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Abstract: Through the latest technological and conceptual developments, the centralized cloud-
computing approach has moved to structures such as edge, fog, and the Internet of Things (IoT),
approaching end users. As mobile network operators (MNOs) implement the new 5G standards,
enterprise computing function shifts to the edge. In parallel to interconnection topics, there is the
issue of global impact over the environment. The idea is to develop IoT devices to eliminate the
greenhouse effect of current applications. Radio-frequency identification (RFID) is the technology
that has this potential, and it can be used in applications ranging from identifying a person to granting
access in a building. Past studies have focused on how to improve RFID communication or to achieve
maximal throughput. However, for many applications, system latency and availability are critical
aspects. This paper examines, through stochastic Petri nets (SPNs), the availability, dependability, and
latency of an object-identification system that uses RFID tags. Through the performed analysis, the
optimal balance between latency and throughput was identified. Analyzing multiple communication
scenarios revealed the availability of such a system when deployed at the edge layer.

Keywords: RFID; edge computing; IoT; SPN; dependability; availability

1. Introduction

Radio-frequency identification (RFID) technology is increasingly common around us,
being used in package identification, healthcare, supply-chain management, controlling
access within a building, and detecting objects or a person’s location during context
build [1–7]. From a system point of view, an RFID network consists of RFID tags, antenna,
and reader, and the software component responsible with managing the information. The
RFID reader retrieves data from the RFID tags and passes them over to the managing
software for storage and interpretation [5,8,9]. What sets RFID technology apart from
other wireless technologies is the simplicity of producing the tags, which can be active or
passive [9]. Compared to other traditional technologies, for example, bare-code reading,
RFID has the advantage of allowing for the simultaneous reading of multiple tags that
do not need line-of-sight alignments [6]. Passive RFID tags have gained momentum in
the current context of reducing energy consumption and environmental impact [10–12],
and in the current development of the Internet of Things (IoT) [13]. Although active RFID
tags have advantages in terms of the communication distance and available resources,
the presence of batteries implies higher production costs and a higher degree of pollution
because of their manufacturing process.

The main objective of RFID-based applications is successful object identification [14].
Even though algorithms for advanced image processing have evolved, low environmental
light or image stabilization can affect the process [7], which is why RFID can act as a
complementary technology to improve object detection. For example, image processing can
be very useful in monitoring patients taking their medication [15]. However, RFID can be
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very useful in monitoring the type of drug that was taken by placing RFID tags on medicine
bottles [5,6,15], thus helping to increase confidence in the obtained identification results.

Another advantage of RFID technology is the ease with which it can integrate into the
cloud–fog–edge architecture. In the current context, with the advent of IoT devices, the
trend is to move advanced processing to the cloud or fog layer. Meanwhile, at the edge
layer, processes that require fewer resources are kept. Such sharing solves the problems of
response time and data congestion that were common when only using the cloud layer [16].

Through the cloud–fog–edge architecture, the object-identification process can be
shared, such that advanced image processing can be performed in the cloud or fog layer,
while RFID-based object detection is performed at the edge layer. The advantage of such a
system allows for real-time location data, while more complex context-related information
resulting from cloud-layer processing is provided later. Even if RFID has many advantages,
RFID tag collision is a problem in a RFID object-identification system [14].

This paper analyzes the availability of an object-identification system through RFID
technology, analyzing the entire communication process that takes place at the edge layer.
We focus on the response time of a single RFID reader surrounded by multiple tags
during the identification process to identify the optimal system cost as the time length of a
frame inventory per tag. Compared to other papers, we also consider the probability of
encountering event cost during system implementation. The RFID frame size is based on
the ISO15963 standard, which consists of 16 slots and uses Frame Slotted Aloha (FSA) to
solve collision [17].

There are studies in the literature that analyze identifying objects through RFID
technology, but they focus on determining the maximal throughput that can be obtained
on the basis of the number of slots present in a query frame and the number of tags present
within the range of the RFID reader’s antenna [18–21]. Depending on the type of analysis,
throughput can be either the number of queries per second or the number of tags identified
in an amount of time.

This paper does not contradict the current research but highlights the probability
of achieving different throughput values. Even if the current paper uses the equations
describing the probability associated with the FSA protocol, by using stochastic Petri nets
(SPNs), we recalculate, at each new frame inquiry, the probabilities associated with tag
identification. The RFID identification process is usually described from a probability point
of view as the number of slots in a frame and the number of tags in the system. However,
after a frame inquiry, there can be several identified tags and several pairs of RFID tags
that are in collision. Hence, more frame inquiries are needed to solve the collisions.

Through the proposed SPN models, we computed what the total number of frames
is that is required to identify the system tags (resulting in a cost value), and what the
probability for such an event is. The proposed model allows for recomputing at each frame
the probabilities associated to the three events that might appear in a frame inquiry: one
tag per slot, slot without a response, and a slot with collision. In a real-time system, it is
important that data are provided in a timely manner, and that the process is predictable. In
this paper, analyses are carried out on the probability of obtaining a certain cost.

2. RFID Collision Analysis

An example where advanced image processing can be used with the identification of
objects through RFID is the monitoring of drug administration to the elderly [1,15]. Image
processing monitors gestures associated with the drug-administration process, while the
association of RFID tags to the pack of medicines allows for the identification of the
administered treatment. The monitoring process can be performed with video cameras
and a network of RFID antennas, but this is an expensive setup. An alternative is to use
a robot capable of capturing and transmitting video information in the cloud and to be
equipped with an RFID reader (Figure 1).
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important. To determine the required time to detect the unique identifiers (UIDs) 
associated to each tag in the vicinity of the RFID reader, SPN-based analysis is performed. 

  

Figure 1. Patient-monitoring architecture.

Such a setup was proposed in [22], where besides the Pepper robot, a setup was
added comprising a microcontroller and RFID reader. Following the analysis of the setup
through reliability block diagrams (RBDs), the components that had the greatest impact
on the availability of the object-identification system were identified. Figure 2 shows the
parameters (i.e., mean time to failure (MTTF) and mean time to repair (MTTR)) that have a
major impact versus ones with minor impact on system availability.
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Figure 2. Radio-frequency identification (RFID) object identification system—major and minor
parameters’ impact on system availability.

Although the analysis of a system in terms of dependability is relevant, within an
object-identification system, the time during which the information is transmitted is also
important. To determine the required time to detect the unique identifiers (UIDs) associated
to each tag in the vicinity of the RFID reader, SPN-based analysis is performed.

2.1. RFID Collision Analysis through Stochastic Petri Nets

Determining the availability of a system, including the relationships between operat-
ing conditions and events occurring during operation, it is necessary to use Petri nodes.
Initially, the analytical model based on Petri nodes does not contain the time component,
but it is added later, with it becoming an SPN. By performing the analysis, it is possible to
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model the state of the components that comprise the system, so that the state of the system
derives from the state of its components, which are no longer explicitly expressed [23]. A
system is described through the SPN using symbols that describe the events, transitions,
and states of the system (Figure 3). As the SPN model takes into account the events during
the RFID anticollision algorithm, it allows for an improved estimation of the time (i.e., as
number of inquire frames) needed to identify the RFID tags. In this paper, the SPN is used
to model the availability of an RFID system (RFID tags, antenna, and reader, and robot
software component responsible with managing the information), and to find the optimal
number of tags that could be identified through the smallest number of inquiry frames.
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For a transition to fire, inputs from events must meet the imposed condition by the
transition [23,24]. When a transition is fired, it absorbs one token from the connected places
as input. Following this process, tokens are produced to the exit events (places). Figure 4
illustrates the transitions that can be used in SPN analysis.
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Figure 4 shows direct input places of the specified or conditional type. An example of
a specified input place is the AND logic relation, in which an applied token to the input
propagates to two events. The conditional type (OR-type propagation) offers several token
propagation paths, which can lead the system to different operating situations. The choice
of a particular path depends on the probabilities of events, the additional actions in the
system, or the conditions imposed on the events.
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Besides immediate and time-conditioned transitions (having a constant trigger dura-
tion), there are also stochastic transitions. The latter are useful in modeling processes with
random trigger times.

The previous descriptions show that SPN is a technique that can be used both in
analyzing reliability and monitoring the failure rate, and to observe the system’s dynamic
behavior. This helps in tracking the spread of a fault and analyzing the system in the case
of failure. In this paper, SPN diagrams for the proposed models were implemented in the
Mercury tool [24,25].

The SPN diagrams model the RFID identification process and the availability of the
system in sending data to the edge layer. The concept of the modeled system is presented
in Figure 5. By default, the Pepper robot cannot read RFID tags. For the proposed
setup, the robot was connected to a microcontroller through a Wi-Fi link. Meanwhile, the
microcontroller was responsible for controlling the RFID reader. Such a setup was needed,
as Wi-Fi is the only way through which the Pepper robot can receive and send data.
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The addon hardware setup is represented by Texas Instruments devices, which were
configured to communicate over a serial peripheral interface (SPI):

• LaunchPad MSP-EXP432P401R—developing board based on microcontroller MSP432
(ARM Cortex M4).

• TRF7970A NFC transceiver BoosterPack (DLP-7970ABP)—NFC/RFID transceiver
with 16-slot RFID frame inventory.

• CC3100BOOST—SimpleLink Wi-Fi CC3100 wireless network processor BoosterPack.

To identify objects using RFID tags, the Pepper robot must receive the tags’ UID. The
challenge in RFID communication is to identify the tags through the anticollision algorithm
in the shortest time possible [26]. RFID communication begins by sending a query message
to which all tags in the vicinity of the RFID reader respond, resulting in a collision [27].
The purpose of the anticollision algorithm is to manage the response from each tag within
the RFID reader’s range.

The implemented anticollision algorithm is specified in the ISO15693 standard [17].
According to the standard, when a collision is detected because of several tags near a reader,
a mask value (M), mask length (Lm), and number of slots (L = 16 slots) are transmitted
during the inventory command.

Upon receipt of the inventory command by the tags, they compare the least significant
four bits of their UID with the associated value with the slot counter plus the mask
value. Only when the two values are identical do the RFID tags respond. Although this
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technique helps to reduce the probability of a collision, it does not guarantee that the
collision phenomenon does not occur. Figure 6 shows the anticollision process for four
RFID tags. In the first step, all four tags respond to the transmission of the inventory
command, generating a collision on Slot 1 of the inventory frame. To resolve the collision,
it is necessary to send a new command with the mask and its associated length changed:
M = 1 and Lm = 4 (bits). Via the new inventory command, the UID associated to the tag
on Slot 1 is received. However, there is still a collision at Slot 2. This time, the algorithm
sends a new inventory command with a new set of parameters: M = 2 and Lm = 8 (bits).
The process is continued until there are no detected collisions during a frame inventory.

Sensors 2021, 21, 6220 6 of 23 
 

 

The implemented anticollision algorithm is specified in the ISO15693 standard [17]. 
According to the standard, when a collision is detected because of several tags near a 
reader, a mask value (M), mask length (Lm), and number of slots (L = 16 slots) are 
transmitted during the inventory command. 

Upon receipt of the inventory command by the tags, they compare the least 
significant four bits of their UID with the associated value with the slot counter plus the 
mask value. Only when the two values are identical do the RFID tags respond. Although 
this technique helps to reduce the probability of a collision, it does not guarantee that the 
collision phenomenon does not occur. Figure 6 shows the anticollision process for four 
RFID tags. In the first step, all four tags respond to the transmission of the inventory 
command, generating a collision on Slot 1 of the inventory frame. To resolve the collision, 
it is necessary to send a new command with the mask and its associated length changed: 
M = 1 and Lm = 4 (bits). Via the new inventory command, the UID associated to the tag on 
Slot 1 is received. However, there is still a collision at Slot 2. This time, the algorithm sends 
a new inventory command with a new set of parameters: M = 2 and Lm = 8 (bits). The 
process is continued until there are no detected collisions during a frame inventory. 

 
Figure 6. Number of steps required to solve a collision. 

For the tag-identification process, three categories of slots within an inventory frame 
are defined: 
• idle slot—a slot in the inventory frame without a response. 
• single tag per slot—a slot with a single RFID tag response, the tag’s UID was received. 
• collision slot—a slot in which multiple RFID tags responded. The anticollision 

algorithm needs to be run with a new set of values for the M and Lm parameters. 
As the inquiry frame has L = 16 slots, the probability that a RFID tag selects a slot is 

equal to 1 𝐿⁄  [18,20]. The probability that a slot is selected by multiple RFID tags is 
described through the following binomial distribution [18,28]: 𝑃ே௧,ଵ(𝑛𝑡𝑠) = 𝐶ே௧௧௦ ൬1𝐿൰௧௦ ൬1 − 1𝐿൰ே௧ି௧௦

 (1) 

where 𝑁𝑡 represents the total number of tags in the range of the RFID reader, and 𝑛𝑡𝑠 
represents the number of tags that select a slot for transmitting their UID. 

For an RFID system with Nt tags, the probability that a slot is selected by one tag (i.e., 𝑛𝑡𝑠 =  1) to send its UID is given by the following equation: 𝑃௧__௦௧ = 𝑃ே௧,ଵ(1) = 𝑁𝑡 ∙ 1𝐿 ൬1 − 1𝐿൰ே௧ିଵ
 (2) 

The probability of having a slot not be selected by either of the tags found in the RFID 
reader vicinity (i.e., Nt) is given by the following equation: 

Figure 6. Number of steps required to solve a collision.

For the tag-identification process, three categories of slots within an inventory frame
are defined:

• idle slot—a slot in the inventory frame without a response.
• single tag per slot—a slot with a single RFID tag response, the tag’s UID was received.
• collision slot—a slot in which multiple RFID tags responded. The anticollision algo-

rithm needs to be run with a new set of values for the M and Lm parameters.

As the inquiry frame has L = 16 slots, the probability that a RFID tag selects a slot
is equal to 1/L [18,20]. The probability that a slot is selected by multiple RFID tags is
described through the following binomial distribution [18,28]:

PNt, 1
L
(nts) = Cnts

Nt

(
1
L

)nts(
1− 1

L

)Nt−nts
(1)

where Nt represents the total number of tags in the range of the RFID reader, and nts
represents the number of tags that select a slot for transmitting their UID.

For an RFID system with Nt tags, the probability that a slot is selected by one tag (i.e.,
nts = 1) to send its UID is given by the following equation:

Ptag_per_slot = PNt, 1
L
(1) = Nt· 1

L

(
1− 1

L

)Nt−1
(2)

The probability of having a slot not be selected by either of the tags found in the RFID
reader vicinity (i.e., Nt) is given by the following equation:

Pno_tag_in_slot = PNt, 1
L
(0) =

(
1− 1

L

)Nt
(3)

To determine the probability that multiple tags would choose the same slot, the
following equation is used:

Ptag_collision = 1− Ptag_per_slot − Pno_tag_in_slot (4)
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Equations (2)–(4) are used in describing the RFID tag identification through an SPN
model. The SPN model from Figure 7 was implemented in the Mercury tool and comprises
the following components:

• Start—a place containing the number of slots that are analyzed during a frame inquiry.
• Current_Slot—the current slot indicated by the slot counter that is waiting to receive a

response from the RFID tags.
• TI_0—an immediate transition that guaranties that each slot is processed one at a time.

The purpose of the transition is to remove one token from Start and produce a new
token in Current_Slot.

• Tag_per_slot—an immediate transition that is fired in the case that only one tag
responds for the analyzed slot. This transition being fired removes the token from
Current_Slot and produces one in Tag. As a result, one tag was detected from Nt tags
present in the system.

• Idle_slot—an immediate transition that models not receiving a response during the
interrogated slot.

• Collision_2Tags—an immediate transition that models a scenario in which two tags
responded for the current slot. In this case, a new inquiry is needed to identify each
RFID tag.
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Figure 7. SPN RFID identification model.

The inquiry process ends when the number of tokens in Tag is equal to the number of
tags found near the RFID reader, and the entire number of slots in the frame are analyzed.
To fulfil the previous conditions, a guard expression was set on immediate transition
Inquire_Terminate:

#Start = 0 (5)

Besides the previous guard expression, the lowest priority must be set to the In-
quire_Terminate immediate transition, so that the other transitions finish to fire and to
avoid a conflict between two immediate transitions.

When transition Inquire_terminate is fired, Tag and Idle_Slots are depleted for all
tokens. At the same time, Start is repopulated with 16 tokens representing the number of
slots in a frame inquiry. This is needed to prepare the model for a new simulation. Mercury
runs the model until the maximum accepted relative error between consecutive results
is reached.

When designing a model with SPN, one should take care in avoiding conflicts be-
tween immediate transitions. The proposed model shows that transitions Tag_per_slot,
Idle_slot, and Collision_2Tags are in such a scenario when there is a token in Current_Slot.
Compared to the previous case, when we set the lowest priority to Inquire_terminate, the
solution comprises setting weights for each transition [29]. The weight values represent



Sensors 2021, 21, 6220 8 of 22

the probability of a slot to be selected by a tag, to be an idle slot (no tag response), or
multiple tags selected the slot to send their UIDs. To determine the value for the weight for
each transition, Equations (2)–(4) were used. Table 1 shows the weights that are used for a
system with four RFID tags.

The numbers from Table 1 show that there is a greater chance of having a collision
between two tags compared to having three or all four tags in collision. As a collision
implies a new inquiry frame, submodels for every scenario were created. For exam-
ple, Figure 7 shows that immediate transition Collision_2Tags produces 16 tokens in
Start_Slot_Collision_2Tags, which is equivalent to launching a new RFID frame inquiry.
The structure of the submodel also comprises three major transitions representing the idle
slot; in this case, a tag per slot or a collision between two tags. Compared to the start
inquiry, when there were four tags, this time there are only two tags; the weights of each
immediate transition are recomputed to reflect the collision scenario.

Compared to other studies, through the SPN model, we change the conditions of each
inquiry frame. By firing the transitions millions of times, we can determine the probability
of having different events (i.e., one tag per slot, idle slots, and pairs of tags in collision).
Changing the probabilities of each of the three major transitions depending on the number
of tags that need to be identified results in an improved probability estimation of the
number of frames needed to identify the tags, and thereby the time needed to identify
the objects.

Table 1. Immediate transition probabilities for handling slots within an identification frame: 4 tags
and a 16-slot frame.

Slot Type PNt, 1
L

(nts) Probability of Occurrence

One tag per slot Ptag_per_slot = P4, 1
16
(1) 20.5993652%

Idle slot Pno_tag_in_slot = P4, 1
16
(0) 77.2476196%

Slot with collision 1− Ptag_per_slot − Pno_tag_in_slot 2.1530151%
Slot with 2-tag collision P2tag_collision = P4, 1

16
(2) 2.0599365%

Slot with 3-tag collision P3tag_collision = P4, 1
16
(3) 0.0915527%

Slot with 4-tag collision P4tag_collision = P4, 1
16
(4) 0.0015259%

2.2. SPN Submodels to Analyze Collision between RFID Tags

The proposed model comprises submodules capable of solving a collision among two,
three, four, and five RFID tags (Figure 8). The submodel analyzes the collision among a
smaller number of tags by using a new set of weights for an idle slot, single tag per slot,
and collision-type slots. A submodel can access other submodels that resolve collisions
among a smaller number of tags. This approach allows for estimating the probability of
needing a new frame to solve a collision.

As the number of tags increases towards available system slots, so does the probability
among the three types of transitions shifts (Figure 9). Therefore, submodel implementation
allows for determining an estimation of the number of frames needed in identifying the
RFID tags’ UID.

A submodel implementation relays on the values provided by Equations (2)–(4). Each
submodel has places that monitor the number of identified tags (i.e., one tag per slot),
idle slots, or the types of collisions that occurred. In the end, each triggered submodel
populates Tag with the number of identified tags (Figure 7).
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From the main model, a collision of three tags is triggered. The designated submodel
identifies one tag and launches the submodel that deals with the collision between two
RFID tags. As a result, the places are populated as follows:

• the main model populates Idle_Slots with 15 tokens, plus one collision slot;
• the submodel dealing with the collision among three tags populates Tag with one

token and Idle_Slots with 14 tokens (i.e., one inquiry frame), plus one collision slot;
• the submodel dealing with the collision between two tags populates Tag with two

token and Idle_Slots with 14 tokens.

For the previous example, a number of three inquiring frames (48 analyzed slots) are
needed to receive the tags’ UID. However, the number of tokens in Idle varies in case the
collision among the three tags extends over a larger number of bits, a scenario that can also
apply to a collision between two RFID tags.

Setting the weight value for the immediate transition model (i.e., Tag_per_slot, Idle_slot,
Collision_xTags) solves the conflict between the transitions until a point in the RFID in-
ventory. During this process, the system needs to parse all the RFID tags and know their
status: identified or in a collision. Therefore, as the slots are processed and there are
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unidentified tags, the Idle_slot transition needs to be deactivated through the following
guard expression:

(#Start + #Current_Slot) ≥ 2 OR ( #Tag = nts) (6)

When all tags are identified, transition Idle_slot is kept active. However, if there is one
remaining slot to process and there are unidentified tags, their status should be identified
or in a collision.

As a result, guard expressions are also needed for immediate transitions Tag_per_slot
and Collision_xTags (x represents the number of tags involved in a collision). Immediate
transition Tag_per_slot is invalidated through the inhibitor arc from Tag. When the number
of tags in Tag are equal to nts, Tag_per_slot is deactivated. For Collision_xTags, the
following guard expression was implemented:

((#Tag ≤ nts− x) AND (#Start + #Current_Slot) ≥ 2 )
OR ((#Start + #Current_Slot) = 1 AND (nts− #Tag) = 2 ),

(7)

where x represents the number of tags involved in a collision.
Guard expression (7) comprises two sections. The first section is represented by

the expression:

((#Tag ≤ nts− x) AND (#Start + #Current_Slot) ≥ 2 ), (8)

which verifies that, in the vicinity of the RFID reader, there are a number of tags at least
equal to the one that could cause the collision analyzed by the submodel. It is necessary
to make sure that there are at least two more slots to analyze if the number of tags left for
identification is higher than the number of tags involved in the collision process.

The second section of the monitoring condition,

((#Start + #Current_Slot) = 1 AND (nts− #Tag) = 2 ), (9)

Ensures that, when there is only one slot left to be analyzed and unidentified tags, the
submodel dealing with the collision between the remaining tags is executed.

The SPN model was stopped at analyzing five RFID tags, as the submodels’ imple-
mentations were becoming very difficult to organize in Mercury. One disadvantage of SPN
modeling consists in not being able to call the submodels as functions are in programing
language. As an alternative solution, a MATLAB implementation was developed on the
basis of equations and the SPN approach to model the FSA anticollision protocol.

2.3. RFID Collision Analysis through MATLAB

The MATLAB model has the same approach as the one proposed in Mercury, except
that the transitions were replaced with the switch instruction. The probability of choosing a
certain branch is obtained through a binomial distribution function. The parameters of the
binomial function are determined on the basis of the number of tags near the RFID reader.
As in SPN implementation, a record of tags involved in collisions was kept. Through this
approach, collisions between tags from different groups were avoided. Figure 10 illustrates
the software diagram used in implementing the model in MATLAB. Each scenario, which
is defined through the number of slots in a frame and the number of tags in the vicinity of
the RFID reader, was run 106 times to obtain the probability data.
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The implemented models in Mercury and MATLAB allowed for determining the
probabilities associated with the identification of RFID tags in the vicinity of an RFID
reader in a certain number of frames. In the literature, emphasis is on reaching maximal
throughput (number of identified RFID tags vs. time needed to identify them). The aim of
this study was to find the optimal number of tags that could be identified in the shortest
possible identification time and with the highest possible probability of achievement. To
compare the obtained results through the simulations, a cost function is proposed:

Cost =
n f ·t_ f rame

Nt
[time/tag], (10)

where

• n f —number of frames needed to solve the collision between tags and obtain their UID;
• t_ f rame—time length of a frame inventory (implementation-dependent);
• Nt—number of tags in the RFID reader vicinity.
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For example, if the identification of seven tags within a system has an associated time
of 2·t_ f rame, the cost of the detection of a tag is:

Cost =
2·t_ f rame

7
= 0.29 [t_ f rame/tag] (11)

The above equation was defined for a general case. Depending on the implemen-
tation, the duration of t_frame may vary. However, the principle of defining the cost
remains unchanged.

The proposed model allows for the identification of the optimal number of tags (iden-
tified object), while considering the identification time and the probability of occurrence.
By introducing the cost function, this process becomes identifying the lowest cost that has
the highest possible associated occurrence probability. Having the number of tags equal
to the number of slots in a frame yields the highest throughput (i.e., the smallest cost) if
all tags are read in one frame [18,20,28]. As Section 3 shows, such a scenario has a small
probability of occurrence, but there is also large variation in the time needed to identify all
tags in the system.

2.4. RFID Object Identification at the Edge—Availability

To model the system produced by an RFID hardware addon, Pepper robot, and edge
router (Figure 5), the SPN model from Figure 11 was created.
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Modeling the proposed scenario through SPN involved:

• modeling the erroneous reception of associated bits with the UID of a tag by Tag_E (tags
whose UID was incorrectly received) and Tag_R (tags whose UID was correctly received);

• modeling the operation of RFID tags through Tag_Up and Tag_Down locations;
• modeling the operation of the RFID antenna through the Antenna_Up and An-

tenna_Down locations;
• modeling the operation of the RFID reader through the Reader_Up and Reader_

Down locations;
• modeling the operation of the microcontroller through the Microcontroller_Up and

Microcontroller_Down locations;
• modeling the operation of the network card through the Networkcard_Up and Net-

workcard_Down locations;
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• modeling the operation of the router through the Router_Up and Router_Down
locations; and

• modeling the operation of the Pepper robot through the Pepper_Up and Pepper_
Down locations.

The modeling of the erroneous reception of bits associated with the UID of a tag
through SPN was performed by setting weights for immediate transitions Tag_E and
Tag_R. To calculate the required weights for the model, one must understand the process by
which reception errors occur. If on–off keying (OOK) modulation is used, the probability
that a bit is correctly received is described by the following equation [30]:

Pbit_corect = 1− 1
2
·e−

Eb
2Nσ , (12)

where Eb
2Nσ

is the signal-to-noise ratio.
The used tags are from Texas Instruments and have the UID encoded through 64 bits [31,32].

Thus, the probability of erroneously receiving the UID associated with a tag is given by
the equation:

Ptag_UID_eronat = 1− Pbit_corect
N , (13)

where N represents the number of bits used in encoding the UID. The probability of receiv-
ing the UID is 93.80%, while that of erroneous reception is 6.20%. The values mentioned
above passed as weights for immediate transitions Tag_R and Tag_E, respectively.

To determine the availability of the system described in Figure 11, the following
metrics were used:

• determining the availability when all the tags are correctly identified, there are no
errors in receiving UIDs:

P{(#Tag_R = Nt)}; (14)

• determining the availability when, at most, one UID code is received erroneously:

P{(#Tag_R ≥ Nt− 1)}; (15)

• determining the availability when, at most, two UIDs are erroneous:

P{(#Tag_R ≥ Nt− 2)}. (16)

The scenario shown in Figure 11 represents the situation in which the Pepper robot
has the RFID addon attached. Besides this scenario, two other scenarios were analyzed;
this time, the RFID addon was no longer attached to Pepper robot:

• Pepper, multiple (Wi-Fi + RFID reader) modules scenario in which the Pepper robot
communicates with multiple Wi-Fi + RFID reader modules (Figure 12). Each module
is responsible for monitoring the RFID tags.

• Pepper, Wi-Fi, multiple RFID reader: In this scenario, there was a single microcon-
troller with Wi-Fi capabilities that acted as an intermediate point between the Pepper
robot and RFID readers (Figure 13). The microcontroller stored the UID of each tag
found near the RFID readers.
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To compare the availability of the three scenarios, an equal number of tags were used
in the system:

• Scenario I: Nt tags are in the system;
• Scenario II: Nt tags are in the system, the first pair of Wi-Fi + RFID reader deals with

Nt/2 tags, and the other half is read by the second pair of Wi-Fi + RFID reader;
• Scenario III: Nt tags are in the system; the first RFID reader deals with Nt/2 tags, the

other half is read by the second RFID reader.

The metrics of Scenarios II and III were implemented, such that the availability results
of the system could be compared with those obtained in the first scenario:
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• determining the availability when all tags are correctly identified, there are no errors
in receiving UIDs:

P{(#Tag_R1 = Nt/2) AND (#Tag_R2 = Nt/2)}; (17)

• determining the availability when one UID code at most is received erroneously:

P{( (#Tag_R1 ≥ Nt/2− 1) AND (#Tag_R2 = Nt/2) ) OR
( (#Tag_R1 = Nt/2) AND (#Tag_R2 ≥ Nt/2− 1) )}; (18)

• determining the availability when two UIDs at most are erroneous:

P{( (#Tag_R1 ≥ Nt/2− 1) AND (#Tag_R2 ≥ Nt/2− 1) ) OR
( (#Tag_R1 = Nt/2) AND (#Tag_R2 ≥ Nt/2− 2) )OR
( (#Tag_R1 = Nt/2− 2) AND (#Tag_R2 ≥ Nt/2) )}.

(19)

The first scenario modeled through SPN in Mercury was also physically implemented
by using the hardware mentioned in Figure 5. LaunchPad MSP-EXP432P401R configures
and transmits messages between two wireless communication modules. Regarding RFID
communication, the ISO/IEC 15693 standard algorithm was implemented. Recursive
implementation was performed, which allows for storing a tag’s ID in a buffer as it is
identified as a single answer on the query slot (Figure 14).
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When identifying a collision, the length and value of the mask that is used in the next
inventory frame are calculated. The computed pair is placed in a queue, as there is the
possibility of multiple collisions within a frame.

This aspect encountered in practice is also mimicked in submodel implementation
through the monitoring expressions described in Equations (6) and (7). The communication
between Pepper and the RFID module is via the CC3100BOOST Wi-Fi module. Thus, it
was necessary to implement a TCP-IP WebSocket server on the MSP432 microcontroller for
server-client communication. The steps performed by the application were to obtain an IP
within the local network, and then to initialize the server by opening a socket to receive
messages from the client.

The client application runs on the Pepper robot, and it was implemented in the Python
programming language and transposed into the graphics blocks used in Choregraphe. For
the analyzed scenarios, the Pepper robot knew the IP addresses assigned to servers used
in communication with the RFID transceivers. The client application sends the inventory
command and then receives the list of UIDs corresponding to tags found in the vicinity of
the transceiver.

3. Results
3.1. RFID Tag Detection as a Function of Cost

The first type of analysis performed over the presented models showed the relationship
between the number of frames that might be needed to identify the RFID tags versus
the number of tags in the system (Figure 15). Results from Figure 15 were obtained
by performing an SPN stationary simulation over the model from Figure 8 within the
following parameters:

• confidence level of 95%;
• maximal relative error of 3%;
• batch size of 10,000;
• Nt domain was set to [1,5].
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Analyzing the values in Figure 15 showed that, from a number greater than 5 tags, the
probability of detecting the tags in at least two frames was higher than the probability that
they would be detected by a single frame. By using the MATLAB model implementation,
the impact of several tags could be observed (Figure 16).
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Figure 16 shows a comparison of the results with those obtained in Mercury. The
deviation between the two implementations was below 0.4% (Figure 17).
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The implementation in MATLAB shows the distribution of probabilities associated
with the number of frames needed to detect system RFID tags (Figure 18). As the system
approached maximal capacity, the probability of identifying tags was distributed among
scenarios that required multiple frames to solve the tag identification process.

Figure 18 shows that the probability of finding the UIDs of a number of 16 tags through
five frames was equal to the probability of completing the identification process after seven
frames, which was translated into a time uncertainty of 2·t_ f rame.

Figure 19 shows the costs, according to Equation (10), related to the identification of
the tags for a system with 7, 8, and 9, and 14, 15, and 16 tags, respectively. In addition, the
probability of reaching identified costs during the operation of the system is represented.
These were obtained from the analysis implemented in MATLAB.
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The costs of identifying 14, 15, or 16 tags were much lower compared to identification
costs of 7, 8, or 9 tags. The costs associated to 14, 15, or 16 tags remained below the
values of the other scenarios (i.e., 7, 8, or 9 tags), even if the number of frames needed for
identification increased (Figure 19).

Even if the cost function showed a favorable operating situation at full system capacity,
considering the probability with which the costs occur, scenarios could be identified in
which the costs are lower. For example, in the scenario with 16 tags near the RFID reader,
the most likely costs are those associated with a number of 5, 6, 7 frames, corresponding
to a cost of 0.31, 0.38, and 0.44 t_ f rame/tag, and having an occurrence probability of 19.91%,
25.21%, and 20.76%, respectively.

Closer analysis shows that the associated cost for five frames can manifest itself with
the same probability as that for the one with seven frames. The costs associated with the
analyzed cases represent a total probability of occurrence of 65.88%.

If there are only eight tags in the system’s vicinity, the scenarios with the highest
probabilities are those with two and three frames, characterized by a cost of 0.25 and
0.38 t_ f rame/tag, respectively, and having an occurrence probability of 33.90% and 33.95%,
respectively. In this situation, the cost is maintained in a smaller interval, which represents
67.85% of the possible situations.
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For a scenario comprising seven tags, detection is most often performed through two
or three frames, having a cost of 0.29 t_ f rame/tag with a probability occurrence of 41.52%,
and 0.43 t_ f rame/tag with an associated probability of 28.87%, respectively.

From another perspective, there are situations where, for the same number of tags
near the RFID reader, a smaller number of frames have the same probability of occurrence
as that of scenarios characterized by a higher number of frames (Figure 18). Such a scenario
is observed if we have 14 tags to identify. For a system with 14 tags, the results of Figure 18
show the same probability for identifying the tags through a three-frame scenario as
through eight frames. In such a situation, the system response would be characterized by
large time delays, as the two scenarios have the same occurrence-probability value.

On the basis of results from Figures 18 and 19 to have a system with a constant
response time, the total number of slots in the system must be almost double the number
of tags that are near the RFID reader.

3.2. RFID Object-Detection System Availability

By implementing the three RFID object-identification system scenarios in Mercury
via SPN, the availability of the systems was determined using the metrics described by
Equations (14)–(19) (Table 2). Although Scenarios 2 and 3 contain several devices, which
would suggest a higher failure occurrence rate, the differences in availability compared
to that in Scenario 1 are very small. This is because of the high values, of the order of
thousands of hours, for the MTTF parameter associated with the devices used in reading
and identifying RFID tags [22]. Results from Table 2 show that there is more to an RFID
object-detection system than the throughput (number of identified tags in a short amount
of time). Due to the radio interference, there is also the probability that a tag UID is
received erroneously.

Table 2. Availability of analyzed scenarios vs. number of tags in the system.

No. of
Tags

Scenario 1 Scenario 2 Scenario 3

No Errors
One

Erroneous
Tag

Two
Erroneous

Tags
No Errors

One
Erroneous

Tag

Two
Erroneous

Tags
No Errors

One
Erroneous

Tag

Two
Erroneous

Tags

2 87.9900% 99.6062% N/A 87.9569% 99.6212% N/A 88.0242% 99.6423% N/A
4 77.5855% 97.9709% 99.9000% 77.3842% 97.8143% 99.8960% 77.1889% 97.8651% 99.8988%
6 68.1615% 95.1877% 99.5746% 68.0436% 94.9642% 99.5199% 67.9565% 95.1738% 99.5216%
8 60.5690% 91.8783% 98.8528% 59.8911% 91.3952% 98.9691% 59.7986% 91.5098% 98.9798%
10 52.3894% 87.4789% 97.7052% 52.3087% 87.3695% 97.9219% 52.9554% 87.6973% 97.9450%
12 45.7768% 82.9385% 96.4815% 46.3120% 83.2289% 96.5695% 46.3120% 83.2031% 96.5885%
14 41.0236% 78.6182% 95.0974% 40.8684% 78.5720% 94.8635% 40.7682% 78.5771% 94.9531%
16 35.5921% 73.6819% 92.5009% 36.1016% 73.6395% 92.6258% 35.7017% 73.6912% 92.5994%

As the number of tags in the system increases, the probability of receiving an erroneous
tag also rises. Results from Table 2 prove that, because of the bit error, the probability of
correctly receiving all identification codes (which is needed when maximal throughput
is desired) is around 35%. However, decreasing the number of tags also diminishes the
chance of having tags affected by electromagnetic interferences.

Coupling the availability of the system with the cost function allows for identifying
the optimal point of operation for an RFID object-detection system: the maximal number
of tags with a predictable time detection that offers the highest availability.

To verify the SPN model results, the first scenario was physically implemented. After
running the proposed scenario for 1168 h, the following events were recorded:

• 11 events in which, out of four tags, only three were read;
• Three events required resetting the system, and there were problems in transmitting

messages that led to the system being blocked;
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• Three events occurred in which the sockets were not closed correctly, resulting in the
loss of messages with the server.

Following analysis of the logs on both the server and those associated with the Pepper
robot, the availability of the system was determined. For the MTTR parameter associated
with the Pepper robot, the value of 0.96 h was used [22], and for the MTBF, a value of
68.71 h was calculated. On the basis of obtained values, an availability of 98.6219% was
determined. The value is close to the result obtained through the SPN for the scenario in
which at least one erroneous tag is accepted.

4. Conclusions

Our SPN model and submodel implementation allow for the recalculation of probabil-
ities in terms of events (tag per slot, idle slot, or collision slot) depending on the number
of tags that generated the collision. This proposed model approach follows the steps in
ISO/IEC 15693 to extend the length of the mask and its associated value at the time of
a collision.

Compared to the analysis proposed in [22], when running a collision inquiry frame,
the condition of identifying at least one tag is no longer required. Therefore, running a
collision inquiry frame could result in a new collision handling frame because tag UIDs
have identical values on a larger number of bits. The new model and the new set of
monitoring conditions resulted in a decrease in probabilities depending on the number of
tags for single-frame detection by approximately 20%. At the same time, the probabilities
associated with multiframe detection increase significantly, denoting a greater impact of
two- and three-frame detection, respectively. Compared to other studies [18–21], we proved
that an FSA anticollision algorithm achieving maximal throughput (i.e., each frame slot
occupied by a single tag) has a low probability.

Such a result greatly impacts the timings of a system that aims to identify objects
by RFID. To determine the optimal configuration between the number of tags served by
an RFID reader and the time in which it would read them, a cost function was proposed.
The cost analyses identified scenarios with a fast response time versus the number of
identified RFID tags. This is especially important for real-time applications that are based
on receiving data at well-predefined time intervals.

There are no major differences between the three proposed scenarios in terms of
availability, because the duplicated components (i.e., microcontroller, RFID chips) are
characterized by the MTTF parameter with values of thousands or even millions of hours.
By combining the cost function with the availability of the system, we determined the
optimal point in which the maximal number of tags with predictable time detection that
offered the highest availability can be achieved: the number of slots in a frame should be
double than the RFID tags in the system.

The analyzed scenarios also proved that systems with a larger number of RFID tags
needing to be identified can be created. By increasing the number of RFID antennas or
readers, the tag identification time is maintained, while system availability is not affected.

During physical implementation, most of the situations that affected system availabil-
ity were caused by software applications associated with the server and client application.

The RFID object-identification system can be seen as a complementary component
for a system based on advanced image processing (e.g., person identification, medication
administration, context build). In a cloud–fog–edge architecture, the two components can
be precisely shared on different layers to counteract problems, such as response time or
data bandwidth, which may be encountered at the cloud-computing level. The advanced
image-based identification and processing component and context analysis algorithms can
be processed at the cloud and fog levels; at the edge layer, RFID technology is suitable.
The advantages of RFID technology primarily consist of low power consumption and low
processing requirements, which are aspects compatible with IoT devices that are served by
this level.
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