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Although iron is one of the most abundant elements on earth, about a third of the world’s

population are affected by iron deficiency. Main drivers of iron deficiency are beside

the chronic lack of dietary iron, a hampered uptake machinery as a result of immune

activation. Macrophages are the principal cells distributing iron in the human body with

their iron restriction skewing these cells to a more pro-inflammatory state. Consequently,

iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival,

immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency

during pregnancy increases the risk of atopic diseases in children, while both children

and adults with allergy are more likely to have anemia. In contrast, an improved

iron status seems to protect against allergy development. Here, the most important

interconnections between iron metabolism and allergies, the effect of iron deprivation

on distinct immune cell types, as well as the pathophysiology in atopic diseases are

summarized. Although the main focus will be humans, we also compare them with innate

defense and iron sequestration strategies of microbes, given, particularly, attention to

catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their

inducible systemic acquired resistance by salicylic acid, which further leads to synthesis

of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are

very important for understanding the etiology of allergic diseases. Many allergens, such

as lipocalins and the pathogenesis-related proteins, are able to bind iron and either

deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result

in immune activation and allergic sensitization. However, the same proteins such as

the whey protein beta-lactoglobulin can also transport this precious micronutrient to

the host immune cells (holoBLG) and hinder their activation, promoting tolerance and

protecting against allergy. Since 2019, several clinical trials have also been conducted

in allergic subjects using holoBLG as a food for special medical purposes, leading

to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying

lipocalin proteins can circumvent the mucosal block and nourish selectively immune

cells, therefore representing a new dietary and causative approach to compensate for

functional iron deficiency in allergy sufferers.
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INTRODUCTION

The ability of iron to act as an electron receptor or donor forms
the fundamental basis for its essential role in supporting basic
cellular processes, of which oxygen transport via iron-containing
heme in hemoglobin is the most well-known (1). As such, iron is
not only essential for humans but extends to almost all organisms
that we consume (e.g., plants, animals), symbiotically live with as
commensal microbes or are pathogenic and infect us.

Although iron is one of the most common elements on
earth, about a third of the world’s population are affected by
iron deficiency, with, predominantly, infants, preschool children,
young menstruating women, and women in the second/third
trimester of pregnancy and postpartum being affected (2, 3). In
western countries, female gender and persons with a vegetarian
or vegan diet, blood donors but also elite endurance athletes due
to inflammation-induced functional iron deficiency are at greater
risk (4).

Besides blood loss, there are two main drivers for iron
deficiency, chronic lack of dietary iron, and/or a hampered
uptakemachinery usually as a result of immune activation. Iron is
closely linked with our immune system as the major contributor
for systematic iron recycling; shuttling and distribution are the
macrophages, which are also key cells in innate immunity, with
their iron status determining activation or suppression of the
immune machinery.

Many respiratory allergens, such as pathogenesis-related
proteins and lipocalins, are able to deprive antigen-presenting
cells from iron, thereby initiating presentation and immune
activation. Iron deficiency also favors survival of Th2-cells,
facilitates antibody class switching, and is also an essential
contributor in the effector phase as a lack of iron primes mast
cells for degranulation.

In this review, we highlight the most important
interconnections between iron metabolism and allergies,
the effect of iron deprivation on distinct immune cell types,
as well as the pathophysiology in atopic diseases. Although
the main focus will be humans, we also compare them with
innate defense and iron sequestration strategies of microbes and
plants important for the etiology of allergic diseases and give
epidemiology, preclinical and clinical evidence for exploiting the
iron-immune regulatory axis to combat the atopic march.

BASIC IRON FEATURES

Iron is present in our body mainly in the ferrous (Fe2+,
acting as an electron donor) or ferric form (Fe3+, an electron
acceptor). Under anaerobic conditions, the ferrous form, which
preferentially binds to nitrogen and sulfur ligands (5), is favored,
whereas, in oxygen-rich environments, ferric iron is the most
dominant form. Due to its incredible high affinity to oxygen,
“free iron” is biochemically dangerous as it can damage tissue by
catalyzing the formation of oxygen radicals that attack cellular
membranes, proteins, and DNA (1) (Haber-Weiss reaction).
Hence, under healthy conditions, no appreciable concentration
of “free iron” is present as iron is virtually always present in a
complexed form (e.g., as heme) and/or protein-bound form (e.g.,

bound to transferrin, lactoferrin, etc.) (6). Moreover, iron uptake
is highly regulated with a sophisticated iron-uptake machinery
existing not only in humans (7) but also in bacteria (8), fungi, and
plants (9), emphasizing that iron acquisition is always an active,
regulated process.

NON-TRANSFERRIN BOUND IRON AND
THE LABILE IRON POOL

The non-transferrin bound iron pool (NTBI) represents the
presence of iron, not bound by transferrin in the circulation. As
such, it comprises the ferric iron-binding proteins lactoferrin and
ceruloplasmin, a copper-containing ferroxidase that is essential
to export iron out from the tissue to the circulation. It includes
members of the lipocalin family, such as LCN1 and LCN2
(10–12), binding to a plethora of iron-siderophore complexes
but also to heme as the lipocalin alpha1-microglobulin (13–
16). Moreover, heme-binding proteins, such as hemopexin and
peroxynitrite isomerase THAP4 (17), as well as haptoglobulin
binding to heme-containing hemoglobin and a large number of
poorly defined lowmolecular weight, belong to the NTBI. Known
low-molecular weight compounds of the NTBI are ferric iron-
binding citric acid, being the major representative here (18) but
extending to amino acids, such as glycine and asparagine (19),
ATP/AMP, and catecholamines [dopamine (20), norepinephrine
(21), and epinephrine (22)]. Dietary-derived catechol flavonoids
have also been suggested to be part of the NTBI that partake in
iron homeostasis (23).

Intracellularly, iron concentration is about 1µM but may
range from 0.5 to 10µM (24, 25) and is part of the so-
called labile iron pool, LIP, for further incorporation into
iron-dependent enzymes and electron transfer proteins, with
glutathione acting presumably as a cellular buffer (26). The
ferritin H subunit (FTH) oxidizes ferrous to ferric iron for
storage within ferritin. Although the ferrous form seems to be
intracellular prevalent, endogenous ferric-binding siderophore
such as 2,5-dihydroxybenzoic acid (26) also partakes in iron
transport and homeostasis (26), with a deficiency here causing
intracellular iron accumulation.

IRON STATUS IN THE STEADY STATE

The human body contains about 4-to-5-g iron with men having,
on average, 50 mg/kg and women about 38 mg/kg. Roughly,
two thirds of the total body iron is contained in heme within
hemoglobins in red blood cells (27), with the next biggest store
being the liver (≈1 g) and the mononuclear phagocyte system
(≈0.6 g), in which iron is stored in ferritin (28) as ferrihydrates
and in hemosiderin, which is a poorly defined iron-storage
complex, presumably composed of ferritin, denatured ferritin,
and other materials (29). About 0.3 g of iron in heme is present
in the myoglobins of the muscles (30, 31). All other cellular iron-
containing proteins and enzymes are estimated to bind a total of
about 8mg of iron.
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Dietary Iron Uptake
The daily uptake of iron through food is about 1–2mg, just
as high as the daily loss of iron through desquamation of the
enterocytes lining the gut or of the skin and due to smaller
bleedings. Iron may leave the body also through urine, bile or
sweat, although in considerable smaller and usually neglectable
amounts (32–34).

About 10–20mg iron is consumed daily via the normal diet
representing the major iron source in humans, of which a tenth
is absorbed. Within the digestive tract, iron is present in two
forms: as heme iron (meat, fish) and non-heme iron (cocoa,
legumes, cereals, fruits) of which heme-iron uptake is about
five times more efficiently absorbed than non-heme iron. Its
bioavailability is further determined by the individual iron status
and physiological condition and is reflected by the production of
hepcidin (35).

The chief area of iron absorption is the duodenum and the
proximal jejunum (36), which is more acidic, with a pH ranging
from 4 to 5 than the rest of small intestines, with a pH range
between 7 and 9. It is also the site where pancreatic juices and
bile enter the small intestines.

Heme iron is transported as heme (from meat) into the
enterocytes via the known transporter for folate being the
high-affinity folate transporter PCP/HCP1 (SLC46A1) (37–
39), and also the duodenal cytochrome b; Dcytb is able to
bind on the lumen and on the cytoplasmic side to heme
molecules (40–44).

For non-heme iron, which is typically ferric iron chelated by
low molecular weight compounds (e.g., plants, meat), reduction
by ascorbic acid and/or duodenal ferric reductases, such as
cytochrome b, Dcytb, STEAP2, and FRRS1 (41, 42), has to
precede before uptake via the divalent metal-ion transporter 1,
DMT1, and ZIP14 is initiated (44, 45). Iron-carrying proteins,
such as lactoferrin (46), transferrin (47), or ferritin from food,
are efficiently absorbed without depending on reduction or
heme transporter via receptor-mediated, clathrin-dependent
endocytosis: ferritin via SCARA5 (48), lactoferrin via ITLN1
(49).Moreover, glycine and asparagine, but not other amino acids
(19), promote iron absorption (50) (Figure 1).

Iron can also be transported via the lymphatic system, with
bile itself contributing to iron absorption (51–53). Newer dietary
iron-supplementation formulation encapsules iron [ferrous iron
(54)] with a phospholipid bilayer generating a liposomal iron
or surround ferric iron in sucrosomes (starchlike vesicles)
(55), which leads to uptake of iron via the lymphatic
system and circumvent hepcidin-mediated blockage of iron
absorption (56).

Once in the cell, iron is exported via the iron exporter
ferroportin 1 (IREG1, MTP1, SLC40A1, FPN1, HFE4) (57),
often with the help of Hephaestin HEPH or ceruloplasmin CP
and is released into the circulation. Ferroportin-mediated iron
efflux is calcium activated and functions as an iron/calcium
antiporter (58).

Heme iron export occurs via the Feline leukaemic virus
receptor (FLVCR) (59, 60), which is also highly expressed in
enterocytes, and is dependent on hemopexin (61, 62). Ferritin
seems to be exported via exosomes (63) (Figure 1). In general,

iron excretion is suppressed by inflammation and enhanced
during erythropoiesis and hypoxia (44).

Dietary phytates, representing inositol polyphosphates
typically contained in nuts, seeds, and grains, form insoluble
precipitates with iron (64) and thus inhibit dietary uptake (65).
Similarly, fruit- and plant-derived polyphenolic compounds are
known to reduce the bioavailability for non-heme iron as many
of these bind with high affinity to iron (66). Upon consumption,
flavonoid concentrations in plasma can reach 1–10µM (67)
and thus may considerably influence iron homeostasis (68, 69).
Consequently, consumption of large quantities of purified
polyphenols has been reported to decrease the volunteers’
iron status (70–73). However, when these polyphenols
are already in complex with iron, dietary administration
of polyphenol-iron complexes had been demonstrated to
contribute to an improved iron and redox status in vivo
(74, 75).

Iron Regulation
In 2001, hepcidin, which is highly conserved between species and
only 25-amino acids long, was discovered as the key regulator
for systemic iron homeostasis (76). It is mainly secreted by
the liver in response to iron overload or inflammation (77),
but, also, parietal cells of the stomach (78) and macrophages
synthesize and secrete hepcidin. Under steady state, hepcidin
is found in the plasma in a protein-bound and free-circulating
form (79), with only the latter being excreted into the urine
(80). Reported hepcidin concentration in the circulation is
about 7.8 nM in men, 4.1 nM in pre-, and 8.5 nM in post-
menopausal women (81). Radiolabeled hepcidin accumulated
in the ferroportin-rich organs, liver, spleen, and proximal
duodenum (82).

Hepcidin decreases plasma iron levels by blocking iron
absorption in the duodenum and iron release frommacrophages,
thus targeting the two entrance gates for iron into the
circulation. Molecularly, it binds to ferroportin (FPN), inducing
its internalization, ubiquitinylation, and consecutive degradation
of FPN in the lysoproteasome (77), while iron is retained within
the cells (81, 83). Hepcidin is also negatively regulated by folic
acid, cobalamin, or vitamin D (84).

Under iron-replete conditions, increasing body iron levels
cause an increased hepcidin expression, hampering further iron
accumulation and acquisition in macrophage and liver cells, and
decreased dietary iron absorption; the result is a reduction in
serum iron (85). In contrast, when more iron is needed, hepcidin
decreases, permitting macrophages to release iron and allowing
an enhance uptake of dietary iron via the gut.

As hepcidin is also an acute phase reactant, it is upregulated
during inflammation to remove iron from the circulation along
with iron-binding proteins, such as lactoferrin, haptoglobulin,
hemopexin, lipocalin 2, and ferritin (81, 86). Due to its dual
role in iron regulation and inflammation, hepcidin levels in the
circulation reflect on the one hand ongoing inflammation as well
as the need of iron; consequently, in conditions of severe anemia
and inflammation, low hepcidin levels will prevail despite the
presence of inflammation (87).
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FIGURE 1 | A simplified scheme of iron homeostasis under steady-state and inflammatory conditions. (A) Under non-inflamed steady-state conditions, iron is reduced

by ferric reductases (Dcytb, STEAP2, FRRS1) in the intestinal lumen to ferrous iron before import via DMT1 and ZIP14, heme iron is transported via the folate receptor

HCP1, lactoferrin via ITLN1, dietary ferritin uptake occurs via SCARA 5, and chelated iron can be captured by LCN2 and transported by the enterocytes via SLC22A17.

Cellular iron export occurs via ferroportin often aided by hephaestin and/or ceruloplasmin, ferritin seems to be exported via exosomal pathways, heme is exported via

FLCVR. Macrophages under steady state have an anti-inflammatory phenotype characterized by a large labile iron pool, low ferritin-levels, and expression of iron

importers such as CD163. They constantly take up but also export iron that derives from damaged red blood cells, from heme-hemopexin, haptoglobin-hemoglobin,

LCN2, transferrin, and lactoferrin. (B) Under inflammation, iron mobilization is blocked due to increased expression of hepcidin that leads to FPN degradation and

trapping iron inside the cells. Macrophages change to an inflammatory phenotype inhibiting iron import and export, their ferritin-levels are increased, while their labile

iron pool is decreased. In the circulation levels of ferritin, hemopexin, haptoglobulin, and lipocalin 2 are elevated, while serum iron and transferrin are decreased.

Iron in the Circulation
Iron is then delivered to most tissues via circulating transferrin,
which carries roughly 2mg of this metal in the steady state
(88). Hemopexin also seems to partake in distributing dietary
heme iron, which accounts for two-thirds of absorbed body
iron, as a lack of hemopexin leads to heme accumulation in
the enterocyte and impedes heme distribution (89). In healthy
men, plasma iron turnover ranges from 25 to 35mg (90)
per day, of which only 5 to 10% is provided by absorption
of dietary iron in the gut, the rest being predominantly
iron recycled from monocytes and macrophages of the liver,
adipose tissue, bone marrow, spleen, and lymph nodes (91).
Regarding serum levels, most iron-associated proteins dedicated
to distributing and mobilizing iron are increased in situations
of greater iron demand such as transferrin, hemopexin, soluble
transferrin receptor, and ceruloplasmin (92, 93), while serum
iron is low. In contrast, reduced levels of the same proteins
in the serum/plasma at steady-state condition usually describe
the consequence of an effective iron delivery to the target

tissues (e.g., transferrin-iron binding to transferrin receptor 1
CD71, heme-hemopexin complex binding to CD91 expressed
on hepatocytes, monocytes, and macrophages in the spleen and
liver, haptoglobulin-hemoglobin binding on CD163 expressed on
M2-macrophages) and indicate an improved iron status.

In contrast to the widely disturbed transferrin receptor 1
TFRC responsible for iron import via iron-sated transferrin,
transferrin receptor 2 (373) (mainly expressed by hepatocytes,
erythroid cells, but also by basophils and eosinophils) bind
to erythropoietin (94, 372), exert a regulatory function (95)
and do not participate in increasing tissue iron. Ablation or
mutation of this receptor leads to iron overload (95, 96) in the
respected tissue.

IRON DEFICIENCY IN HUMANS

As iron homeostasis is quite complex, there is still no
international consensus that clearly defines iron deficiency (97)
with the World Health Organization (WHO) defining anemia as
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circulating hemoglobin (Hb) levels <12. g/dL in non-pregnant
women and <13. g/dL in men (98, 99). However, normal Hb
distribution varies not only with sex but also with ethnicity
and physiological status; thus, recommended adjustment factors
are given by the WHO according to, e.g., smoking habits and
people living above 1,000-m altitude (100). Ferritin is a good
indicator for iron stores, but also, here, adjustments are done
(101) and recommended as ferritin is elevated upon infection or
inflammation (102). Thus, the assessment of the iron status is
not precise, since the available biomarkers reflect the iron status
of different compartments in the body: serum ferritin assesses
stored iron, while serum iron and the percentage of transferrin
saturation reflect the iron supply to tissues. Serum transferrin
receptor, erythrocyte ferritin, and red cell zinc protoporphyrin
are indicators for the iron supply to the bone marrow, whereas
the percentage of hypochromic red blood cells, mean corpuscular
volume, and reticulocyte hemoglobin reflect the use of iron
by the bone marrow. As these biomarkers are affected by age,
sex, disease (infections, inflammation), life style (e.g., blood
donations, smoking, drugs, physical fitness), there is currently no
single standardized test that can diagnose iron deficiency without
anemia, and even the use of multiple tests can only partially
overcome the limitations of individual tests, especially because
many iron markers are elevated during inflammatory responses
or mild immune activation (103).

According to the Global Burden of Disease Study 2016,
estimated 1.24 billion individuals are affected by iron
deficiency anemia, with the figures for the global prevalence
of iron deficiency without anemia being estimated at
least double.

Immune activation and iron balance are intertwined, with a
change in the iron status always modulating the immunological
reactivity. This is reflected in the two main entities of iron
deficiency being anemia and “functional iron deficiency.”
However, various shades and mixed forms between these
two are possible. During functional iron deficiency, iron is
not “mobilized,” leading to functional impairments of cells
and tissues. Only in severe cases, this results in anemia,
which represents the most extreme example of iron deficiency.
In mild to moderate cases of iron deficiency, anemia is
not present, although the function of tissues and cells is
already compromised.

Virtually, every immune activation results in functional iron
deficiency (4, 104–108), where, despite sufficient iron stores in
the liver andmononuclear phagocyte system (macrophages), iron
mobilization is inhibited and dietary iron absorption is decreased
by hepcidin, the master regulator of iron uptake. As such, even in
healthy adults, iron deficiency is a driver of low-grade chronic
inflammation (109).

Persons with functional iron deficiencies usually suffer from
underlying chronic or metabolic diseases such as autoimmune
(110, 111) and atopic diseases (108, 112–115), chronic kidney
diseases (56, 116, 117), congestive heart failure (118–120),
chronic pulmonary diseases (121–123), and obesity (124, 125),
in which iron deficiency is associated with a worsened prognosis
and outcome (103, 104, 126–133). Interestingly, iron deficiency is
also associated with an increased risk for thrombosis (134, 135).

IRON RECYCLING BY
MACROPHAGES—THE DIRECT LINK TO
OUR IMMUNE SYSTEM

As duodenal dietary iron uptake only accounts for 1–2mg
of the daily acquirements, iron is recycled largely through
the erythrocyte hemoglobin cycle as the novo synthesis of
hemoglobin consumes about 25mg iron per day. Iron is
recycled from senescent red blood cells by macrophages.
Recycling occurs predominantly in the spleen by the for this
purpose specialised red pulp macrophages and to a lesser
degree also Kupfer cells in the liver can recycle iron from red
blood cells. Both macrophage-types in the splenic red pulp
as well as in the liver have by default an anti-inflammatory
phenotype and are critical for maintaining systemic iron
concentration (130).

Macrophages are the principal cells responsible for handling
iron in mammals, and, thus, any change in the iron status has
a direct impact on the innate and, indirectly, on the adaptive
immune system.

Macrophages are present in all tissues and classically
appreciated for their surveillance role in pathogen recognition.
They have crucial homeostatic function, including cell
repair, phagocytic clearance of apoptotic and senescent
cells, and even cell death. Moreover, in the last decade,
their function to support and restore the tissue homeostatic
balance, by acting, on the one hand, as sensors for the local
iron demands and, on the other hand, providing the local
environment with the essential trace element iron, became
apparent (130).

Macrophages are sentinels, who are highly plastic, and
whole spectra of macrophage subtypes and activation status
exist, ranging from an M1-like proinflammatory to an M2-
like tissue repair phenotype. Importantly, they markedly
differ in their iron handling (136). Indeed, M2 macrophages
usually express highly CD163, the hemoglobin/haptoglobin
receptor, have low ferritin levels, while having a large labile
iron pool LIP, and the iron-export protein, ferroportin FPN,
is highly expressed (Figure 2). In contrast, M1 macrophages
do not partake in iron sequestration, although they favor
an iron storage phenotype having a low LIP, increased
ferritin-levels and decreased FPN expression (Figure 2)
(126, 137, 138).

Of note, in the healthy steady-state conditions, the increased
iron uptake by phagocytosis of senescent red blood cells, uptake
of hemoglobin (139, 140), hemoglobin-haptoglobin complexes
(141, 142), heme-hemopexin (143–145), iron-siderophore laden
lipocalin 2 (LCN2) (146–150), iron-laden ferritin (138, 151–
155) does not induce inflammation, but, rather, contrarily
promotes an anti-inflammatory macrophage phenotype and thus
contributes to immune suppression, regulation, and restoration
of the tissue homeostatic function as, simultaneously, they serve
as iron-rich nurse cells supporting other cells and tissues with
iron (148).

In line, macrophage-derived transferrin has been
shown to contain already iron and supports lymphocyte
proliferation (156).
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FIGURE 2 | Iron homeostasis in macrophages. Anti-inflammatory macrophages constantly take up but also export iron and are characterized by a large labile iron

pool (LIP) and low ferritin levels. In contrast, inflammatory macrophages neither import nor efflux iron, their LIP is small, while ferritin expression is high. Under

iron-deficient conditions, no iron can be distributed by anti-inflammatory macrophages, changing their phenotype towards a more inflammatory state.

ATOPIC DISEASES AND
MICRONUTRIENTS

The tendency to develop allergies, also called atopy, affects almost
one third of the Western population and is partly inherited.
Especially in our affluent society, the development of allergy is
paradoxically characterized by a lack of contacts and the absence
of micronutrients.

On the one hand, the lack of contact with people, animals, and
germs leaves the immune system untrained, and, thus, several
deficiencies of innate proteins, such as LCN2 (157), lactoferrin
(158), uteroglobin (SCGB1A1) (159), Cathelicidin antimicrobial
peptide (160), have been described in atopic individuals
compared to non-allergic ones, which further underline the lack
of microbial contact but also the lack of nutritional support by
commensal microbes in atopic individuals.

On the other hand, a lack of micronutrients signals danger
to the immune cells and often leads—through this heightened
alertness—to an exaggerated immune response, which is such
a typical characteristic in individuals with allergy (161, 162).
Due to the heightened immune response, patients with atopic
diseases also have an increased risk to develop autoimmune
diseases (113).

In contrast, studies reveal that the earlier children have contact
with other children, as well as animals, the less likely they are
suffering from allergies (163). The probability of developing an
allergy decreases with the number of siblings and the ownership
of pets (164), for example, dogs, and it is proven that regular
stays in the immediate vicinity of farms protect against the
development of asthma and hay fever (165).

Micronutritional Deficiencies in Atopic
Individuals
Especially in the perinatal period, an adequate nutrition is pivotal
to avoid an atopic predisposition (166, 167). A plethora of
studies affirm that atopics suffer from numerous micronutrient
deficiencies (114, 115, 168–180), such as vitamins A (181), E,

(182, 183), and D, as well as folic acid and iron (112, 162).
Although usually widely overlooked, these micronutrients have a
profound impact on our genes and our immune system, resulting
in many epigenetic changes affecting immune-associated genes
(167, 184), but, most importantly, being also associated with
enhanced inflammatory responses.

In respect to epigenetic changes, iron deficiency is known
to alter key metabolic and epigenetic pathways, particularly
of neural cells, including the phosphorylation of proteins
involved in iron sequestration, glutamate metabolism, and
histone methylation (185–187); also, liver hepcidin expression,
as well as the liver BMP-SMAD signaling pathway, is suppressed
by microRNA (188, 189); however, no significant differences
in circulating microRNAs between iron-deficient and -replete
persons have been observed (190), although some seem to
participate in iron homeostatic events (191).

Vitamin A/D and iron homeostasis are very closely linked,
making it difficult to distinguish the individual contributions of
each micronutrient. For example, vitamin A promotes regulatory
T cells (192) but also impacts macrophages and is a known
contributor for iron mobilization (193) and—uptake (194),
whereas deficiencies of both iron and vitamin A are associated
with inflammation (195, 196).

Similarly, iron is also essential for vitamin D synthesis
(197), so that people with iron deficiency usually have vitamin
D deficiency too (198, 199), which likewise is linked to
inflammation (200).

Preventive Diets
Regardless of the inadequate exposure of atopic individuals with
people, animals, and microbes, the “right diet” can also prevent
or alleviate allergic disease. The 2021 GINA (371) guideline
recommends micronutrient intake in the form of fruits and
vegetables not only to prevent asthma but also to improve
asthma control and reduce the risk of exacerbation (Evidence
A) (201). Among foods, milk and, here, in particular, the whey
protein content appears to reduce the risk of atopy (atopic
dermatitis, rhinitis, asthma) (202–204), and this association
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has been shown, especially for drinking unprocessed raw milk.
Indeed, even allergic children could tolerate raw milk better than
pasteurized shop milk, showing less allergic symptoms upon
drinking raw milk in a human pilot study (205). The atopy
preventive effect of milk correlates with the amount of whey
proteins present in the milk (206, 207) and is lost by thermal
treatment (204, 208).

The whey protein content in the milk is highest in summer
when the animals are kept on pastures and is lower in winter (209,
210). Grazing also strongly affects the iron as well as polyphenol
content in milk, which has, indeed, higher antioxidant properties
than vitamin C or E (211). The polyphenol content in milk
depends on the forage composition and ranges from 3.7 to 35.8 g
per-liter milk (212, 213), whereas reported iron concentrations
vary from 57 µg (214) to 1,500 µg per liter (215), which
correspond to roughly 1–26µM iron per-liter milk.

Due to the loss of the heat-sensitive protective factors in whey,
the ultra-high temperature UHT milk usually offered today does
not prevent atopy. In this regard, it is remarkable that the main
component of the whey is the heat-sensitive beta-lactoglobulin
(BLG) (216) with constitutes 50–60% of all whey proteins, from
which we show that it has a tolerogenic effect when loaded
with micronutrients.

BLG is a known binder of many polyphenols [catechins (217,
218)], quercetin (219, 220), luteolin (221), rutin (220), etc., which
increases the anti-oxidant activity of BLG (218, 222, 223) and
leads to enhanced intestinal uptake of these polyphenols (224).
Concurrently, depletion of BLG reduces the antioxidant activities
of milk by 50%, and, also, heating (that destroys BLG) reduces
the antioxidant activity (225, 226), while purified BLG is only
considered a mild antioxidant (225).

Similarly, there are numerous reports showing the iron-
binding abilities of BLG (222, 224, 227, 228) as the major
component in whey (229) improve iron absorption (230–233).

Milk processing such as pasteurization has been shown to
cause aggregation of whey proteins (216) to impair the ligand-
binding capacity of BLG—shown with ligands such as retinol
and palmitic acid (234), while, at the same time, its antigenicity
increases (234). Milk processing has also been described to
decrease copper and iron content (235) in milk.

EPIDEMIOLOGY AND CLINICAL EVIDENCE
OF IRON DEFICIENCY IN ATOPIC
DISEASES

With regard to iron deficiency and atopic diseases, large
epidemiology consistently demonstrated that children with
allergies have an up to eight-fold greater risk of developing iron
deficiency anemia than children without allergies (112, 114). The
greater anemic risk in allergic children is clinically relevant as
iron deficiency during the years of growth not only causes fatigue
and anemia but also affects the small intestinal function and
cognitive development (attention, sensory perception, emotions,
intelligence). Physicians caring for children with atopic diseases
should clarify in their current practice whether fatigue is due to

sleep loss caused by atopic dermatitis or asthma or whether an
undiagnosed anemia is present.

Iron deficiency can be “inherited” as the nutritional state of
the mother is passed to the child. As such, the iron status of
pregnant women already predetermines the later allergy risk
of children. Several studies demonstrated that a good iron
status of the expectant mothers lowered the risk of children of
developing atopic dermatitis or asthma (172, 176, 236, 237). Low
maternal hemoglobin levels are also associated with increased
IgE antibody levels and lower lung volume in the child. Higher
maternal transferrin concentrations during pregnancy, reflecting
a lower iron status, were associated with an increased risk
of a child’s physician-diagnosed inhalant allergy (238). In an
Italian study, supplementing mothers with iron and folic acid
during their pregnancy compared to women without nutrient
supplementation reduced the risk of their children developing
atopic dermatitis by the age of 6 years by 80% (176). An inverse
association was also illustrated between cord blood iron levels
(173) right after delivery and the development of atopic urticaria,
infantile eosinophilia, and wheeze at 4 years of age (172, 173).

Even in adults, the anemia risk is pertained in allergic
individuals. A Korean study analyzing health insurance records
from the health care system revealed that men with allergies had a
3.5-fold higher risk of being anemic than non-allergic men, while,
in women, this difference was only about half as large (115). A
possible explanation for this gender discrepancy could be the
natural fluctuations in women’s iron status, which often change
due to menstrual cycles, pregnancies, and contraceptive methods
(copper IUD), as well as due to the general greater tendency for
iron deficiency in women to be left untreated, even in the absence
of allergies.

By the same token, patients with anemic diseases are alsomore
likely to develop atopic diseases and asthma. Elevated IgE is a
common phenomenon observed in anemic patients, which is not
related to parasitic infestations (239). Patients with chronic, even
life-threatening anemia as with beta-thalassemia major (Cooley’s
anemia)—having impaired hemoglobin synthesis, which is often
accompanied by enlarged spleens, livers and hearts—are more
likely to have atopic diseases (240, 241) and suffer from asthma
(241–244). Similarly, also subjects with atopic dermatitis have
a greater risk to suffer from coronary heart disease, angina,
peripheral artery disease, and anemia (245).

Summing up, the studies provide evidence that, indeed, atopy
and iron deficiency are interconnected, making anemia more
common in allergic people than in non-allergic individuals.

IMMUNE CELLS UNDER IRON-DEFICIENT
CONDITIONS

Neutrophils, Natural Killer Cells, and
Macrophages—Lower ROS Formation,
Despite Increased Activity
Neutrophils, monocytes/macrophages (246, 247) and
NK cells (248) use iron to combat pathogens. During
intracellular infection, they release iron-loaded lactoferrin
into their phagocytic vacuoles where ferrous iron functions
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as a catalyst of the Haber-Weiss reaction, generating
reactive oxygen species (ROS) (249). Hence, under iron-
deficient conditions, ROS formation and microbicidal killing
are impaired.

As macrophages also are the principal cells for iron
distribution, iron-deficient conditions hamper their iron-
distribution capability, shifting the macrophage toward a more
pro-inflammatory phenotype. Consequently, nutritional iron
deficiency has been implicated in low-grad inflammation (250)
and shifting of monocytes to a more inflammatory state in
children (251) and infants (252) (Figure 2).

Lymphocytes–Survival Advantage for Th2
Cells
An important aspect of iron deficiency is that the decrease
in red blood cells is often accompanied by an increase of
the white blood cell population, in which particularly the
lymphocytic population is significantly increased (253). Within
the lymphocytes, however, particularly CD4+ cells and the
CD4/CD8 ratio is reduced (253, 254).

Iron chelation inhibits T cell proliferation, as T cell
activation leads to expression of TfR1 for iron uptake. As such,
iron chelation partake in apoptosis induction of proliferating,
activated T-lymphocytes, but not of resting peripheral blood
lymphocytes or granulocytes (255). Besides iron-uptake via
transferrin, also, active uptake of oligomeric ferric citrate has
been reported for T cells (256, 257). T lymphocytes also actively
modulate the NTBI pool by uptake and export, with T cell
deficiency associated with iron accumulation in the liver and
pancreas (258).

The acidity of lysosomes also seems to partake in iron
homeostasis and cell proliferation. Under lysosomal pH
augmentation, cellular iron via TfR1 is impaired, decreasing
cellular viability and proliferation, whereas iron supplementation
by augmenting the NTBI pool bypasses the need for functional
and acidic lysosomes and rescues cellular viability and
proliferation in T cells (259).

In regard, to T cell subtypes, particularly, inflammation-
associated Th1 cells are sensitive to iron-deficient conditions
(260) as iron regulates the IFN-gamma/STAT1 signaling
pathway (261).

Iron import into T cells seems also to affect T cell polarization,
as import of iron via iron-siderophore-laden LCN2 has been
demonstrated to suppress TH17 polarization in a vasculitis
model (262).

In contrast, patients with iron overload have relative lower
numbers of CD3 + T cells, while their percentage of regulatory
T (Treg) cells and the ratio of CD4/CD8 seemed increased (263).

Th2 clones exhibit larger chelatable iron pools than Th1 clones
and are less affected by deferoxamine treatment or TfR1 blocking
(264), resulting in a survival advantage of Th2 cells under iron-
deficient conditions (260, 265, 266) (Figure 3). Consequently,
iron deficiency prones the system toward Th2 (267), induces
splenomegaly in mice (268), and induces increased IL-4 secretion
in the supernatants of anti–CD3-treated splenocytes compared to
controls (268).

FIGURE 3 | Impact of iron deficiency on immune cells. (A). Th2 cells

characterized by IL4 secretion have a greater chelatable iron pool compared to

Th1 cells and have a survival advantage under iron-deficient conditions. (B).

Iron-deficient conditions modulate iron handling in macrophages and shift

them towards a more activated, inflammatory status, which facilates antigen

presentation. The activation-induced cytidine deaminase (AID), an enzyme

responsible for class switch and affinity maturation, is repressed by iron.

Iron-deficient conditions favor AID activation and class switch. (C) Local iron

deprivation induces mast cell degranulation, whereas iron repletion by

transferrin, lactoferrin, and lipocalins suppresses their activation.

Similarly, also in humans, iron deficiency per se generates a
Th2 environment. In the seminal African study, which examined
the immune status of children with or without iron deficiency,
a marked elevation of the Th2 mediator interleukin 4 was also
seen in children with iron deficiency, but not in iron-repleted
children (269).

As such, under iron-deficient conditions, a Th2 environment
is evidently created, which is the basic prerequisite for allergic
sensitization (Figure 3).

B Cells—Promotion of Antibody Class
Switch and Affinity Maturation
Iron deficiency also affects antibody-producing B cells, as the
enzyme responsible for antibody class switching and affinity
maturation, the activation-induced cytidine deaminase, AID, is
activated under iron-deficient conditions, while ferrous iron
specifically inhibits this enzyme (270). In line, a lack of iron
impairs in B cells adequate transfer of ferrous iron to the
protoporphyrin IX in the mitochondria, thereby hampering
heme synthesis and maintaining Bach2 activation (271), an
essential transcription factor not only for class switching and
affinity maturation but also an important regulator for T reg
differentiation and the macrophage function (272).
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In line, iron fortification of Vietnamese school children, but
not deworming strategies, significantly improved hemoglobin,
serum ferritin, and led to a significant decrease in the measured
IgE-levels (239), with another study also reporting a decline
in antibodies upon iron fortification in women (273). In
contrast, decreased hemoglobin levels due to autoimmune
hemolytic anemia, in which antibodies attack red blood cells
(274), or because of infections (275) such as plasmodium
falciparum malaria, digesting hemoglobin of the red blood cells
(leading to anemia), are correlated with increased IgE-levels and
severity (276).

The corollary of iron deficiency is, therefore, an antibody class
switch toward IgE as iron deficiency simultaneously promotes a
Th2 environment (Figure 3).

Mast Cells—Ready to Burst
Mast cells, the main contributor for immediate allergic reactions,
are particularly sensitive to iron deprivation. In these cells,
intradermal application of the iron binder desferrioxamine, an
iron chelator used in the clinics against iron overload, depletes
the tissue and the resident mast cells of iron, resulting in
histamine release and wheal formation (277). The iron binder is
so effective that there have been endeavors to use the iron binder
desferrioxamine instead of histamine as a positive control in skin
tests. Reversely, iron delivery through transferrin, lactoferrin, or
even iron-loaded beta-lactoglobulin (holoBLG) inhibits mast cell
activation (12, 278–281) (Figure 3).

Interestingly, mast cells may also be involved in Th2-
associated alopecia with an iron-restricted diet, resulting in hair
loss in a murine model using IL10-deficient mice (282).

All in all, the degree of iron under- or oversupply seems to
contribute directly to the reactivity of mast cells and, therefore,
also on the symptom burden of allergic sufferers.

SEQUESTRATION STRATEGIES AND
DEFENSE MECHANISMS IN MICROBES
AND PLANTS

Common Concepts in Bacteria and Fungi
and Plants
Most bacteria and fungi require iron for their growth. In
contrast to humans, in which iron is stored and transported
predominantly within proteins, a very large pool of iron is
present in bacteria (283) and fungi (284) in chelated form
by low molecular compounds, with iron stored mainly
in vacuoles and not within ferritin. Also, plants store
iron in vacuoles and ferritin, although the distribution
here varies with the type and development stage of
the plant.

Bacterial and Fungal Iron Acquisition
Strategy
Bacteria and fungi such as Alternaria alternata thus usually have

two types of siderophores: internal siderophores, such as fungal
ferricrocin (285), and siderophores that are excreted such as
coprogen for acquisition of environmental iron. Intracellular

siderophores have been described to serve for iron storage and

being involved in sporulation. In contrast, bacteria and fungi use
exogenous siderophores, but also xenosiderophores, synthesized
by other microorganisms, to acquire environmental iron as some
microorganisms do not produce siderophores (286). The feeding
with xenosiderophores is a widely used approach in bioassays
in order to demonstrate their growth-promoting activity, and
cross feeding is a widely observed feature of the microbial world
(287) but also seems to extend to the host. Commensal bacteria
such as Bacteroides fragilis have been reported to contribute to
iron homeostasis of macrophage and be capable to modulate
the immune response of macrophage (288). Siderophores may
contribute thus in the nutritional provision of iron; in some
cases, also binding to other metals such as copper, manganese,
and zinc has been described, not only to support the microbial
community, but that of the host too.

Indication for that exists in murine models in which the
use of broad-spectrum antibiotics resulted in anemia and an
altered immune homeostasis with diminished granulocytes and
B cells (289), with fecal microbiota transfer partly reverting
the hematopoietic changes (290). Antibiotic treatment also
aggravated atopic dermatitis in a murine model (291, 292).
In line, it is well established that individuals with atopic
diseases (rhinitis, asthma, dermatitis, food allergy) have a reduced
microbial (fungal and bacterial) diversity (108, 293–303), which
may result in a diminished nutritional support by the commensal
microbiota. The microbiota strongly manipulates the immune
system. The composition and localization of the commensal
microbiota in allergics may thus directly impact the homeostatic
iron status of the host, but more studies here need to be done.

Bacteria use numerous iron uptake pathways, which include
iron uptake from transferrin, ferritin, lactoferrin, siderophores,
or heme. All of these uptake pathways require an active
transport, although not all bacteria have all systems; e.g.,
Listeria monocytogenes, a facultative intracellular pathogen,
can acquire iron through transferrin, lactoferrin, ferritin, and
hemoglobin, but does not secrete any siderophores. Rather,
it can use several hydroxamate (ferrichrome, ferrichrome
A and ferrioxamine B) and catecholate (enterobactin and
corynebactin) siderophores from other organisms, and it
can use additional iron-binding compounds, such as hosts’
catecholamines (304), gram-negative bacteria Neisseria spp.,
can acquire ferric iron directly from lactoferrin and serum
transferrin via the TbpA/TbpB receptor (305, 306), and many
bacteria exploit heme iron as a nutritional source (307) by
secreting extracellular heme-binding proteins such as HasA
(gram negative) and NEAT (gram positive) hemophores that
either recognize heme and/or the host hemoproteins, such as
hemoglobin, hemoglobin–haptoglobin and heme-hemopexin via
HxuA hemophores (306, 308) to sequester and translocate iron
into their cytoplasm (309).

Iron Chelators: Siderophores and
Flavonoids
Animals and humans provide a particularly low-iron habitat
for bacteria and fungi. Consequently, siderophore production
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FIGURE 4 | Plant defense and nutrition. Plants will impede biotrophic pathogens, releasing siderophores to sequester iron by initiating a local “hypersensitive

response” as part of their “systemic acquired resistance.” This activates the salicylic acid, leading to its accumulation on site and the synthesis of pathogenesis-related

proteins and polyphenols/flavonoids. Both can impede nutrient deprivation by the invading pathogen. In contrast, induced systemic resistance counter regulates the

systemic-acquired resistance but leads to fortification of the physical and chemical barrier.

and access do play crucial roles in determining the course of
an infection.

Siderophores are ferric iron–chelating molecules with very
high ferric-ion association constants (1020-1049 M−1), which
effectively remove iron from the host’s iron–protein complexes.
They are usually classified by their chemical moieties used to
chelate the ferric iron, which are catechol-, hydroxamate or α-
hydroxycarboxylate- moieties (Figure 4), but also mixed forms
exist (162). Dependent on the moiety and the rest of the
structure as well as salt type, ionic strength and temperature,
there exist optimal pH-ranges for the respected siderophore
types, with ferric iron usually complexed in an octahedral
hexadental arrangement. Although dependent on the specific
conditions, tris- and bis-catechol -ferric complexes possess some
of the highest known stability constants of metal-ligand chelates,
with the pH required to establish these bis- and tris-complexes
being typically reported to be above pH 7 (310). In contrast,
hydroxamates (311) usually have a wider optimal pH range from
4 to 9, and described optimal chelation conditions for alpha-
hydroxycarboxylates usually lie within the pH of 5–7 (66).

Generally, siderophore production is downregulated at low
pH and upregulated with high pH (312).

Siderophores anti-oxidative and anti-inflammatory
properties are widely acknowledged (313) as they can impede
ROS formation.

As the biosynthesis of siderophores needs energy in form
of carbon sources and ATP, it determines with the microbial
growth rate, which kind of population will colonize a low-iron
habitat. Microorganisms that continuously produce siderophores
are unknown in nature. Similarly, siderophore production in

fungi starts just after germination from conidiospores and are
contained in the spore wall material, which is released during
germination (314).

As secondary metabolites siderophores are generally defined
for not being directly involved in the growth, development,
and reproduction of the organisms, but mediate ecological
interactions, which may produce a selective advantage for the
microbes or plants. As such, microbial siderophores usually
belong to the class of nonribosomal peptides (315) and/or
polyketides (316), from which a number of very powerful
medicinal products are known for, ranging from antibiotics (e.g.,
vancomycin) to immunosuppressive drugs, such as ciclosporin.

Similarly, many fruits and plants synthesize
phenolics/polyphenols/flavonoids with described anti-oxidative
and anti-inflammatory attributes, that—as their microbial
counterpart—are categorized as secondary metabolites and
have a very high affinity to iron due to the presence of catechol
structures. For flavonoids, the reported complex stability
constants for catechol are 43.7; for quercetin 44.2; and for
catechine 47.4 (67) and thus comparable to the iron affinity
of microbial siderophores, with the strongest known catechol-
siderophore enterobactin having a complex stability constant of
49 at physiological pH (317).

Of note, many flavonoids-binding iron such as luteolin
(318), apigenin, quercetin (319), catechin, rutin, naringenin,
fisetin (320), and epicatechin have been attributed an anti-
allergic activity in vitro and in in vivo models (321, 322).
With a double-blind, placebo-controlled study using topical
cream containing vitamin E, epigallocatechin gallate and grape
seed procyanidins improving atopic dermatitis (323), and
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O-methylated catechins reducing symptoms of Japanese cedar
pollinosis (324).

Plant Defense and Iron Availability
Iron availability is dictated by the soil redox potential and pH. In
soils that are aerobic or of higher pH, iron is readily oxidized, and
is predominately in the form of insoluble ferric oxides. At lower
pH, the ferric iron is freed from the oxide and becomes more
available for uptake by roots. Because 30% of the world’s cropland
is too alkaline for optimal plant growth (e.g., calcareous soils
in which the addition of lime increases the pH), graminaceous
plants (grasses, cereals, and rice) secrete phytosiderophores (e.g.,
mugeneic acid), but also chemical compounds with catechol
moieties have been described such as fraxetin (325), which are
released into the soil to sequester iron (326).

Importantly, similarly than in the mammalian system, iron
deficiency alone has been demonstrated to be enough to prime
the plant immune response (327) and activate flavonoid (328,
329) and phytosiderophore synthesis (330).

Plants will impede pathogens by increasing their resistance
via “induced systemic resistance” (Figure 4), which involves
the synthesis of jasmonic acid and ethylene and leads to an
increase of the physical or chemical barrier of the host plant
(331). Simultaneously, upon infection, also, “systemic acquired
resistance “is initiated, which is analogous to our innate immune
system and mediated by synthesis of salicylic acid, leading to its
accumulation, but also to the transcription of a wide range of
“pathogenesis-related” proteins (332–334) as well as the synthesis
of flavonoids (328, 335, 336) (Figure 4). Both pathways counter
regulate each other, with salicylic acid inhibiting jasmonic acid
signaling (336).

In response to pathogens, the salicylic acid pathway elicits
a rapid local reaction or “hypersensitive response” to limit the
area of infection for biotrophic pathogens, which require living
tissue to gain nutrients. In the case of necrotrophic pathogens,
hypersensitive response might even be beneficial to the pathogen,
as they require dead plant cells to obtain nutrients.

Strikingly, many major allergens are derived from these
pathogenesis-related protein families that are induced by the
plants to prevent nutritional deprivation (337, 338).

Also, beneficial root-associated mutualistic microbes
living in the rhizosphere, like bacteria and fungi, besides
impacting on plant nutrition and growth, can further boost
plant defenses, rendering the entire plant more resistant to
pathogens (339). These beneficial microbes secrete siderophores
to facilitate plant iron acquisition with ectorhizosphere
and rhizoplane bacteria described to release predominantly
hydroxamate-type siderophores, whereas endophytic bacteria
rather producing catechol-type siderophores (340) for plant
uptake. Interestingly, several different bacterial genera, especially
in plant-growth-promoting rhizobacteria, synthesize salicylic
acid, the key compound of the systemic acquired resistance
in plants, to ultimately incorporate them into catechol-based
siderophores (341).

Importantly, although a mutualistic relationship between
hosts and microbial siderophores exists, at the same time,
not only a competition between excreted siderophores for the

metal but also for capturing these iron-siderophore complexes is
always prevalent.

ALLERGENS OR TOLEROGENS: THE
ROLE OF PROTEINS CARRYING
MICRONUTRIENTS

Only a few protein families are capable to become allergens
under physiological conditions; thus, virtually, all major allergens
of animal origin belong to the lipocalin family, specifically in
the lipocalin subfamily of “retinoic acid-binding proteins” (11,
342) and a considerable part of the major respiratory allergens
of plant origin belongs to the pathogenesis-related-10 (PR-10)
protein family10 or originates from the prolamin (2S albumin,
lipid-binding proteins, LTPs) and cupin (7S, 11S) superfamilies
(216, 343).

Apart from belonging either to animal or plant allergen
families, they do have several features in common with the
most essential one, that these proteins belong to the innate
defense system in the respected animals/plants. They, therefore,
possess an inherent affinity to our immune system, and their
uptake occurs mostly receptor mediated and via the lymphatic
system. The described allergen families have “pockets” in which
they can very effectively bind and transport micronutrients,
such as iron complexes, fatty acids (344), flavonoids (217–221)
or vitamins (10, 281, 345–348). In this way, they can deprive
pathogens of nutrients or, conversely, provide nutrients to the
immune cells.

As such, many major allergens are capable to bind to
flavonoids with known iron-binding capacity, making them
nutrient binders. Consequently, the natural ligand of the
pathogenesis-related PR-10 proteins major birch pollen allergen
Bet v 1 has been identified as quercetin-3-O-sophoroside (349);
for the major hazelnut allergen Cor a 1, being quercetin-3-O-(2

′′

-
O-β-D-glucopyranosyl)-β-D-galactopyranoside (350), and also
Fra a 1 and Fra a 3 have been crystalized with catechin ligands
(351). Also, other major allergens from peanuts have been well
investigated with Ara h 2 and Ara h 6, belonging to the 2S family,
binding to the flavonoid epigallocatechin-3-gallate (352), Ara h8
binding to quercetin, (353) as well as epicatechin (354) and Ara
h 1 from the 7S family, forming large complexes by binding to
proanthocyanidins, which are oligomers, consisting of catechin
and epicatechin and their gallic acid esters (355).

Mammalian lipocalin allergens closely resemble endogenous
human lipocalin proteins, such as Lipocalin-2, LCN2 (11, 157),
a natural acute phase defense proteins that binds environmental
iron and can deliver this iron directly and a receptor-mediated
to immune cells (157, 162). They are usually excreted and thus
are found in the dander, urine, fur, and saliva of animals (356).
LCN2 is involved in numerous iron-dependent processes of the
innate immune arm and is also critical to renal development. Iron
transport by lipocalins requires the presence of a siderophore,
since lipocalins usually have no measurable affinity for iron
alone (357). Consequently, LCN2 binds only to iron chelated by
siderophores, thereby being also microbicidal. Simultaneously,
it acts as an immune regulator as the iron-containing form of
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LCN2 (holoLCN2) increases the intracellular iron content of
macrophages, while the iron-free form decreases the intracellular
iron content (358). Thus, raising of the labile iron pool content
by iron-loaded LCN2 form promotes the development of
anti-inflammatory cells (359–361), while the lowering of their
intracellular iron content causes their activation. Importantly,
LCN2 is able to activate or suppress the immune cells—
dependent on the nutritional supply it provides.

Due to its resemblance to lipocalin 2, mammalian lipocalins,
such as the bovine beta-lactoglobulin BLG, are similarly taken
up via the lymphatic system (216, 362); in a receptor-mediated
fashion and via this route, their ligands will predominantly
transport to the residing immune cells. It can even reach the
lactal system of nursing mothers and serves as a marker for
maternal dietary proteins in breast milk as it is not naturally
present in human milk (363). In a series of studies exploiting
the lymphatic pathway for targeted micronutritional supply of
iron (10, 12, 281), zinc (281), and vitamins (346) by BLG,
we provided evidence that micronutrients were transported to
immune cells, and that this nutritional supply was accompanied
with the establishment of immune resilience in an allergen-
independent fashion (12, 348) in a prophylactic setting, as well
as in already sensitized mice, this leads to a significant reduction
of the symptom burden upon allergen challenge (281).

Our studies, but also these of others (364, 365), have
demonstrated that, in the absence of micronutrients, particularly
of iron, proteins of the innate defense arm in mammals and
plants in their apo-(empty) form are able to elicit a Th2 response
in vitro and in vivo (10, 12, 346, 347) as an encounter of
these proteins in an “empty” form with our immune system
enables them to locally deplete these cells from iron or vitamins,
thereby triggering a danger signal and evoking an immune
response. In contrast, when these proteins carry micronutrients
and are present as holo-(loaded) proteins, they contribute to the
nutritional balance of the immune cell and actively contribute to
tolerance development (10, 12, 162, 281, 345–348).

Thus, upon contact with the holo-proteins, the immune
nutritional balance is not disturbed, enabling the establishment
of immune resilience (12), which protects against atopy.

In situations of infections or inflammation, which requires
an increased micronutritional supply, or when nutritional
deficiencies are already prevalent, apo-proteins can bind
to micronutrients, further aggravating the micronutritional
deficiency present in these cells, which not only activates these
immune cells but also results that exogenous innate defense
proteins are recognized as a threat and turn into allergens.

CLINICAL STUDIES: BALANCING
MICRONUTRIENT REQUIREMENTS AS A
STRATEGY TO AMELIORATE ALLERGIC
DISEASES

Based on the preclinical studies, we sought clinical translation of
our research efforts and combined the whey protein BLG with
catechines, iron, zinc, and vitamin A into a lozenge (holoBLG
lozenge) to be used as a food for special medical purposes

(FSMP). The ultimate objective was to investigate in clinical
studies whether, indeed, the targeted transport of micronutrients
to immune cells by holoBLG was effective and could have an
influence on immune cell reactivity and the allergic symptom
load in allergic individuals.

Of note, the amount of iron included in the lozenge is with
<1 mg/lozenge rather low, and, therefore, the lozenge cannot
be considered as an iron supplement per se, but it does contain
iron in a form that enables transport by BLG via the lymph and
is roughly equivalent to the estimated daily iron requirement of
human leukocytes.

In the 2019 and 2020 conducted double-blind, placebo-
controlled clinical trial with women allergic to birch and/or
grass pollen allergy, 6-month supplementation with the holoBLG
lozenge resulted in a total nasal symptom score (TNSS)
improvement after nasal provocation by 42% after, compared
with 13% in the placebo group. The combined symptom-
medication score, considered the gold standard of allergen
immunotherapy, (366) was in the group taking the holoBLG
lozenges 45% lower in the birch pollen peak season and 40%
lower in the grass pollen season compared to the placebo-
supplemented study arm. Additionally, blood values improved,
and peripheral blood monocytic cells had, compared to the
monocytes of the placebo arm, a significant higher labile iron
pool (12, 347, 367, 368).

Another clinical study with house dust mite allergic patients
was also conducted in 2020, in which the symptoms were
objectively assessed and recorded in an allergen exposure
chamber before and after 3 months of holoBLG supplementation.
Here, holoBLG supplementation resulted in a 60% reduction of
the TNSS (369). Moreover, a long-lasting effect was apparent, as
even 7 to 8 months later these patients had lower total symptom
score and a perceived higher well-being on re-exposure in the
allergen exposure chamber, indicating a long-lasting nature of the
induced immune resilience (370).

It has to be emphasized that in both atopic cohorts,
dietary application of the holoBLG lozenge containing
micronutrients, that are dedicated for the immune cell
compartments, ameliorated allergic symptoms in a completely
allergen-independent manner.

Further studies are currently being conducted with cat
allergic patients to investigate in other atopic cohorts, whether
compensating micronutritional deficiencies in the immune cell
compartments is a further causal strategy to support immune
resilience in an allergen-independent manner.

DISCUSSION

Iron is a trace element essential for nearly every organism
and needed for oxygen transport, cellular respiration, but
also contributing in immune regulation. Its access is tightly
controlled due to its high affinity for oxygen, requiring that
iron always has to be present in a complexed and/or protein-
bound form; otherwise, reactive oxygen species are generated
with detrimental effects.

Frontiers in Allergy | www.frontiersin.org 12 May 2022 | Volume 3 | Article 859922

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Roth-Walter Iron-Deficiency and Atopy

Here, we collected evidences that functional iron deficiency
not only promotes allergy development but also increases the
clinical symptom burden in allergic patients.

Atopic individuals lack—besides Vitamin A and D—iron,
which profoundly affects our immune system as deficiencies here
render our cells hyper-sensitive.

The dual role of macrophages as the central hub for iron
handling but also as a major contributor in immunity has
the consequence that iron deficiency directly impacts these
cells and shifts them under iron poor conditions to a more
inflammatory phenotype.

Iron deficiency is sufficient to create a Th2-milieu to favor
affinity maturation and antibody class switching and to prime
mast cells for degranulation. Consequently, iron deficiency sets
the whole body on alert.

Although this a very desired response to infections, it also
turns, otherwise, harmless proteins to allergens.

Indeed, comparing the defense system in the plant with ours is
particularly revealing as, here, it becomes apparent how intricate
nutrition and defense are intertwined and that stealing and
sharing often go hand in hand. On the one hand, the biotrophic
pathogen needs its nutrients from the host and secretes anti-
inflammatory siderophores, and its attack is being counteracted
by pathogenesis-related proteins, hindering nutritional retrieval.
On the other hand, microbes synthesize their siderophores from
salicylic acid and share the nutrients bound by siderophores
with their host, thereby promoting the growth and health of
the plant. Similarly, interactions can be assumed in humans
with uptake of flavonoids being well-documented, but also
the commensal microbial communities will participate in the
nutritional provision of the human host, with the secondary
metabolites of some commensal bacteria already known to be
capable to modulate iron handling in human macrophages.

Exactly, these ecological interactions seem lacking in
individuals with atopy, with the microbial communities either
not able or not sharing their precious micronutrients with the
host but also the individuals with atopy secreting less lipocalin
and other innate proteins capable to capture this precious

siderophore-complexed iron. Due to the precarious nutritional
status, the antigen-presenting cells of atopic persons are also
much more sensitive to potential “nutrient” thieves in the form

of allergens. In contrast, encountering these allergens with
micronutrients seems to turn them into friends and tolerogens.

Once functional iron deficiency is established, dietary iron
absorption is hindered by hepcidin, resulting that those persons
with functional-iron deficiency (and inflammation) are in the
vicious cycle, in which they need more iron but have to
exploit different nutritional approaches to compensate their
iron requirements, as, otherwise, their immune systems remain
hyperactive. Here, evidence is given that one dietary approach is
by the lymphatic route using the whey protein beta-lactoglobulin
as a carrier for micronutrients.

Our preclinical as well as clinical studies demonstrated that
iron can be selectively transported to the myeloid cells through
holoBLG, thereby reestablishing immune resilience. Indeed,
supplementation with holoBLG could simulate “the protective
farm effect” as, also here, protection against allergies could be
achieved in a completely allergen-independent manner.

To date, specific allergen immunotherapy is considered the
only causative treatment option for ameliorating atopic diseases.
However, providing immune cells with micronutrients shows a
strikingly similar efficacy, in a completely allergen-independent
manner. It emphasizes that micronutritional provision is another
causative cure against allergies that should be included in the
current practice.
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