpub-
lished prior to the conclusion of the challenge and completely
blind to all participants. The liver cell type comprised nine of the
13 testing pairs and was a particularly difficult cell type for making
predictions because it did not have any available reference training
binding data for any TF. In addition, whereas 12 of the cell types
represented pure cell lines, liver was primary tissue from two differ-
ent donors, which further complicated predictions.More informa-
tion about the data and evaluation metrics can be found on the
ENCODE-DREAM website (https://www.synapse.org/#!Synapse:
syn6131484/wiki/402032; accessed February 9, 2018).

Our method, which we have named Anchor, consists of four
major components in order to extract informative features and re-
duce errors. First, we use a “crisscross” validation-based early stop-
ping strategy such that training is performed on one half of the 20
training chromosomes for one cell type. Model training proceeds
iteratively until the error on a validation set, which is comprised
of binding data on the remaining training chromosomes for an-
other cell type, fails to decrease. The error on the validation set is
used as a proxy for the generalization error in determining when
overfitting has begun, which helps the model generalize across

cell types and chromosomes. Without this step, a model trained
on a single ChIP-seq experiment may memorize artifacts, hinder-
ing the model. These artifacts may result from biological contexts
unique to a single cell type or batch effects. Second, features are
extracted from a 1500-bp window surrounding each bin in TF
binding in order to capture longer range contexts that influence
binding. Information of the neighboring sequence and chromatin
accessibility is integrated to delineate the TF binding landscape.
Third, TF-TF interaction is a known crucial regulatory component.
The Anchor model incorporates motifs of a variety of TFs in the
feature generation step to capture events such as indirect binding
and anticorrelated binding, which are not detectable by using a
single TF motif. For example, a model that predicts REST binding
may incorporate CTCF PWM scans as features because true REST
binding sites are less likely to overlap true CTCF binding sites.
Finally, the Anchor pipeline includes a preprocessing step to coun-
teract errors induced by heterogeneity in the DNase-seq signals.
Cell-type- and chromosome-specific DNase cleavage biases greatly
affect the predictive performance. This is because current se-
quencing techniques to detect chromatin accessibility, including
DNase-seq, depend on enzymatic treatments. These enzymes
have inherent sequence cleavage biases related to the DNA shape
and chemical modification status (Koohy et al. 2013; Lazarovici
et al. 2013; Yardımcı et al. 2014; Martins et al. 2018). These biases
need to be carefully rectified to build amodel generalizable inmul-
tiple cell types. Furthermore, DNase-seq experiments can vary
greatly in terms of read depth and signal-to-noise, and these differ-
encesmust be corrected. To discriminate true chromatin accessibil-
ity signals from artifacts, we leveraged information from multiple
cell types by quantile normalization of the DNase-seq data and ex-
tracting the differences between a query cell type and the average
level across all training cell types. By integrating these compo-
nents, the Anchor pipeline provides a robust and accurate method
for predicting TF binding profiles across cell types (Fig. 1).

Crisscross training and validation to reduce cell type

and chromosome biases

To create a useful model of predicting ChIP-seq results at the ge-
nomescale, it is crucial tomake themodel generalizable todifferent
cell types. However, overfitting is an especially difficult issue for
this application because the testing set (e.g., the untested cell types
and chromosomes) is not entirely reflective of the training set. In
addition to theendogenousbiologicaldifferencesbetween training
cell types andheld-out testing cell types, batch effects,whichoccur
because measurements are affected by laboratory conditions, re-
agent lots, and personnel differences, can also greatly impact eval-
uation results.While amodelmay performwell on the training cell
types, the samemodel is notnecessarily guaranteed toperformwell
on a held-out testing cell type. To exploit information contained in
the training data and avoid overfitting, we implemented a criss-
cross validation-based early stopping procedure as follows (Supple-
mental Fig. S1; see details in Supplemental Material−Extended
Methods):

Step 1: Randomly divide the training chromosomes into two
fixed sets, A and B, as the training and validation sets (Supplemen-
tal Fig. S1A; Supplemental Table S1). This partition allows us to
train models on one chromosome set and validate models on the
other. If we train and validate models on the same chromosome
set, models will overfit to the training chromosomes. The cross-
chromosome design reduces the overfitting andmakes ourmodels
generalizable across chromosomes.
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Step 2: Given a query TF, we collect all available training
cell types of this TF, cell 1, cell 2, … , cell N. We train models on
one cell type with the training chromosomes and validate models
against another cell type with the validation chromosomes (Sup-
plemental Fig. S1B). If we train and validate models on the same
cell type, models will overfit to the training cell type. Similar to
the cross-chromosome design, the cross-cell type design further re-
duces the overfitting and makes our models generalizable across
cell types.

Step 3: Train the first XGBoost (Chen and Guestrin 2016)
model on chromosome set A in cell type 1 with 1000 iterations
and validate on set B in cell type 2 (setA-cell1-setB-cell2) (Supple-
mental Fig. S1C). This validation step is necessary to select the
best performinghyperparameters among the1000 iterations,with-
out which the XGBoost model will overfit to the training data.
Then,we train and validate on setA-cell2-setB-cell3. In thisway, re-
peatedly train N models (Supplemental Table S2) in the crisscross
fashion to avoid overfitting to a specific chromosome or cell type.

Step 4: Similar to step 3 but switch the train and validation
chromosome sets (Supplemental Fig. S1D): train on chromosome
set B in cell 1 and validate on chromosome set A in cell 2 (setB-
cell1-setA-cell2). Repeat and obtain another N model to fully uti-
lize the available ChIP-seq data.

Step 5: Average the predictions of the total 2Nmodels in steps
3 and 4 as our final predictions to incorporate information from
multiple cell types (Supplemental Fig. S1E).

In this crisscross experiment design, our models are trained
on one cell type and validated against another cell type in a cross-
chromosome fashion, diminishing potential bias toward a specific
cell type or chromosome set. Meanwhile, every part (chromosome

and cell type) of the training data is used to train once and vali-
date once, effectively considering all available information. Of
note, the validation in Step 3 is crucial to control overfitting in iter-
ative base learners such as XGBoost. For comparison, we trained an
overfitted model with 1000 iterations without validation, which
has lower performance across TF-cell type pairs (Supplemental
Fig. S2).

Predictive performance varies widely across cell types

and evaluation schemes

We calculated the area under receiver operating characteristic
curves (AUROCs) (see Methods; Supplemental Table S3). The
AUROCs, as evaluated in a “within-cell” cross-chromosome fash-
ion, have a median value of 0.9955 (Fig. 2A). When evaluated
in a “cross-cell” fashion, the median AUROC decreases to 0.9888
but remains high (Fig. 2B). Given the extreme class imbalance
(<0.5% of all genomic intervals are bound), we also calculated
the area under precision-recall curves (AUPRCs), which can pro-
vide a less inflated measure (see Methods). Whereas the random
baseline model in the ROC curve corresponds to a diagonal line
with an area of 0.5, the randombaselinemodel in the PR curve cor-
responds to a horizontal line with an area equal to the proportion
of positive samples. The median cross-chromosome and cross-cell
AUPRCs are 0.5873 and 0.4412, respectively (Fig. 2C,D). In com-
parison, the median AUPRC of the random baseline model is
0.0029 for cross-chromosome and 0.0040 for cross-cell; hence,
our Anchor model demonstrates a more than hundredfold im-
provement over random guessing. Nevertheless, the AUPRC of a
perfect model is 1, indicating that there is space for improvement

Figure 1. Overview of the TF binding profile prediction. The DNase-seq signals, TF binding motifs, and distances to the nearest genes are the input fea-
tures. After eliminating sequencing and cell-type–specific DNase-seq biases, XGBoost models are trained and validated in a cross-cell type and cross-chro-
mosome fashion to exploit the limited data and avoid overfitting. In the training and validation panel, two randomly partitioned chromosome sets are
shown in red and blue. The square sets are used to train XGBoost models, and the validation circle sets are used to select hyperparameters. The evaluation
is based on the AUROC and AUPRC between the genome-wide predictions and the gold standard ChIP-seq profiles.
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in the current field of computational prediction of TF binding
sites. We provided the prediction performances of our model
andmultiple evaluationmetrics (e.g., the number of true positives;
false negatives, or missed binding sites; false positives or misas-
signed binding sites) using different cutoffs in Supplemental Fig-
ure S3 and Supplemental Table S4. It should be noted that the
discrepancy between cross-chromosome and cross-cell type per-
formance is consistent with the observed differences between
the within-cell round and the final cross-cell round during the
ENCODE-DREAM challenge (Supplemental Fig. S4; Supplemental
Table S5)—it is easier to make correct predictions within the same
cell type (Quach and Furey 2017). This reflects a critical issue in
current evaluation schemes that have been published intensively
in the field (Boyle et al. 2011; Pique-Regi et al. 2011; Piper et al.
2013; Sherwood et al. 2014; Sung et al. 2014). Our Anchor scheme
improves the predictions of TF binding across cell types, which are
comparable to the within-cell performances across chromosomes
(red squares in Fig. 2E,F). Of note, the cross-cell type results were
evaluated on the held-out testing data set in the ENCODE-DREAM
challenge (ATF3 was not evaluated and CTCFwas evaluated in two
cell lines), whereas the cross-chromosome results were evaluated
on the training data set. Since FOXA1, FOXA2, HNF4A, and
NANOG each have only one training cell line to build models,
we did not plot the cross-chromosome results for them (which
would be overestimated due to overfitting). The complete table
of the training and testing cell types for the 13 TFs is shown in
Supplemental Table S2, and the corresponding prediction per-
formances are shown in Supplemental Table S3. To further com-
prehensively evaluate the robustness of our method, we made
predictions for 55 publicly available ENCODE ChIP-seq results
outside the ENCODE-DREAM challenge, covering eight TFs

(ATF3, CTCF, EGR1, FOXA1, GABPA, JUND, REST, TAF1). The pre-
diction performances on data within and outside the challenge are
comparable (Supplemental Figs. S5–S7; Supplemental Table S6). In
addition, we also evaluated our method using DNase-seq data out-
side of the ENCODE-DREAM challenge andmade predictions on a
total of nine TF-cell type combinations, covering eight different
TFs. The prediction performances are also very similar using
DNase-seq data inside and outside ENCODE (Supplemental Figs.
S8, S9; Supplemental Table S7). The difference in performance
for the 20 training chromosomes versus the three testing chromo-
somes is almost negligible (Supplemental Fig. S10). These results
demonstrate that ourmodels have great generalizability, especially
in untested cell types.

The predictability of the 13 TFs varies across cell types, which
is clearly shown in the AUPRC space. The AUPRCs range between
0.1769 (REST in H1-hESC) and 0.7988 (CTCF in IMR-90) (Fig. 2F;
see the complete AUPRC values in Supplemental Table S3).
Among all 12 TFs, CTCF is consistently the easiest to predict,
with the highest average AUPRC of 0.7724 and standard deviation
of 0.0274 in seven cell types. In contrast, REST is harder to predict,
with the lowest average AUPRC of only 0.2565. Themain reason is
that CTCF ChIP-seq data contain more binding events than other
TFs, resulting in a higher AUPRC baseline of random prediction.
The baseline equals the ratio of binding intervals over all intervals
in the genomeunder consideration.We observed significant corre-
lations between AUPRC/AUROC and the corresponding baseline
(Supplemental Fig. S11). The prediction for HNF4A in liver has rel-
atively highAUPRCbut the lowest AUROC,which is also related to
the AUPRC baseline (Supplemental Fig. S12). In addition, JUND
displays the largest variation in performance, ranging between
0.7322 and 0.2209 among five cell types.

A B C D

E F

Figure 2. The cross-chromosome and cross-cell type performances of different TFs. The cross-chromosome and cross-cell type performances are shown
in blue and red, respectively. (A,B) The ROC curves of all TF-cell type pairs. The baselines of random predictions are shown as dashed lines with area of 0.5.
(C,D) The PR curves of all TF-cell type pairs. The baselines of random predictions are shown as dashed lines with the areas of 0.0029 and 0.0040. (E) The
AUROC comparison of 13 TFs. (F ) The AUPRC comparison of 13 TFs.
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Preprocessing DNase-seq features affects prediction accuracy

To correct for heterogeneity of DNase-seq signals, we first calculat-
ed the maximum, minimum, and mean DNase-seq signal values
(hereafter referred to as the 3M-DNase features) as the simplest
features (Fig. 3A). Specifically, we used both the filtered read align-
ment file and the fold-enrichment signal coverage tracks provided
by the ENCODE-DREAM challenge. The fold-enrichment signals
represent the fold-enrichment of smoothed (150-bp smoothing
window) DNase cut-sites (5′ end of reads) counts relative to the ex-
pected number of reads from a local Poisson simulated background
distribution of reads at each nucleotide in the genome using the
signal processing engine of the MACS2 peak caller (Zhang et al.
2008). These three basic features are able to represent the chro-
matin accessibility, but the strength of the signal may be overesti-
mated or underestimated due to the local biases introduced by
different chromosomes and cell types. Different local chromatin
contexts (e.g., related to different DNA shapes and chemical mod-
ification statuses) lead to the inherent sequence cleavage biases of
enzymes in the DNase-seq experiments. To rectify these local bias-
es, we calculate Δmaximum, Δminimum, and Δmean DNase-seq
values (hereafter referred to as the Δ3M-DNase features), which
are the differences between the query cell type and the average lev-
el of all 13 cell types. These Δ3M-DNase features are able to correct

the predictions even if the signals are skewed. For example, if the
3M-DNase features are overall higher at some genomic regions in
a query cell type, a model without Δ features rectificationmay pre-
dict a false positive binding event at these regions. In contrast, the
Δ features are large in these regions and enable the model to learn
and distinguish the false positive and true positive binding events.
We also normalized the DNase-seq signals by genome-wide quan-
tile-normalizing all DNase-seq signals against theDNase-seq signal
of the liver testing cell type, since liver represented the majority of
the evaluation scheme (Fig. 3B). This process is similar to normal-
izing the entire DNase cleavage profile based on the control exper-
iment, yet we quantile-normalize the distribution to the test cell
type, further eliminating the systematic biases (Supplemental
Fig. S13). In addition, the TF binding events are not only depen-
dent on the accessibility of the 200-bp interval of interest but
highly associated with the neighboring chromatin architecture.
Therefore, we add the 3M-DNase and Δ3M-DNase features of up-
stream and downstream neighboring intervals as extra features,
to capture the local chromatin environment (Fig. 3C). Including
these 14 neighbors expands the covered chromosome positions
from 200 bp to a much larger space of 1500 bp (hereafter referred
to as the Δ3M-DNase-neighbors features) (Fig. 3D). The details of
generating these features are provided in the Supplemental
Material−ExtendedMethods. To demonstrate the patterns of these

A D

B

C

Figure 3. Processing DNase-seq signals to limit cell-type–specific biases. (A) For each 200-bp genomic interval, the maximum, minimum, andmean and
the Δmaximum, Δminimum, and Δmean DNase-seq values are extracted as features to correct for the heterogeneity of DNase-seq signals and eliminate
local sequencing biases. (B) The dashed original DNase-seq profile is quantile normalized to the test cell type profile to eliminate the cell-type–specific bi-
ases. (C) The features from 15 intervals ranging between upstream and downstream 750 bp are considered to capture the neighboring chromatin acces-
sibility. (D) Example scenarios of candidate and noncandidate signals captured by 3M-DNase, Δ3M-DNase, and Δ3M-DNase-neighbors features.
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DNase-seq features, we plot the original read alignment coverage
signals and the corresponding features of two example “Bound”
and “Unbound” genomic intervals (Supplemental Fig. S14). The
read alignment coverage (Supplemental Fig. S14A) profile and
the 3M-DNase-neighbors features (Supplemental Fig. S14B) are
similar for these two intervals. However, the Δ3M-DNase-neigh-
bors features (Supplemental Fig. S14C) show distinct patterns:
The “Bound” interval has values around 0 and the “Unbound”
one has many values above 0, indicating an overestimation of the
DNase-seq signals. By integrating these Δ3M-DNase-neighbors
features, our Anchor framework is able to distinguish the true bind-
ing events from the unbound cases even if biases exist. The predic-
tion values are distinct for the “Bound” (0.9989) and “Unbound”
(0.1847) intervals. The corresponding motif-based and distance-
to-gene features are also shown in Supplemental Figure S15. In
sum, we preprocessed the DNase-seq data to extract discriminative
features, reducing various global and local biases introduced by dif-
ferent cell types and batches.Wewill describe the improvement of
performance by adding these features in the next section.

Nonredundancy of feature engineering in the Anchor framework

Nonredundant feature engineering strategies are implemented in
our Anchor framework, integrating both DNase-based and se-

quence-based information after bias reduction. To compare the
performance of using different types of features and data process-
ing, we calculate the AUROCs and AUPRCs for 12 TFs in the held-
out cell types (Fig. 4; Supplemental Fig. S16; Supplemental Table
S8).We first test twomodels, “Single-Motif” and “Multi-Motif,”us-
ing sequence-based features only: “Single-Motif” consists of the
scanning signal of target TF motif only, whereas “Multi-Motif”
comprises signals of all 12 TF motifs (brown and blue-gray models
in Fig. 4; Supplemental Fig. S16). The “Multi-Motif” model has
higher AUROC and AUPRC than the “Single-Motif” model in all
test cases, indicating the indispensable roles ofmultiple TF interac-
tions in TF binding. However, the AUPRCs of most TFs, except for
CTCF, are very low, barely above the baseline random predictions,
even after considering the interactions between TFs. This indicates
that the cell-context-specific information, such as DNase-seq re-
sults, are extremely useful for accurate prediction. To demonstrate
the unique information provided by chromatin accessibility, we
further compare three models using DNase-based features (blue,
teal, and green models in Fig. 4; Supplemental Fig. S16). The
“3M-DNase” model only considers signals within the target 200-
bp interval. It achieves better performances than sequence-based
models in most cases except for CTCF. When we add the Δ3M-
DNase features to correct the local biases, the performance is im-
proved in terms of both AUROC and AUPRC. Furthermore, the

A B

C

Figure 4. The performance comparison of models using different features in 13 testing TF-cell type pairs. The prediction performances of two sequence-
basedmodels (Single-Motif andMulti-Motif), three DNase-basedmodels (3M-DNase, Δ3M-DNase, and Δ3M-DNase-neighbors), and two ensemblemod-
els (Anchor-MACS and Anchor-Final). (A) The median AUPRCs of models using different types of features across 13 TF-cell type pairs. (B) The AUPRCs of the
Anchor-MACS (x-axis) and Anchor-Final (y-axis) models in 13 TF-cell type pairs are shown as blue dots. If a dot is above the diagonal line, it means the
AUPRC of the Anchor-Final model is higher. The paired Wilcoxon signed-rank test was performed between the predictions of these two models and
the P-value= 1.22 ×10−3. (C) The AUPRCs of 13 TF-cell type pairs using different types of features. Some yellow dots are covered by the red dots, due
to similar performances. The complete listing of the AUPRCs can be found in Supplemental Table S8.
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signature of the 1500-bp chromatin architecture in the “Δ3M-
DNase-neighbors”model provides essential informationandgreat-
ly increases themedianAUPRC from0.3208 to 0.3712. To integrate
both sequence-based and DNase-based features, we combine the
featuresmentionedabove into the“Anchor-MACS”model, leading
to a further improvement (yellow model in Fig. 4; Supplemental
Fig. S16). The feature comparison demonstrates that these se-
quence-based andDNase-based various types of features are nonre-
ductant, and incorporating them into our model is essential to
achieve high performance. The high performance across chromo-
some and cell types indicates that our model is useful for future
studies of a broader range of TFs in diverse cell types.

To further improveperformance,wedevelopedanew, simpler
DNase-seq signal processing pipeline, to replace the MACS pipe-
line. AlthoughMACS is a popular “go-to” peak calling preprocess-
ing algorithm commonly used in DNase-seq and ChIP-seq signal
processing, its signal processing engine does not necessarily pro-
vide the optimal representation needed for TF binding prediction.
When predicting TF-binding sites across cell types, however, we
find that quantile-normalizing the original read-depth DNase-seq
signal profile of each training cell type to the testing cell type
(see Methods; Supplemental Fig. S13) achieves better performance
than using the fold-coverage signal tracks provided by the chal-
lenge using the signal processing engine of the MACS2 peak
caller. In Figure 4, the only difference between the “Anchor-
MACS”model and the “Anchor-Final”model is the DNase-seq sig-
nal processing—by MACS or Anchor, respectively (yellow and red
models in Fig. 4; Supplemental Fig. S16). In the “Anchor-Final” ver-
sion, we simply counted the DNase-seq read pile-up at each nucle-
otide and performed quantile-normalization across all the training
cell types. In the 13 TF-cell pairs, our “Anchor-Final” model
achieves significantly higher AUROCs (P-value=0.000488) (Sup-
plemental Fig. S16) andAUPRCs (P-value=0.00122) (Fig. 4B) using
the pairedWilcoxon signed-rank test (seeMethods). This result in-
dicates thatwhen trans-cell typepredictingTF bindingprofiles, our
Anchor strategy can be a better and simpler alternative to prepro-
cessing signals frommultiple cell types. In addition, we compared
the performances of our Anchor model and three other methods
(Gusmao et al. 2016; Keilwagen et al. 2017; Quang and Xie 2017)
across the 13 testing TF-cell type pairs (Supplemental Fig. S17).
Of note, these methods use both DNase-seq data and DNA se-
quence as inputs, whereas other previous methods such as Deep-
SEA (Zhou and Troyanskaya 2015) and DeepBind (Alipanahi
et al. 2015) are only sequence-based approaches.We observe clear-
ly much lower prediction performances without the DNase-seq
features (“Single-TF”/“Multi-TF” versus others in Fig. 4A; Supple-
mental Fig. S16A), which has been reported by the J-team (Keilwa-
gen et al. 2017) and Kipoi (Avsec et al. 2018) as well.

Distant chromatin architecture and TF-TF interactions determine

site-specific TF binding

TF binding is not only controlled by the immediate local chroma-
tin architecture but also by a much wider neighboring region. We
evaluate the importanceofneighboring locations andobserve aTF-
specific spatial distribution of “high intensity bins” in the vicinity
of the binding sites (Fig. 5). Each bin represents a 200-bp genomic
interval, and the contributions to prediction of the 14 upstream
and downstream neighboring intervals were investigated. For
each feature, we first calculated the relative feature importance
by normalizing the original values to the range [0,1]; more
important bins are shown in a darker color. The complete feature

importance values can be found in Supplemental Table S9.
When we consider the feature “Maximum” of DNase-seq signals,
the highest intensity bin resides in the target center (Fig. 5A).
Many TFs have a distribution with a narrow peak, except for
TAF1, MAX, FOXA2, and E2F1, which have a widespread dis-
tribution range between ±250-bp regions around the center of in-
terest. The pattern may be caused by the related large protein
complexes—the TAF family is involved in the RNA polymerase II
preinitiation complex (Louder et al. 2016), and E2F andMAX fam-
ilies are involved in the E2F-p130 complex (Ogawa et al. 2002).
In contrast, for the “Mean” DNase-seq feature, we observe nearly
uniformly distributed feature importance ±150 bp around the cen-
ter. ForMAX, JUND, FOXA2, andATF3, themost important feature
resides in the ±150-bp region, instead of the center. We find that
MAX, JUND, and ATF3 belong to the same TF superclass “basic do-
mains,” classified based on the characteristics of DNA-binding do-
mains (Wingender et al. 2018). Their unique patterns of the
“Mean” feature importance may be related to the TF classification,
since the TF-DNA binding is determined by both the protein struc-
ture and the local chromatin accessibility. The superclass of the 13
TFs in this study is provided in Supplemental Table S10. The
“Minimum” feature does not display a clear pattern, which is likely
covered by the local biases. When we consider the “ΔMinimum”

feature, the pattern emerges as a single-peaked distribution around
the center (Supplemental Fig. S18). These results indicate that the
long-range DNase cleavage signatures play an essential role in de-
termining TF binding. It has been reported that TF bindingmainly
occurs in a dense cluster, spreading less than 1–2 kilobases in both
Drosophila and mammalian cells (Moorman et al. 2006; Garber
et al. 2012; Gerstein et al. 2012; Yan et al. 2013). Within the dense
cluster, the nearest TF binding peaks form a geometric distribution
with a mean value of 362 bp in human cells (Yan et al. 2013). The
distributionof feature importance (“Maximum,” “Minimum,” and
“ΔMinimum”) observed in our model mainly ranges ±350 bp
around the binding sites, which may be related to the previously
reported neighboring TF binding peaks. Furthermore, the preva-
lent symmetric feature importance patterns can be associated
with the symmetric homodimeric or heterodimeric TF-TF-DNA
complex structures, including HNF (Chi et al. 2002; Yan et al.
2013), E2F (Morgunova et al. 2015), and MAX (Nair and Burley
2006) TF families.

In addition, DNA sequence-based features also display a spa-
tial pattern (Fig. 5D,E). Similar to DNase features, the high intensi-
ty bins locate in the vicinity of TF-binding center, ranging from
−150 to +150 bp. This similarity indicates the “synchronization”
of TF motif and chromatin accessibility. Furthermore, TFs are reg-
ulated by the interaction between TFs and DNA, including TF-TF
complexes, co-occurrence of TFs, low-affinity binding, and indi-
rect binding (Siggers and Gordân 2014; Crocker et al. 2016;
Inukai et al. 2017; Morgunova and Taipale 2017). In Figure 5E,
we calculate the contribution of each TF motif to the binding of
other TFs. As we expected, most TFs mainly rely on themselves
(the strong diagonal signals in Fig. 5E). NANOG relies on almost
all other TF motifs. This may be related to the unique role of
NANOG in embryonic stem cells (ChIP-seq of NANOG - H1-
hESC in this work). It has been reported that NANOGcontains var-
iant elements related to its nonspecific DNAbinding at the protein
structure level (Jauch et al. 2008), and a protein interaction net-
work of NANOG-associated proteins has been proposed to func-
tion as a module of maintaining cell pluripotency (Wang et al.
2006). In addition, we observe a high dependency between ATF3
and JUND (Fig. 5E), which may be associated with the known
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interaction between these two TFs (Chu et al. 1994). Although the
TF-specific patterns cannot be perfectly explained, this feature im-
portance analysis provides new insights into TF-DNA binding and
TF-TF interactions from the computational perspective. Finally,
we evaluate the importance of the shortest 15 distances to the
nearest genes (Fig. 5F). If a target interval is closer to a gene, it’s
more likely that it binds to a TF. The importance diminishes for dis-
tant genes.

Discussion

In this study, we create a feature-enriched method, Anchor, to ex-
ploit ChIP-seq and DNase-seq data in a crisscross fashion; training
on one cell type–chromosome pair and validating against another.
This strategy avoids overfitting to the training data, and ourmodel
retains high performance even in a completely untested cell type.
To reduce the effects of the global and local sequencing and

A B C

D E F

Figure 5. The spatial distributions of DNase-based, sequence-based, and distance-to-gene feature importance. The relative feature importance heat
maps of DNase-based (A) “maximum,” (B) “mean,” and (C) “minimum” features display common and TF-specific distributions in the vicinity of the TF
binding site. For each feature, the original feature importance values were normalized to the range [0,1], and more important bins are shown in a darker
color. The x-axis represents the relative distance to the center of a binding site in bp units, and each bin represents a 200-bp genomic interval. The cor-
responding accumulated feature importance is shown in histograms above the heatmaps. Of note, the symmetric binding pattern is not clearly shown in C,
the “DNase-minimum” feature, due to the relatively low values of the minimum signal. However, when we use the “ΔDNase-Minimum” feature
(Supplemental Fig. S13C) to capture the difference across cell types, the pattern emerges. (D) Similarly, the relative feature importance of sequence-based
features calculated using the motif of query TF itself. (E) The feature importance heat map when we consider the interdependency between different TFs
(e.g., using the motif of one TF to predict another TF). (F) The importance heat map of the top 15 closest distances to genes.
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cleavage biases, wemap the entire DNase-seq profile to a reference
cell type and extract the differential features between cell types. In
addition to the normalization, we integrate the information of the
flanking 1500-bp-wide chromatin architecture and the nonlinear
interactions betweenTFs. These features prove to be essential in de-
termining the TF-binding events for various TFs.Moreover,we find
TF-specific heat map patterns in the vicinity of the binding sites.

In previous pioneering computational footprinting methods
(Pique-Regi et al. 2011; Gusmao et al. 2014; Sherwood et al. 2014;
Sung et al. 2014; Yardımcı et al. 2014), the DNase-seq artifacts due
to sequencing biases have been addressed. It has been reported
that cross-cell type predictions are worse thanwithin-cell type pre-
dictions (Quach and Furey 2017). However, it remains unclear how
to correctly leverage information from multiple cell types where
cell-specific biases and batch effects exist. In contrast to previous
signal processing and peak calling methods (Zhang et al. 2008,
2014), our Anchor approach directly normalizes the entire training
DNase-seq profile to the testing profile, effectively avoiding multi-
source artifacts across cell types. In addition, our signal normaliza-
tion step is independent of the chromatin accessibility assay type
and machine learning method; it can potentially be adapted to
other experimental techniques such as ATAC-seq (Buenrostro
et al. 2015), or other classification and regression models such as
neural networks.

The success of our method is not incidental; in fact, there are
many commonalities between our Anchor algorithm and the
shared first place method developed by the J-team (Keilwagen
et al. 2017) in the ENCODE-DREAM challenge. They find that TF
binding motifs and chromatin accessibility are the most informa-
tive features, which are sufficient to build computational models
and yield high performance. Our Anchor framework is also built
on these two types of features, without other genomic inputs
such as RNA-seq data. When processing the DNase-seq data, in-
stead of using base pair-level features, they calculated bin-level
aggregate features (minimum, maximum, median, and other sta-
tistics) due to the constraint in hard drive size, computer memory,
and runtime. Similar strategies were used in our method (the “3M-
DNase” features) for capturing the major bin-level signals and
buildingmodelswithin acceptable computational resources. In ad-
dition, the interactions between TFs are considered in our method
by using motif features of multiple TFs (the “Multi-Motif” fea-
tures). Similarly, the J-team considered a set of “peer” motifs in-
stead of a single motif, to integrate the TF-TF interactions such as
competitive binding of “peer” TFs for the same site. The J-team
also calculated the distance to the closest transcription start sites
on either DNA strand orientation from GENCODE annotations,
whereas we used the top 20 closest distances to a gene as features.
The similar ideas embedded in these two methods provide new
perspectives for us to understand transcription factor binding
events in regulatory genomics.

Our algorithm is also related to the recent emerging neural
network approaches, including DeepSEA, DeepBind, Basset, and
DanQ (Alipanahi et al. 2015; Zhou and Troyanskaya 2015; Kelley
et al. 2016; Quang andXie 2016). In thosemethods, the distant se-
quence-based information is learned by the neural network in an
implicit way. In ourmodel, both sequence-based andDNase-based
distant information is considered. We also evaluated the impor-
tance of features extracted from −650 to +650 bp, and plotted
the distribution of high-intensity bins in a TF-specific fashion.
Neural network approaches that integrate both sequence and
DNase information have been also proposed for this problem
(Quang and Xie 2017), and such approaches can implicitly model

information across long sequences. Furthermore, our crisscross
multicell strategy helps reduce overfitting when generalizing
from training cell type to testing cell type. Given that overfitting
is a common issue in deep learning, it would be interesting to
see how our normalization and crisscross strategies would benefit
a deep learning approach.

Methods

AUROC and AUPRC

Since the ChIP-seq results are highly unbalanced with only a small
portion of positive TF binding signals (<0.5% genome-wide), the
differences are not apparent in the ROC space. This is because
the number of negative cases largely exceeds the number of posi-
tive cases and a large increase in false positives (FPs) only results
in a small change in FP rate, which equals FPs divided by the total
number of negative cases. However, precision is able to capture the
differences of FPs by calculating the true positives (TPs) over all
positive predictions. Therefore, a precision-recall (PR) curve and
AUPRC are commonly used to evaluate predictive performance
for unbalanced data, in addition to AUROC. The AUROCs and
AUPRCs were calculated using the R package PRROC (Grau et al.
2015). The R version is 3.4.3 (2017-11-30) (R Core Team 2017).

Partition of training and validation chromosomes and cells

The 20 training chromosomes are randomly partitioned into two
sets, A and B, for the training and validation process (Supplemen-
tal Table S1). For a TF that has N training cells in Supplemental Ta-
ble S2, the first XGBoost model is trained on chromosome set A in
cell 1 and validated (i.e., select hyperparameters) on set B in cell 2
(setA-cell1-setB-cell2). Then, the next (N−1) models are trained
and validated on setA-cell2-setB-cell3, setA-cell3-setB-cell4, … ,
setA-cellN-setB-cell1. Similarly, other N models are trained and
validated on the reverse chromosome sets: setB-cell1-setA-cell2,
setB-cell2-setA-cell3, … , setB-cellN-setA-cell1. For TFs that have
only one training cell line, only two models are trained using
setA-cell1-setB-cell1 and setB-cell1-setA-cell1. The final predic-
tions are the average predictions of the total 2N models.

XGBoost model

XGBoost is a fast and effective tree boosting method for classifica-
tion and regression (Chen and Guestrin 2016). Similar to tree-
basedmethods such as random forest, XGBoost can learn the non-
linear interactions between multiple features (Breiman 2001; Li
et al. 2018a,b,c). In an XGBoost model, boosted trees are added
into the model by optimizing the loss function from previous
trees. For each TF-cell pair, we train a total of 1000 boosted trees
and select the best performing one based on the validation set in
the cross-chromosome and cross-cell fashion. As a result of averag-
ingmany trees, overfitting is avoided and the effects of outliers and
noises are reduced. A total of 556 features are extracted and used in
our Anchor scheme (416 sequence-based features + 120 DNase-
based features + 20 distance features; see below).

Genome-wide quantile normalization of cell-type–specific

DNase-seq profiles

The original genome-wide DNase-seq data of multiple technical
and biological replicates from the same cell types are summed
and ranked in decreasing order (Supplemental Fig. S8). The train-
ing DNase-seq profile is quantile-normalized to the test liver cell
profile to reduce the cell-specific cleavage and sequencing biases.
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After quantile-normalization, the signals are natural log-trans-
formed and reordered back to the original profile.

Extraction of DNase-based features

For each 200-bp interval of interest, the maximum, minimum,
and mean DNase-seq signal values are calculated as the 3M-
DNase features (Fig. 3A). To correct local bias, we further calculate
Δmaximum, Δminimum, and Δmean DNase-seq values of each
interval as the Δ3M-DNase features. In addition, the 3M-DNase
and Δ3M-DNase features of another 14 neighboring intervals are
added, resulting in the Δ3M-DNAse-neighbors features (Fig. 3C).
Therefore, a total of 90= (3+3) × 15 DNase-based features are
used.Moreover, the number (the “frequency” features) and Δnum-
ber of signal occurrence in the corresponding 15 intervals are
counted as another 30 features.

Extraction of sequence-based features

The 13 TF binding PWMs are downloaded from the HOCOMOCO
website: http://hocomoco10.autosome.ru/ (Kulakovskiy et al.
2018). TF motifs obtained from different assays and methods
were compared (Supplemental Fig. S19), and the PWMs of these
TFs from different sources are very similar. The human reference
genome (GRCh37) is scanned against each PWM to obtain a score
of each nucleotide position. For each 200-bp interval of interest
and its seven neighboring intervals, the top four highest scores
are used as the 32= 4×8 sequence-based “Single-TF” features. We
further consider the motifs of all 13 TFs as the “Multi-TF” features,
resulting in a total of 416 =32×13 features.

Extraction of distance features to closest genes

For the center of each 200-bp interval, the distances to the 20 near-
est protein-coding loci are calculated based on GENCODE annota-
tions (Harrow et al. 2012). These distance features are used to
describe the closeness to possible protein-coding genes.

Evaluation of feature importance by XGBoost

For each feature, the importance is evaluated by counting the
number of its occurrences in all boosted trees. If a feature occurs
a lot in the nodes of multiple trees, it is more important. For
each type of feature in Supplemental Figure S13, the relative im-
portance is calculated by scaling the importance to the range [0,1].

Statistical analysis

The pairedWilcoxon signed-rank test was performed between pre-
dictions of the “Anchor-MACS” and “Anchor-Final”models across
13 TF-cell type pairs (Fig. 4B; Supplemental S11B; Supplemental
Table S8) using R version 3.4.3 (2017-11-30) (R Core Team 2017).

The reference genome

GRCh37/hg19was used as the reference genome in this study. If all
the readswere realigned toGRCh38,we surmise the conclusions in
this manuscript would not be significantly affected. GRCh38 has
improvements over GRCh37 in regard to genome assembly, such
as the reduction in the number of gaps, but these differences
should not greatly impact the patterns of transcription factor bind-
ing. Anchor relies on sequence contexts up to about 1.5 kb away;
in comparison, one of the major differences between the referenc-
es is that GRCh38 fills in many of the gap regions (e.g., centro-
meres). In our experience, ∼99.9% of all TF binding sites are
located more than 2 kb away from these gap regions. Therefore,
if evaluation is confined entirely outside of the gap regions, we ex-

pect the choice in reference genome would have a relatively small
impact on accuracy. Other sources of biases, such as differences in
batches and read depth across experiments, should have a more
profound effect on performance in comparison.

Public data used for model training and testing

The ChIP-seq data were downloaded from ENCODE project web-
site: https://www.encodeproject.org/. The accession numbers are
provided in Supplemental Table S6.

The DNase-seq data from the ENCODE project were
downloaded from:

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeUwDnase/

https://www.synapse.org/#!Synapse:syn6112317 (the
ENCODE-DREAM challenge data)

The DNase-seq data from the Roadmap project were
downloaded from:

https://www.encodeproject.org/experiments/ENCSR794OFW/
https://www.encodeproject.org/experiments/ENCSR477RTP/

Software availability

Anchor software source code is available in the Supplemental
Material and at GitHub (https://github.com/GuanLab/Anchor).
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