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SUMMARY

Themetabolic activity of microbial communities plays a primary role in the flow of
essential nutrients throughout the biosphere. Molecular genetics has revealed
the metabolic pathways that model organisms utilize to generate energy and
biomass, but we understand little about how the metabolism of diverse, natural
communities emerges from the collective action of its constituents. We propose
that quantifying and mapping metabolic fluxes to sequencing measurements of
genomic, taxonomic, or transcriptional variation across an ensemble of diverse
communities, either in the laboratory or in the wild, can reveal low-dimensional
descriptions of community structure that can explain or predict their emergent
metabolic activity. We survey the types of communities for which this approach
might be best suited, review the analytical techniques available for quantifying
metabolite fluxes in communities, and discuss what types of data analysis ap-
proaches might be lucrative for learning the structure-function mapping in com-
munities from these data.

INTRODUCTION

The structure-function problem in microbial communities

The evolutionary history of the biosphere is inextricably linked to themetabolic activities of microbes. Since

life arose on this planet, microbes have lived in consortia that saturated nearly every biochemical niche on

the planet, driving global transformations in the chemical composition of the biosphere via metabolic pro-

cesses from fermentation to photosynthesis to respiration (Falkowski et al., 2000; Canfield et al., 2010;

Nelson et al., 2016; Sunagawa et al., 2015; Zakem et al., 2020). As such, microbes and the communities

in which they reside are the result of an ongoing eco-evolutionary process that couples the transformation

of metabolites to the complex dynamics of interacting ecological systems across many spatial and tempo-

ral scales.

Given the importance of themetabolic activity of microbial communities, we argue that a major goal for the

field should be to predict, design, and control the metabolism of microbial communities in complex, nat-

ural, and engineered settings. Accomplishing this goal requires understanding how the structure of a com-

munity, in terms of the taxa present and its genomic composition, determines its metabolic activity in a

given environmental context. The sequencing revolution has revealed the structure of microbial commu-

nities at the level of the taxa present, the genes they possess, and the dynamics of gene expression.

This means that we now have a detailed and dynamic ‘‘parts list’’ for microbial communities in terms of taxo-

nomic and genomic composition across a range of environments, from anaerobic digesters (Bocher et al.,

2015; Toerien and Hattingh, 1969; Vanwonterghem et al., 2014) to the human gut (Blanton et al., 2016;

Raman et al., 2019), soils (Bahram et al., 2018), and the ocean (Sunagawa et al., 2015). For some metabolic

processes, we can interpret gene content and taxa in terms of the specific metabolic processes that they

are capable of. For example, we know the dominant taxa that perform processes such as nitrification (Bock

and Wagner, 2013) or polysaccharide degradation (Sanchez-Gorostiaga et al., 2019). Further, by anno-

tating metagenomic data, we can assign specific functional roles for many (but not all) of the genes present

in a given community. As a result, we can measure the prevalence of enzymes that perform the reactions

necessary for specific metabolic processes. Despite the remarkable scale and breadth of these sequencing
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data, we still do not have a predictive, quantitative framework for using these data to understand, predict,

and design the metabolism of the communities in complex environments.

In this perspective, we explore what makes this problem both challenging and important. We propose a

specific approach to begin to address this question, and examine what types of communities and associ-

ated metabolic processes might be amenable to this approach. We review the techniques that are relevant

to implementing the approach with a focus on methods for quantifying metabolites.

The significance of finding a solution

Microbial communities play an outsized role in driving fluxes of nutrients through the biosphere. Photosyn-

thetic microbes are responsible for nearly half of the carbon fixation on the planet (Falkowski, 1994). These

phototrophs work in concert with heterotrophic bacteria that enable primary productivity in terrestrial, ma-

rine, and freshwater environments (Kirchman, 2012; Madigan et al., 2018). We are only beginning to

glimpse the role of the collective in this nearly 100 gigaton annual carbon flux. Bacteria and archaea in

anaerobic environments degrade complex carbon sources to methane, playing an important role in carbon

recycling and climate change (Madigan et al., 2018).

In the nitrogen cycle, microbes play a key role in nitrogen fixation (dinitrogen gas to ammonia), nitrification

(ammonia to nitrate), and denitrification (nitrate to dinitrogen gas) (Stein and Klotz, 2016). These processes

are key for wastewater treatment (Cydzik-Kwiatkowska and Zieli�nska, 2016) and human health (Turnbaugh

et al., 2007). A critical challenge is to form a quantitative and predictive understanding of how microbial

communities drive these fluxes. To give a concrete example, the process of denitrification, performed

by bacterial communities in soils, reduces nitrate to dinitrogen gas. An intermediate in the conversion of

nitrate to dinitrogen is the potent greenhouse gas and ozone depleting compound nitrous oxide (Tian

et al., 2020). Denitrifying communities in some cases (especially in agricultural soils) can leak nitrous oxide,

but in other cases fully convert nitrous oxide to harmless dinitrogen gas. The question then becomes: What

controls the production of nitrous oxide from denitrifying communities in soils? Can we manipulate these

microbial communities to limit nitrous oxide production? To address this, we need to understand how the

structure of the community and the environmental context determine the flux of metabolites through the

system.

Similarly, the essential importance of resident microbiota in host health is now clear (Turnbaugh et al.,

2007), but as yet, it is unclear how to rationally manipulate these communities to benefit the host. There

exists tantalizing evidence that this can be done, for example, by altering metabolic phenotypes (Turn-

baugh et al., 2006) or treating persistent infections (Lawley et al., 2012), but we lack general approaches

for developing such strategies. Here we focus on environmental microbiomes, but we emphasize that

the strategy proposed here could, and in a few cases has been (Raman et al., 2019), applied to host-asso-

ciated communities.

Defining structure and function

Before moving forward, we take a moment to define community structure and function. We define the

structure of the community as the taxa present as well as the genomic structure of each taxon, which

may include everything from the detailed knowledge of the regulatory architecture of each gene, to the

syntenic organization of the genome (Junier et al., 2018), to even the presence of phage. The structure

of the community may, if necessary, include transcriptional or proteomic information at the metagenomic

or single-taxon level as well.

We define the function of a community as the collective metabolic activity of all constituent organisms,

which, therefore, operates in the space of metabolites. The dynamic or steady-state flux of metabolites

through the consortium defines its metabolic function. Depending on the context, the most important

metabolic fluxes may include electron donors (e.g., organic carbon), electron acceptors (e.g., oxygen, ni-

trate), secondary metabolites, biomass, overall catabolic activity, or byproducts. A note about usage: Some

readers may find the term ‘‘function’’ teleological, implying some sort of purpose on microbial commu-

nities. We use the term function to mean the activity or action of a community without any implication of

purpose. Despite this potential confusion, we find that the term function is a useful shorthand. In particular,

we would like to invoke a certain symmetry between the ideas presented here and the problem of

sequence, structure, and function at the level of proteins. The structure-function problem for microbial
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communities is therefore to deduce the mapping from the space of genes, transcripts, proteins, and taxo-

nomic organization to metabolite fluxes, and to understand the environmental dependence and context in

which this mapping is relevant.
How should we approach the problem?

Understanding how the metabolic activity of a microbial community emerges from the taxa present and

their metabolic capabilities is a problem of connecting hierarchical scales of biological organization,

from genes to phenotypes and interactions in specific environmental contexts. What makes this chal-

lenging is the fact that processes at different scales feedback on one another. For example, compounds

that mediate interactions between strains can do so by modulating gene expression (Beliaev et al.,

2014). Similarly, phenotypic variation in individuals, determined by gene expression and interactions,

can modify community interactions (Mickalide and Kuehn, 2019) and the chemical environment, with wide-

spread impacts on other members of the consortium (Ratzke et al., 2018).

One way to proceed is via the reductionist mode that has motivated biology over the last century (Woese,

2004). In the context of communities, this would mean dissecting the mechanistic and physiological meta-

bolic properties of each member of the community and understanding how metabolite dynamics emerge

at the level of the collective. The challenge is the complexity of these systems, which makes a detailed,

mechanistic understanding of the collective metabolism a massive undertaking. For synthetic communities

comprising model organisms, where detailed information is available, this type of approach has had some

success (Orth et al., 2010; Harcombe et al., 2014). For comparatively simple communities of a few strains,

such as bacteria cross-feeding amino acids (Wintermute and Silver, 2010) or ciliates consuming bacteria

(Mickalide and Kuehn, 2019), detailed models have been constructed and validated. However, in environ-

mental or host-associated contexts, where the number of strains present are enormous and many organ-

isms present are poorly studied or challenging to work with in the laboratory, this approach faces huge

challenges.

In this scenario, what are we to do? On the one hand, building detailed models as described above is ill-

advised. Even when such detailed models can be built, the challenge of distilling simple principles from

these models increases with their complexity (see Borges’ ‘‘On Exactitude in Science’’ (Borges and Hurley,

1998)). On the other hand, we know from many examples that a huge number of processes from antibiotic

warfare (Vetsigian et al., 2011) to competition (Friedman et al., 2017), mutualism (Hom and Murray, 2014),

and stress responses (Amarnath et al., 2021) influence interactions and metabolism. So, how can we justify

not building models that include these details?

In the spirit of Philip Anderson’s influential essay (Anderson, 1972), it may be that understanding commu-

nities requires explaining entirely new and potentially simpler properties that are emergent at the level of

the collective. In this case, due to the scale and complexity of the community, new and distinct phenomena

emerge from the individual parts, and discovering the organizing principles requires an approach that goes

beyond dissecting the detailed metabolic phenotypes of each individual member of the community. To be

clear, we are not advocating the idea that reductionist approaches are not useful. Their utility is clear from

many examples (Jacob and Monod, 1961; Zumft, 1997; Alon et al., 1999; Basan et al., 2020; Amarnath et al.,

2021). Instead, we are asking whether making headway on the ‘‘structure-function problem’’, as we have

defined it, might require a complementary approach that focuses not on the detailed mechanisms and

physiology of each organism, but on patterns that are evident at the level of the collective. Here we discuss

such an approach.
Learning the right variables: the power of statistics across ensembles

We find it useful to cast the structure-function question in terms of a prediction problem. In this framing, the

goal is to predict metabolite dynamics or fluxes from community structure for a given environment or set of

environmental conditions. The key question then becomes: What structural elements must we quantify to

predict function? Equivalently, we could ask, how predictive of metabolic function is community gene con-

tent, taxonomy, transcriptional or proteomic data?

One approach to this problem, which has found success in both physics and biology, is to look for statistical

regularities across replicate systems and allow these patterns to naturally define variables that can be used
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to make predictions. In many cases, this approach can reveal the salient, emergent features of a system and

provide deep insight into their function.

Specifically, from proteins (Halabi et al., 2009) to multicellular organisms (Alba et al., 2021), examining sta-

tistical variation across many replicates of a system, or an ensemble, has proven powerful. For example,

covariation across ensembles of homologous proteins have been used to reveal which amino acids are

in contact in the folded structure (Russ et al., 2005), and co-evolving groups of residues that correlate

with enzyme function (Halabi et al., 2009). Careful analysis of behavioral variation in large numbers of mi-

crobes (Jordan et al., 2013) and flies (Berman et al., 2014) suggests that apparently very complex behaviors

can, in fact, be described by a relatively small number of elementary behavioral features (Berman et al.,

2014; Katsov et al., 2017). Statistical analysis of morphological variation across higher organisms suggests

that morphologies adhere to constraints that some believe are associated with specific functional capabil-

ities (Raup and Michelson, 1965; Shoval et al., 2012). A recent study of variation in patterning in the fly wing

shows that a single mode of variation describes the response of the wing developmental program to ge-

netic and environmental perturbations (Alba et al., 2021). For a recent piece discussing why low-dimension-

ality might be an inherent property of evolved systems, see Eckmann and Tlusty (2021).

The common feature of all of these examples is that, by judiciously studying the variation across a carefully

chosen ensemble of systems, one can often discover simple, relatively low-dimensional features that

enable the prediction of the functional properties of the system. Here we advocate a similar approach

to communities.
An ensemble approach to the structure-function problem

In light of these considerations, we propose an ensemble approach to the structure-function problem in

microbial communities. We motivate this approach by analogy to a similar approach taken at the level

of proteins (Figure 1). For proteins, the structure-function problem is to predict the fold and function of

a protein from its amino acid sequence. One way to approach this problem is by performing detailed phys-

ico-chemical simulations of a polypeptide chain via molecular dynamics (Figure 1A). While much progress

has been made in this approach, it has proven a huge technical challenge. However, a statistical approach,

ignoring the mechanistic details and instead considering only statistics of a multiple sequence alignment

does a remarkably good job of predicting protein folds (Morcos et al., 2011). Similar approaches reveal low-

dimensional structure in proteins which is predictive of function (Halabi et al., 2009; Russ et al., 2020). These

studies suggest that much can be learned by carefully considering variation across a suitably chosen

ensemble of systems.

In the context of microbial communities, flux balance models of community metabolism are analogous to

molecular dynamics simulations in proteins because they attempt a detailed mechanistic accounting of all

of the phenomena within a community (Figure 1B). However, in communities, there is comparatively little

work pursuing a statistical approach analogous to the one taken at the level of proteins.

Taking such an approach is precisely what we are advocating here. We propose quantifying the structure of

a collection, or ensemble, of communities using sequencing while simultaneously measuring metabolite

dynamics. Given such data, one can then approach the structure-function problem by asking whether vari-

ation in community structure (e.g., across metagenomes or metatransciptomes) permits quantitative in-

sights into the functional properties of these communities. The proposal is then to leverage these insights

to design, predict, and control community function. Several studies in the past few years have begun to

explore statistical approaches (Gowda et al., 2022; Raman et al., 2019). However, we suggest that this

approach is under-explored and that there is a pressing need to collect new datasets that are explicitly de-

signed to pursue a statistical approach to the structure-function problem in communities. Moreover, while

we focus on community metabolic function, the approach we propose could just as easily be applied to

other salient features of ecosystems from spatial structure to resilience to stability.
Overview of the paper

We will focus on three main challenges that must be surmounted to apply the ensemble approach to the

structure-function problem: (1) Choosing an ensemble across which one should make comparisons and

look for patterns, (2) measuring metabolite dynamics, which requires analytical chemistry techniques
4 iScience 25, 103761, February 18, 2022



Figure 1. Sequence, structure and function in proteins and microbial communities

We propose that there exist analogous solutions to the sequence-structure problem in protein folding and the structure-function problem in microbial

communities.

(A) The mapping from amino acid sequence to 3D protein structure can be accomplished either by a simulation approach (e.g., molecular dynamics) or by a

statistical approach (e.g., direct coupling analysis). The former is a computationally intensive strategy to simulate 3D protein structure based on first-

principles modeling of atomic interactions. The latter leverages information about residue coevolution from an ensemble of amino acid sequences to infer

which residues are in contact, allowing for an elegant and interpretable statistical inference of 3D structure.

(B) The mapping from genomic and metagenomic sequences to community metabolic activity can be achieved through community flux balance modeling

or, as we propose, a statistical ensembles approach. The former requires genome-level metabolic models of each organism to be built, a labor-intensive

iterative process that so far has been successful primarily in a handful of model organisms. The latter leverages the diversity and variation in an ensemble of

communities to learn an effective mapping between community sequence content metabolic activity
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that are often not standard practice in microbial ecology labs, and (3) using these data to distill the map-

ping from structure to function.

Our intention is to provide a roadmap for how such an approach might be applied across communities of

interest. We recognize that this roadmap is far from complete and that many pitfalls exist that may render

this approach challenging in various circumstances.

We will not review sequencing technologies, which have been widely and capably recapped elsewhere

(Knight et al., 2018). We will focus largely on microbial communities in environmental contexts rather

than health-related (human microbiome) contexts, in part because environmental microbiology is where

our expertise lies, but also because of the abundance of existing literature on the latter topic. Finally,

we will neglect the many recent advances in theoretical ecology, in particular the renaissance in con-

sumer-resource models applied to communities, in service of focusing on questions that can be settled

empirically.
iScience 25, 103761, February 18, 2022 5
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MODEL MICROBIAL COMMUNITIES

The first challenge is choosing a community and an associated metabolic process to interrogate. The

choice is far from trivial and there is no simple prescription. Instead we appeal to the intuition of microbial

ecologists, experts in physiology and the quantitative considerations of applied mathematics and physics.

The goal should be to circumscribe a well-defined community and, if possible, an associated metabolic

process where quantitative measurements in many replicates can be made.

Choosing a metabolic process, and therefore specific metabolite measurements to be made, is a signifi-

cant challenge, and compromises are inevitable. Here we reiterate the point that microbial communities

are not ‘‘functional’’ in the sense that they are designed with some purpose. Despite this fact, as we will

discuss below, the importance of metabolic activity of communities in specific niches is clear, as is the rele-

vance of these processes for the biosphere more broadly. To make this point clear, we begin by discussing

specific communities and their associated environments and metabolic processes, with an eye toward how

one might apply the ensemble approach to dissecting their function.

Structure-function in the wild

Soils

Perhaps no microbial community on Earth is more important than that which inhabits soils. The soil micro-

biome plays a key role in plant growth and physiology (Saleem et al., 2019), in particular through nitrogen

fixing bacteria that provide reduced nitrogen for plant hosts. The storage of carbon and production of CO2

via respiration of reduced organic compounds in soils are key components of the global carbon cycle (Lal,

2004). As the climate warms, the rate of microbial respiration of CO2 from soils increases (Kirschbaum, 1995;

Allison et al., 2010), potentially driving a positive feedback loop with dire consequences for the global

climate. Similarly, denitrification in agricultural soils is responsible for roughly 80% of the anthropogenic

release of nitrous oxide (N2O) (see https://www.epa.gov/ghgemissions/overview-greenhouse-gases and

(Tian et al., 2020)). Nitrous oxide is 300-fold more potent than CO2 as a greenhouse gas and responsible

for approximately 10% of the global warming potential from human activity. For these reasons, there is

keen interest in associating soil microbiome structure to process rates such as CO2 or N2O production

and N2 fixation. However, most attempts to find a relationship between soil microbiome structure and

the rates of key metabolic processes in soils have found only marginal success (Graham et al., 2016; Rillig

et al., 2019; Rocca et al., 2015; Fierer, 2017).

Despite these difficulties, we see reason for optimism. It is known that a relatively small number of environ-

mental factors are the dominant drivers of variation in soil community structure: pH, moisture, carbon and

nitrogen availability, temperature, and redox potential (Fierer, 2017). Moreover, while soils are routinely

cited as very complex microbial communities, much like the human gut, they are typically dominated by

a handful of taxa (e.g., Acidobacteria, Verrucomicrobia (Fierer, 2017; Crits-Christoph et al., 2018)), with

most other strains present in relatively low abundances. Moreover, there are clear patterns in the abun-

dances of bacteria and fungi in soils, with high biomass turnover environments such as grasslands domi-

nated by bacteria and low biomass turnover forests dominated by fungi (Fierer, 2017).

As acknowledged in recent meta-studies (Graham et al., 2016), one challenge in associating soil community

structure to metabolic function is a lack of high quality datasets where process rates (e.g., CO2 production)

are measured in a large ensemble of soil communities. Exceptions to this include a recent survey of global

topsoil microbiomes (Bahram et al., 2018), and microcosm studies documenting the role of multiple envi-

ronmental perturbations applied to soils (Rillig et al., 2019). Despite these advances, the consensus remains

that predicting metabolic processes in soils from microbial community structure is challenging (Fierer,

2017). However, we note that in some cases this conclusion is derived from meta-studies that aggregate

data from different experiments or labs. Such comparisons can be challenging given systematic errors in

sequencing measurements between protocols (McLaren et al., 2019), and the strong dependence of mea-

surements such as soil pH on the technique employed (Miller and Kissel, 2010).

Given these considerations, we propose that one route forward is the judicious collection of data from

large ensembles of soil communities followed by careful quantification of process rates and community

structure in a consistent manner. We acknowledge that even in the presence of such data, relating commu-

nity composition at the taxonomic, genomic or transcriptomic levels to metabolite fluxes may remain a

challenge. It may be that soil taxa are not ‘‘good variables’’ for understanding function, and that chemical
6 iScience 25, 103761, February 18, 2022
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Figure 2. Community structure and function in the wild

(A) Algal blooms are microbial successional processes that follow from the input of exogenous nutrients to aquatic

environments. Reduced carbon fixed fromCO2 by algae is consumed along with other nutrients by heterotrophic bacteria

in reproducible successional dynamics.

(B) Marine snow particles are aggregates of organic carbon that are formed near the ocean’s surface and subsequently

sink to the ocean floor. Microbial communities can degrade these particles, and the amount of carbon that is mineralized

to CO2 versus the amount that is sequestered on the ocean floor depends strongly on the structure of the microbial

community.

(C) Microbial mats are layered communities that occur at air-water interfaces, often in extreme thermal environments such

as hot springs. The spatial structure of these communities follows from exchanges of nutrients governed by redox

gradients.

(D) Pink berries are microbial aggregates that cryptically (internally) cycle sulfur between photosynthetic purple sulfur

bacteria and anaerobic sulfate reducing bacteria
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or abiotic properties such as the redox state of available organic carbon are necessary (Keiluweit et al.,

2017). Regardless, the importance of understanding the metabolic activities of soil communities cannot

be overstated.

Algal blooms

In aquatic systems, exogenous inputs of nitrogen and phosphorous, often driven by human activity, result

in the dramatic successional process of the algal bloom (Teeling et al., 2012) (Figure 2A), wherein photo-

synthetic microbes explode in abundance. The rise of phototrophic microbes brings with it a complex com-

munity of non-photosynthetic (heterotrophic) bacteria that form tight symbioses with the phototrophs.

These phototroph-heterotroph communities cycle large quantities of carbon, with phototrophs fixing

CO2 to reduced organic carbon, which is in turn consumed by the associated heterotrophic bacteria.

In this system, a natural framing of the structure-function problem would be to ask how the taxonomic

composition of the community impacts the fixation of carbon and eventual bacterial biomass production.

Teeling et al. (2012) have found that specific classes of bacteria grow at different phases of the bloom, e.g.,

Alphaproteobacteria dominated the pre-bloom; as blooming commenced, Bacteroidetes increased more

rapidly than others, and then Gammaproteobacteria grew much later. Concurrent metagenomic studies

showed that the abundances of enzymes capable of degrading carbohydrates and sulfatases required

to degrade sulfated algal polysaccharides increased in abundance during the bacterial succession. The

degradation of the larger polysaccharides leads to the production of shorter organic compounds, which

was revealed by the expression of the relevant transporters. These results, and those of other studies (Kim-

brel et al., 2019; Louati et al., 2015; McFeters et al., 1978; Parulekar et al., 2017; Ramanan et al., 2015), indi-

cate a link between taxonomy of bacteria associated with certain photosynthetic strains during blooming

events.

These results suggest that these associations are at least in part determined by the carbon catabolic activity

of the bacteria and the fixed carbon that phototrophs excrete (see also (Buchan et al., 2014)). Taking an

ensemble approach to this problem could be accomplished by recapitulating bloom dynamics in a labo-

ratory context (Riemann et al., 2000), where the identity of the phototroph and the composition of the bac-

terial community could be manipulated and the resulting total carbon flux quantified (de Jesús Astacio

et al., 2021). Such studies might shed insights on how to control blooms in natural settings.

Marine snow

Marine snow is a term used to describe micrometer- to millimeter-scale aggregates in the ocean, which are

typically made of detritus containing carbon and nitrogen in the form of polysaccharides, microbes, and

inorganic substances. These particles form at the upper levels of the ocean and sink to the ocean floor,

transporting carbon in a ‘‘pump’’ that removes carbon from the atmosphere over geologic timescales (All-

dredge and Silver, 1988; Gralka et al., 2020). Communities of bacteria and other microbes consume these

aggregates as they sink (Figure 2B). Understanding how the structure of marine snow communities impacts

the degradation of carbon and the production of metabolic byproducts (e.g., CO2) is a critical question for

understanding global carbon fluxes.

Studying these particles in situ is challenging (Kiørboe, 2007). To circumvent this difficulty, some studies use

synthetic particles to study community assembly and function. One study used agar beads (Kiørboe et al.,

2003) to study the colonization by microbes in raw seawater, revealing successional dynamics underlying

particle degradation. The particles were initially colonized by bacteria, and later by flagellates. Cordero

et al. have taken a similar approach to understand colonization dynamics (Datta et al., 2016; Ebrahimi

et al., 2019; Enke et al., 2019; Pontrelli et al., 2021). These studies shed light on the metabolic roles played

by different players during particle colonization dynamics: primary degraders excrete enzymes to break

down polysaccharide chains, which creates a niche for secondary degraders capable of consuming mono-

mers and oligomers of the polysaccharide, which in turn makes way for scavengers that take up metabolic

byproducts of the primary and secondary degraders (ammonia, amino acids).

In terms of the approach proposed here for mapping structure to function, particle degradation offers a

powerful model system because so much is known about how the communities collectively degrade the

particle. For example, it would be interesting to see whether one could take a statistical approach to infer-

ring the key metabolic traits of primary and secondary degraders and scavengers from sequencing data
8 iScience 25, 103761, February 18, 2022
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alone. In this case the function of the community to predict would be the fraction of carbon degraded or the

total CO2 respired. The power of this system is the ability to manipulate structure, but the particles make it

challenging to measure carbon degradation directly (see the next section for further discussion).

Plastisphere

Closely related to the degradation of polysaccharide particles in the ocean is the recent rise of plastic

debris in freshwater and marine environments, and the microbial communities associated with its degra-

dation (Amaral-Zettler et al., 2020). Given the fact that a few million tons of plastic enter the ocean per

year (Jambeck et al., 2015), this is an important ecosystem to study, not only to understand how these pol-

lutants affect the ecosystem, but also to find potentially efficient plastic degrading communities. Further,

plastic is a comparatively new environment on evolutionary timescales, making it interesting to study from

the perspective of evolution. It has been shown that the community composition on plastic is different from

the composition on other substances in the same conditions, and that certain taxa are commonly found on

plastics (Dussud et al., 2018; Kirstein et al., 2019). Diatoms have been observed in high numbers, although

strong succession dynamics were observed. Other photoheterotrophs, heterotrophs, ciliates, fungi, and

pathogens have also been observed. Although the functional role of these microbes is unclear, it is spec-

ulated that chemotaxis, interactions with metals and degradation of low molecular weight polymers are

important factors that determine community composition (Amaral-Zettler et al., 2020). In this system the

structure-function problem is similar to that outlined for marine snow: How does community structure

determine the rate of plastic degradation?

Microbial mats

Microbial mats are stratified communities that often form at air-water interfaces in extreme environments

such as hot springs (Klatt et al., 2013). Mat communities harbor a top layer of photoautotrophic bacterium

(typically Synechococcus sp.) that use light to fix carbon during the day and often fix nitrogen at night.

Below the top layer are strata of various heterotrophs and anaerobic autotrophs (Ward et al., 1998) (Fig-

ure 2C). These communities have been studied for decades, and much is known about the metabolic roles

each strain plays in the community (Bateson andWard, 1988; Anderson et al., 1987) andmetagenomic data-

sets are available (Lee et al., 2018). It is remarkable that similar mat structures form in many different con-

texts across the globe. In thesemats, much of the nutrients are fixed fromCO2 andN2 (Steunou et al., 2006),

heterotrophic community members then consume reduced organic carbon excreted by the autotrophs. In

this context, the question of relating structure to function falls to mapping the flux of C, N and other me-

tabolites through the mat to the taxonomic andmetagenomic structure of the system. For example, what is

the simplest community that will stably form a mat? What pathways, for example in the primary autotroph,

are essential to mat formation and which are dispensable? Further, given that mats support remarkable

allelic diversity driven by extensive recombination (Rosen et al., 2015), how is the functional genetic reper-

toire of these communities maintained? Preliminary work on mats in California (Lee et al., 2018) showed the

presence of a core genome across samples, and various other genes thought to be useful for specialized

functions, but further metagenomic analysis is likely to be useful in addressing the structure-function ques-

tion in mats. The twomain challenges in these communities are obtaining axenic isolates from themats and

making high quality metabolite dynamics measurements in situ. Petroff et al. have recently made exquisite

quantitative measurements of oxygen dynamics in mats (Petroff et al., 2017; Tejera et al., 2018), addressing

the latter challenge, which opens the door to making quantitative links between community composition

and metabolic activity.

Cryptic sulfur cycling in microbial aggregates

Microbial metabolism drives the global cycling of sulfur through energy-generating oxidation and reduc-

tion reactions. It has become increasingly evident that much of this cycling occurs cryptically (Canfield et al.,

2010; Callbeck et al., 2018) (i.e., with low steady state metabolites levels but substantial fluxes), often in the

context of cellular aggregates where oxidation and reduction reactions occur in physical proximity (Wil-

banks et al., 2014; Callbeck et al., 2018). Inferring the presence and rate of cryptic sulfur cycling in microbial

aggregates has important implications for our understanding of other elemental cycles, since sulfur cycling

is often tightly coupled with the carbon and iron cycles.

Remarkable examples of cryptic sulfur cycling phenomenon are the so-called ‘‘pink berry’’ consortia (Seitz

et al., 1993; Wilbanks et al., 2014), which are discrete macroscopic (�1 cm) aggregates that occur on the

surface of submerged sediments in the intertidal pools of Sippewissett Salt Marsh (Massachusetts, USA)
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(Figure 2D). The bright pink coloration of these aggregates is attributable to the purple sulfur bacteria (PSB)

that make up the majority of cellular biomass. These PSB oxidize sulfide to sulfate via the process of anoxy-

genic photosynthesis. Accompanying these PSB are sulfate-reducing bacteria (SRB), which derive energy

from anaerobic respiration by catalyzing the reverse process, reducing sulfate to sulfide. Together these

PSB and SRB are capable of locally and cryptically cycling sulfur via the syntrophic exchange of oxidized

and reduced sulfur compounds (Wilbanks et al., 2014).

While culture-based approaches to characterizing and reconstituting the pink berry consortia in the lab

remain a challenge, the discrete nature of the pink berries presents an opportunity to statistically charac-

terize the structure-function relationship at the level of individual aggregates harvested from the wild.

Bulk metagenomic sequencing of pink berry consortia indicates that typically two to three phylotypes

make up the majority of biomass in the aggregates (Wilbanks et al., 2014). Laboratory measurements

of sulfide oxidation or sulfate reduction rates using spatially explicit microprobe measurements followed

by 16S metagenomic sequencing on harvested pink berries could provide insight into how the abundance

of these phylotypes quantitatively relates to sulfur cycling. More generally, such an approach could be

applied to characterizing cryptic sulfur cycling in other aggregated contexts, such as in marine particles

(Callbeck et al., 2018). Predicting sulfur cycling is important to understanding other critical elemental cy-

cles: Sulfide oxidation by PSB can contribute substantially to carbon fixation (Dyksma et al., 2016) and sul-

fate reduction by SRB can be an important sink for reduced carbon (Liamleam and Annachhatre, 2007) and

iron (Enning and Garrelfs, 2014) in environments where electron acceptors are otherwise scarce.
Community structure and function under domestication

Many key insights in the On the Origin of Species came from studying trait variation under domestication.

In the same way, we propose that learning the rules for mapping structure to function in communities

should leverage the many instances in which communities have been domesticated. Here we explore

some of these opportunities.

Microbial communities in the dairy industry

The production of yogurt, cheese and other dairy products relies heavily on microbes. The work of Dutton

et al. on cheese rinds (Wolfe et al., 2014) is an important example in this context. This study compared and

characterized more than 100 cheese rinds from across 10 countries, and found that less than 15 bacterial

taxa and 10 fungal taxa were present in abundances of more than 1%. Further, most of these taxa are

not present in the starting cultures, and their function is unknown. They found that the community compo-

sition is strongly correlated to the aging process and moisture rather than geography or milk source. The

functional profile of the communities, found using shotgun metagenomics, was correlated to pH as well,

and pathways were shown to correlate as expected with the cheese types. These results point to the

idea that the chemical environment is perhaps the strongest determinant of community structure.

Remarkably, when the dominant taxa were reconstituted in vitro and cultured as a community in media to

mimic treatments in different types of cheese rinds, divergent communities were formed depending on the

treatments, which showed some properties similar to the original cheese rinds including their abundance

dynamics. This remarkable result shows that these communities can be reconstituted in the laboratory to

recapitulate some of the basic functional features of the domesticated cheese communities. It would be

interesting to extend these studies further by looking quantitatively at the metabolite dynamics. The

fact that these communities can be so readily manipulated means that learning the relationship between

composition and metabolic activity is now accessible. What remains unclear to us is what the salient meta-

bolic features of these communities are that should be explained. One way to approach this question

would be to chemically characterize the transformations that occur in specific rinds and to then ask whether

subsets of the full community can or cannot recapitulate these processes.

Another promising microbiome in the dairy sector is the kefir community (Figure 3A). Kefir grains are

used to make a fermented drink like yogurt. They have about 50 bacterial and yeast taxa, which are resil-

ient to stresses, and most of which perform lactic and acetic acid fermentation. A recent study (Blasche

et al., 2021) found that kefir grains, which are polysaccharide matrices synthesized by the bacterial con-

sortium, collected from diverse locations had a very similar core community and differed only in rare spe-

cies. Kefir grains are sustained much like sourdough starters and added to milk to initiate a fermentation

process. When added to milk the composition of the grain community is stable while the community
10 iScience 25, 103761, February 18, 2022



Figure 3. Community structure and function under domestication

(A) Kefir grains extracellular-polymeric aggregates host to microbial communities that inoculatemilk for the production of

kefir. These communities undergo a reproducible successional process that involves the production and consumption of

fermentation byproducts, which ultimately give kefir its desired flavor.

(B) Anaerobic bioreactors often use granulated microbial communities to remove waste products such as reduced

carbon, nitrogen, and phosphorous from water. Improving the performance and efficiency of these systems through the

ensembles-informed design of communities would increase their viability as alternatives to traditional wastewater

treatment approaches that expend significant energy on aeration
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present in the milk exhibits a succession. Metabolite changes during the colonization showed similar suc-

cession dynamics. The study dissects the interactions between the community on the grains and that in

the milk, and demonstrates reproducible metabolite dynamics in this system. As a result, kefir constitutes

another powerful platform for manipulating community structure (e.g., composition of the community on

the grains) and learning the impact of those changes on the metabolite dynamics. Blasche et al. have

already made significant progress in this regard, but it remains to investigate in a high-throughput sta-

tistical fashion how the composition of the grain community confers the remarkable robustness they

observe.

Anaerobic bioreactors

The treatment of wastewater for reuse and release into the environment requires the removal of large quan-

tities of organic matter, much of which is insoluble or otherwise slow to degrade. Anaerobic bioreactors

serve an important role in this industrial process, harnessingmicrobial metabolism to degrade such organic

matter into CO2 and CH4 gases (Figure 3B). Because the bioreactors are fed a range of inputs and are oper-

ated under a variety of conditions, the microbial communities that populate bioreactors are highly func-

tionally and taxonomically diverse (Werner et al., 2011). Organisms that excrete extracellular enzymes

degrade insoluble polymers into soluble monomers, while fermenters consume these compounds and

excrete products including acetate and H2. Methanogenic archaea can then ferment these products to pro-

duce CH4(Toerien and Hattingh, 1969). Many functional attributes are used in practice to characterize the

performance of anaerobic bioreactors, including removal of chemical oxygen demand (COD, a proxy for
iScience 25, 103761, February 18, 2022 11
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aerobically metabolizable matter in a water sample) and methanogenic activity. The resilience of a biore-

actor community to input fluctuations has also been of interest (Fernandez et al., 2000; Hashsham et al.,

2000; Werner et al., 2011).

Several studies have explored the statistical relationship between community taxonomic structure and

methanogenic bioreactor performance. In an important early study, Tiedje et al. found that, under constant

conditions, COD removal in a laboratory bioreactor was stable while community composition varied sub-

stantially over a two-year period (Fernández et al., 1999). This work suggested the role of functional redun-

dancy (Louca et al., 2018) in maintaining community function, and implied a degeneracy in the relationship

between community taxonomy and function. However, a more recent study of several industrial-scale bio-

reactors observed relative stability in both community taxonomy and reactor performance over a year-long

period (Werner et al., 2011). Notably, variations in reactor performance were found to be related to com-

munity composition. This indicated that taxonomy is predictive of community function, although the au-

thors argued that taxonomy is simply a proxy for functional genomic content due to a close correspon-

dence between phylogeny and metabolic function for organisms in anaerobic bioreactor systems. The

conflict between these two results indicates that much is still unknown about the structure-function rela-

tionship in anaerobic bioreactors.

Recent work has advanced our understanding of structure and function in methanogenic bioreactors,

leveraging a statistical ensembles approach to discover a predictive relationship between gene content

and methanogenic activity (Bocher et al., 2015). The authors generated 49 diverse enrichment cultures

by seeding laboratory bioreactors with inocula taken from a large and eclectic collection of industrial-scale

bioreactors. This ensemble enabled a linear regression approach to mapping methanogen activity (as

measured by methane production rate per unit biomass) to variation in genomic content, specifically the

abundance of sequence variants of a gene important to methanogenesis (mcrA). Remarkably, their

approach produced a predictive model with relatively few variables, suggesting that only a few key

mcrA variants, or strains possessing these variants, are important for methanogenic activity. A powerful

consequence of this approach is a prediction for which gene variants would improve the performance of

an underperforming bioreactor.

Given the importance and widespread use of bioreactors to process organic matter, these constitute

important model systems. The field faces two important challenges. First, cultivating many of the slow

growing taxa in these communities is difficult and this means that only equipped and experienced labs

can readily work with these organisms. Second, the complexity of these communities makes carefully

controlled and reproducible experiments a challenge, and as a result, comparisons from one study to

the next can be difficult. Standardizing conditions and starting inocula would therefore be amajor advance.
Bringing wild communities into the lab: enrichment cultures

Another route to studying communities that is similar to domestication is to bring complex communities

from nature into the laboratory and culture them in defined conditions. While these experiments allow

the experimentalist to control the growth and incubation conditions, they often result in a drastic loss of

diversity. As a result, this approach is likely poorly suited to understanding the structure of natural systems,

but nonetheless should enable important insights into engineering and controlling communities.

Winogradsky columns

One of the most well known methods for enrichment culture is a Winogradsky column (Figure 4A). The

method was developed by Sergei Nikolaievich Winogradsky to study (and discover) chemosynthesis, a

process where energy is derived from inorganic compounds in the absence of light (Zavarzin, 2006). Wi-

nogradsky columns are glass cylinders (or bottles) loaded with a sediment, supplemented with an

organic carbon source (typically paper) and a sulfur source, which are then sealed off and illuminated.

With time, different microbes occupy different levels of the column based on their metabolic capabilities.

Each layer is characterized by distinct redox reactions (electron donor/acceptor pairs) that support meta-

bolism locally (much like the mats discussed above), and via diffusion to other strata impact the meta-

bolism of the entire column. For example, the top layer supports phototrophs that produce carbon

and oxygen, which drives a second layer that aerobically respires carbon and oxygen, resulting in a third

layer that is anaerobic and typically uses alternate electron acceptors such as nitrate or sulfate. Recent

work has begun to show that these complex communities are amenable to quantitative interrogation
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Figure 4. Bringing wild communities into the lab

(A) Winogradsky columns are laboratory-assembled communities with distinctive and reproducible spatially-stratified

metabolite fluxes. These fluxes, and consequently community structure, arise from emergent redox gradients.

(B) Materially closed ecosystems are communities grown in sealed vessels whose only energy input is light. Nutrient

cycling in closed ecosystems arises from phototrophic organisms generating reduced carbon by fixing CO2, which can

then be consumed by heterotrophic organisms. Predators such as ciliates can consume whole cells, facilitating the

recycling of macromolecular biomass.

(C) Serially passaged communities enrich a complex environmentally-derived community on laboratory-controlled

nutrient conditions (e.g., a fixed carbon source). The resulting communities are typically low-complexity, and

demonstrate reproducible trophic roles and patterns of nutrient exchange
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in the laboratory (Pagaling et al., 2014, 2017). Of particular note is a study that used centimeter long glass

capillaries to assemble stratified communities cultured in the presence of dyes to report pH and redox

(Quinn et al., 2015). A simple imaging setup then permitted the acquisition of quantitative spatiotem-

poral data on community assembly in many replicates. These systems were used to simulate
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communities in the lung of a cystic fibrosis patient, but an opportunity to extend this work remains and

the platform is well-suited to the ensemble approach outlined here.

Given that metabolic niches are spatially separated in Winogradsky culture systems, they are ideal sys-

tems for understanding how this stratification self-organizes, their energetics and how this organization

depends on the boundary and initial conditions in the system. For example, if the capillary system of

Quinn et al. (2015) could be combined with defined nutrient conditions, controlled illumination, and quan-

titative imaging, one could ask how the layers (and therefore the metabolite fluxes) depend on community

composition. Given the timescale of these experiments (months), working with many replicates in parallel

will be key.

Materially closed ecosystems

Closely related to Winogradsky columns are materially closed microbial ecosystems (CES, Figure 4B).

Closed ecosystems are hermetically sealed, typically aquatic, microbial communities that have been shown

to sustain life with only light as an input for decades in some cases. These ‘ecospheres’ are available

commercially (https://eco-sphere.com/) and have been studied in an academic setting since the 1960s.

CES contain photosynthetic microbes, typically algae or bacteria, and either simple or complex consortia

of heterotrophic bacteria and predators. When provided with only light these communities self-organize to

sustain nutrient cycles and therefore the community itself. CES act as model biospheres because they

require nutrient cycling to persist (Rillig and Antonovics, 2019). In the context of the structure-function

problem, the salient metabolic property of CES is nutrient cycling, and one question is how the composi-

tion of the community determines nutrient cycling rates and persistence.

Work from a number of groups (Obenhuber and Folsome, 1984, 1988; Kearns and Folsome, 1981; Kawa-

bata et al., 1995; Taub, 1974, 2009) showed that CES containing primarily microbes were tractable model

systems and methods for quantifying nutrient cycling were developed (Obenhuber and Folsome, 1988;

Taub, 2009). More recently, Leibler and Hekstra (Hekstra and Leibler, 2012) and later Leibler, Frentz and

Kuehn (Frentz et al., 2015) studied population dynamics in a synthetic closed ecosystem comprised of three

species using sophisticated microscopy-based methods. These studies revealed remarkably deterministic

population dynamics in CES. However, few studies have quantitatively characterized the nutrient cycling

capabilities of CES with the notable exceptions of Obenhuber (Obenhuber and Folsome, 1988) and later

Taub (2009). The early work of Obenhuber showed that complex bacterial communities mixed with photo-

autotrophic algae or bacteria could sustain a carbon cycle for many months (Obenhuber and Folsome,

1988). Inspired by these studies, we recently developed a higher throughput method for quantifying car-

bon cycling that uses low-cost microelectromechanical sensors (MEMS) made for mobile devices to mea-

sure small changes in pressure inside a CES (de Jesús Astacio et al., 2021). As appreciated by Obenhuber

and Folsome, changes in pressure reflect carbon cycling, because oxygen has lower solubility in water than

CO2. When photosynthetic microbes fix CO2, they produce oxygen and the pressure rises. When bacteria

respire carbon, the opposite happens and one can quantify carbon cycling by measuring pressure oscilla-

tions during light-dark cycles. We constructed CES using bacterial communities derived from soil samples

combined with a domesticated strain of the alga Chlamydomonas reinhardtii. We found that taxonomically

diverse CES stably cycled carbon for as long as six months. Metabolic profiling of these communities

showed that, despite taxonomic variability across replicate CES, each community exhibited similar meta-

bolic capabilities in terms of the carbon compounds they could utilize. It remains to be understood how

such taxonomically distinct communities can retain this diversity while exhibiting similar metabolic capabil-

ities. To address this question using the approach outlined here would require studying many synthetic

communities with varying composition while measuring carbon cycling.

We propose that CES constitute powerful model communities for understanding nutrient cycling. In the

context of the approach outlined here, CES could be used to understand how initial nutrient supply (C,

N, P, S, etc.) controls community structure and cycling. Further, since light is the only source of energy,

CES can be used to explore how energy availability impacts the structure-function mapping in terms of

cycling.

Enrichment in defined media

Recently, Sanchez et al. performed serial enrichment cultures on complex natural communities in simple

defined media containing a single carbon source (Goldford et al., 2018; Estrela et al., 2021) (Figure 4C).
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In this case, the function of the community is the conversion of glucose to CO2 and biomass. Over a few tens

of generations these communities assembled into relatively simple, and predictable consortia comprised a

few cross-feeding strains. This convergent structure was typified by characteristic ratio of strains from the

Enterobacteriaceae and Pseudomonadaceae families. To explain this conserved structure, strains were iso-

lated from the endpoint of the enrichment experiment. They were then assayed for growth on glucose, and

Enterobacteriaceae strains were found to grow faster on glucose than the Pseudomonadaceae. Metabo-

lomic measurements (mass spectrometry) revealed that Enterobacteriaceae strains excreted intermediates

such as acetate, which Pseudomonadaceae were observed to consume rapidly. Therefore, similar to the

polysaccharide particle experiments discussed above (Datta et al., 2016), these experiments revealed a pri-

mary carbon degrader that rapidly consumed the supplied carbon source but released secondary metab-

olites (in this case acetate) that supported the growth of other strains. Very recent work suggests that this

type of cross-feeding may arise from stress induced release of nutrients that arises due to serial dilution

(Amarnath et al., 2021). In these communities the salient metabolic property of the system is carbon degra-

dation. These studies have already revealed much about how the structure of these communities impacts

the carbon degradation (e.g., the role of secondary consumers). It would be interesting to more fully eluci-

date the mechanistic basis of this cross-feeding in the service of understanding how the genotypes of each

strain present determine their uptake and release of carbon compounds. Hopefully, these insights would

allow us to understand how the cross-feeding depends on available carbon compounds and environmental

parameters such as pH. These generalizations could prove insightful in natural contexts such as soils where

carbon degradation is a critical phenomenon for climate change.
Bridging structure and function with synthetic communities

In recent years a number of studies have attempted to bridge structure and function of wild communities by

performing experiments on synthetically assembled communities of natural isolates. This approach offers an

opportunity to capturemuch of the substantial taxonomic and genomic diversity of natural communities within

a setting where environment and composition can be controlled, and function can be measured accurately.

A handful of studies have explored how interactions between strains in a community affect carbon utiliza-

tion. In part, these studies attempt to determine how prevalent, different types of interaction between

strains are (e.g., mutualism, parasitism, etc.), and how these interactions vary based on community compo-

sition and the identity of the carbon substrate provided. Using strains isolated from tree-associated envi-

ronments, Foster and Bell (2012) assembled synthetic communities and measured CO2 evolution during

growth on a complex medium as a metric for community productivity. The measured values of productivity

were compared to a ‘‘non-interacting’’ null prediction obtained by summing the productivities of the con-

stituent strains grown in monoculture. What was observed in the vast majority of pair cultures and higher-

order communities was consistent with resource competition rather than mutualism, suggesting that

competitive interactions for carbon utilization dominate in natural communities. This implies that the car-

bon utilization of a community should saturate with the diversity of a community, which is precisely what is

shown in a more recent study by Yu et al. (2019). In this study, a diverse ensemble of communities with vary-

ing strain composition and diversity was generated from a seawater inoculum via serial dilution and dilute-

to-extinction approaches. Cell density, protein concentration, and CO2 evolution were measured along

with community diversity (via 16S metagenomic sequencing). These community function measurements

show saturating behavior as a function of taxonomic richness. Abundant strains were isolated to disen-

tangle the effects driven by individuals and effects driven by interactions. Interactions increase and saturate

with diversity, suggesting both competition and complementation increase simultaneously with diversity.

Additional recent studies have added nuance to the picture of what interactions are prevalent in carbon-de-

grading communities (Keheet al., 2019, 2021), findingahighprevalenceofparasitic andmutualistic interactions

within communities of isolates that are consistentwith cross-feeding. Thesestudies leverageahigh-throughput

droplet microfluidics platform to perform combinatorial community assembly and culture in multiple different

carbon source conditions, and thegrowthof community constituentswasmeasuredusing fluorescent labeling.

In the first study (Kehe et al., 2019), a high prevalence of competitive interactions was observed, particularly for

communities and carbon sources where the constituent strains all showed strong growth on the carbon source

inmonoculture. However, positive interactionswere frequently observed in caseswhereone straingrewpoorly

onacarbon source inmonoculture, consistentwith that straingrowing ina communitybecauseof cross-feeding

of metabolic intermediates. The second study (Kehe et al., 2021) broadened this observation by focusing on

communities comprising strains from two taxonomic orders, Enterobacterales and Pseudomonadales. Again,
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it was observed that positive interactions were common in communities where one of the constituent strains

grew poorly by itself on a given carbon source. It is likely that the positive interactions were generated by

cross-feeding of overflow metabolism intermediates (Amarnath et al., 2021). These positive interactions likely

arise from the samemechanismdiscussed above in the enrichment culture experiments of Sanchez et al. (Gold-

ford et al., 2018; Estrela et al., 2021). Altogether, these results indicate that community carbondegradation can

be a relatively simple function of the taxonomic structure of a community. Linking these relationships to

genomic structure remains to be accomplished.

Another study by our group (Gowda et al., 2022) set out to explicitly identify the genomic attributes of a com-

munity that are predictive of community function. Using a statistical ensemble of isolates that perform denitri-

fication, a process of anaerobic respiration involving the reduction of oxidized nitrogen compounds, we first

mapped the genotypes of individual isolates to the precisely quantified kinetics of nitrate and nitrite reduction,

which were parameterized using a consumer-resource modeling approach. We used a regularized linear

regression approach to predict nitrate and nitrite reduction kinetics from the presence and absence of denitri-

fication-pathway genes possessed by each isolate. We then assembled communities of these isolates and

determined that resource-competitive interactions are prevalent and predictable from single-strain kinetics

via the consumer-resource model. Thus we inferred that the conserved properties of metabolic genes allow

thepredictionof community-level function. This study shows that synthetic communities comprisednatural iso-

lates, combined with statistical approaches, can yield insights into the mapping from gene content to metab-

olite dynamics. It remains to be seen if this approach can be applied to more complex communities.

Our work in Gowda et al. (2022) points to the idea that focusing on the genomics and ecology of specificmeta-

bolic processes can be a powerful approach. In particular, this study leads us to believe that denitrification of-

fers a remarkable system not only for the quantitative interrogation of structure and function using the statis-

tical approach outlined here, but also for detailed physiological studies of specific metabolic processes. The

advantages of denitrification include the facts that the taxa that perform the process are easily isolated and

grow well in the laboratory (Lycus et al., 2017), the metabolites can be quantified in high-throughput (Gowda

et al., 2022), the molecular genetics of denitrification are well-understood (Zumft, 1997) and the process has

been characterized in the wild to some extent (Tiedje et al., 1983). These opportunities have spawned several

compelling recent studies (Lilja and Johnson, 2016,2019; Goldschmidt et al., 2018), including a study of the role

of carbon source identity in driving denitrification in wild communities (Carlson et al., 2020).

EXPERIMENTAL TECHNIQUES TO ENABLE AN ENSEMBLE APPROACH

Having reviewed a variety of model communities for undertaking an ensemble approach to the structure

function problem we now turn our attention to experimental methods to study these systems. We focus

here on culturing and isolation methods as well as analytical techniques for measuring metabolites. We

do not review sequencing approaches that have been discussed in detail elsewhere (Hugerth and Ander-

sson, 2017).

Isolation techniques

A vast majority of microbes that are known to exist in nature remain uncultured in the laboratory. The stag-

gering difference between the number of cells counted from microscopy and those obtained on agar

plates was discovered in the early 19th century (Amann, 1911) andwas dubbed as the ‘‘the great plate count

anomaly’’ in 1985 by Staley and Konopka (1985). Developments in sequencing techniques have further

widened the gap between the number of cultured and uncultured bacteria. The causes for microbial uncul-

tivability include requirement of growth factors present in the natural environment, slow growth, need for

interspecies interactions and transitions to dormancy. Development of isolation techniques that overcome

these drawbacks is important to capture the high microbial diversity that exists in the wild. Such techniques

will aid in the construction of synthetic communities with high genotypic and phenotypic diversity and

hence benefit the study of structure-function problem.

Recently developed isolation techniques that offer some advantages over the conventional approach of

plating on agar include culturomics, microdroplets and diffusion chambers. In culturomics, communities

are tested for growth in a multitude of media conditions using high-throughput techniques, followed by

subjecting the communities to mass spectrometry and sequencing (Lagier et al., 2012; Seng et al., 2009).

By performing MALDI-TOF (see below) mass spectrometry directly on colonies, bacterial taxa can be iden-

tified with high fidelity (Seng et al., 2009). In case MALDI-TOF fails to identify taxa, 16S sequencing is used.
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The use of mass spectroscopy combined with sequencing facilitates accurate, rapid, and comprehensive

strain identification. In a recent study (Lagier et al., 2016), the culturomics approach was shown to be

very successful in increasing the number of species isolated from the human gut (by �2-fold).

A higher-throughput method involves encapsulating cells from natural communities in gel microdroplets

(GMDs) made of agar. The GMDs are then incubated in growth chambers flushed with low nutrient media.

Following this, GMDs with microcolonies are sorted using flow cytometry and individual GMDs are subse-

quently transferred into microtiter plate wells containing rich organic medium for biomass enrichment and

isolation (Zengler et al., 2002, 2005). In this technique, the porous nature of the GMDs facilitates exchange

of metabolites between droplets during the incubation. As a result, strains that require metabolites pro-

duced from resource-mediated interspecies interactions can be isolated using this technique.

Diffusion chambers work by culturing communities in chambers exposed to their native environments

through porous membranes (Kaeberlein et al., 2002; Bollmann et al., 2007; Chaudhary et al., 2019). Thus,

the setup allows for the growth of microbes that require growth factors present in their natural environ-

ments and/or produced from native community interactions. Significant developments improving the

throughput of this isolation method include the isolation chip (Berdy et al., 2017) and the Hollow-Fiber

Membrane Chamber (HMFC) (Aoi et al., 2009).

In addition to these non-targeted isolation techniques, targeted isolation techniques have been recently

attempted. These involve designing the isolation methods to target desired phenotypes (e.g., antibiotic

resistance or sporulation (Browne et al., 2016)). One recent study successfully isolated desired cell types

using fluorescently labeled antibodies against predicted cell surface proteins combined with flow cytom-

etry for cell sorting (Cross et al., 2019).

Overall, both the available targeted and stochastic isolation techniques have proven to be useful for

isolating previously unculturable bacteria. Hence, these techniques may prove valuable for generating en-

sembles of bottom-up assembled microbial communities.
High throughput culturing platforms

Our proposed ensemble approach for studying structure-function relationship in microbial communities

requires creation of many replicate communities. Hence, high throughput culturing platforms are critical

for its implementation.

A majority of high throughput experimental platforms so far have been droplet-based or microfluidic-

based devices. One such recently developed device is ’kChip’, a microfluidic platform that facilitates

combinatorial construction of microbial communities (Blainey et al., 2018). A study involving synthetically

constructed microbial communities on kChips successfully identified sets of strains among 19 soil isolates

that promote growth of model plant symbiontHerbaspirillum frisingense, by screening�100,000 multispe-

cies communities (Kehe et al., 2019). Although kChip is a high throughput platform, it only enables bottom-

up construction of microbial communities that requires isolation of microbes prior to the experiments.

Additionally, only metabolic functions with optical readouts can be assayed as physical access to themicro-

droplets at this scale is not feasible.

Another similar microfluidic platform that enables parallel co-cultivation of microbial communities was

developed by Park et al. (2011). Their platform was able to successfully detect pairwise symbiotic interac-

tions in communities when the symbionts were in as low an abundance as 3 percent of the total population.

Here again, only optically detectable metabolic properties can be measured, but the device enables top-

down construction of microbial consortia through random compartmentalization of community members.

Though this was not a structure-function study per se, inclusion of automated droplet sorting and charac-

terization of communities in the retrieved droplets can easily enable structure-function studies. In fact, this

was achieved in a more recent study by Terekhov et al., where microbes conferring antibiotic resistance in

the oral microbiota of Siberian bears were identified (Terekhov et al., 2018). This was done by functional

profiling of the encapsulated communities from the oral microbiome that suppressed the growth of the

pathogen Staphylococcus aureus.
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Table 1. Comparison of methods for measuring metabolites in microbial communities

Method Sensitivity Specificity Range of applicability Throughput

NMR Low High High Low

Mass Spectrometry High High High Low/moderate

Infrared/Raman Moderate High High High

UV/Vis Moderate Low Low High

Targeted assays Moderate High Low High

Sensitivity refers to the minimum detectable concentration. Specificity refers to the ability of the assay to detect a specific

metabolite. Range of applicability refers to the diversity of metabolites that can be detected with the technique. Throughout

is the number of measurements that can be made in parallel.
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From the aforementioned studies, it can be said that the choice of the experimental platform largely de-

pends on the nature of the study. Some existing platforms support a top-down approach whereas others

support a bottom-up approach. Further, the methods of determining structure and function can differ

across platforms. There is room to improve these methods to incorporate other analytical techniques for

measuring metabolites. For example, if large scale culturing platforms could be combined with spectro-

scopic or automated mass spectrometry methods, this would enable the rapid construction of large quan-

titative datasets.
Measuring metabolite dynamics

Metabolites, unlike nucleic acids, require distinct analytical techniques depending on the metabolite of in-

terest. Here we review the available methods, their applicability and opportunities for improving these

methods for microbial consortia. See Table 1 for the specific strengths and limitations of each technique

discussed here.

Nuclear magnetic resonance spectroscopy

A number of high quality textbooks describe the fundamental physics (Slichter, 1990) and chemistry (Levitt,

2008) of nuclear magnetic resonance (NMR) spectroscopy.

Here we give an intuitive explanation of the basis of this technique and go on to the practical applications of

measuring metabolites in microbial communities.

NMR spectroscopy exploits the spin magnetic moment of atomic nuclei such as hydrogen, carbon, and ni-

trogen to characterize chemical structure. In an applied magnetic field, nuclei behave as weak magnets,

collectively aligning with the field. The collective alignment of the nuclear magnetic moments can then

be manipulated with applied electromagnetic fields in the radio frequency (MHz) and detected as emitted

fields in the same spectral region. The small magnetic moments of nuclei cause them to emit very weak ra-

diation, meaning that relatively high concentrations of metabolites of interest are necessary for detection.

Nuclei experience minuscule changes in the local magnetic field due to their local chemical context, result-

ing in what are termed ‘‘chemical shifts.’’ For example, a proton in hydrogen on an alkane (e.g., methane)

will emit a distinct radio frequency (its resonance frequency) from one in an aromatic hydrocarbon (e.g.,

benzene). These small changes in emitted radio frequency fields are of the order of parts per million

(ppm). Typical resolution of modern instruments is a fraction of a ppm and depends on the field strength

of the spectrometer and technical details of the detection scheme. State-of-the-art spectrometers (oper-

ating at 600MHz and above) are widely available at core facilities.

For metabolomics the twomost common types of NMR are proton (1H) and carbon NMR, each of which has

both advantages and disadvantages. First, the advantages of proton NMR are (1) rapid acquisition due to

the relatively high signal-to-noise ratio in proton spectra, (2) the fact that no isotopic labeling is necessary,

and (3) the ability of the technique to detect a broad range of relevant organic compounds. One disadvan-

tage is the fact that spectra frommixtures of unknownmetabolites are complex, often containing hundreds

of peaks corresponding to the many different compounds present. As a result, it can be challenging to

detect the presence or absence of specific metabolites via proton NMR. Further, water contributes a broad

and strong solvent signal in themiddle of the relevant range of chemical shifts. There are twomain routes to
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removing this signal: (1) drying the sample and replacing the water with D2O and (2) using clever pulse se-

quences to decouple the water signal from the metabolite signals (Mckay, 2011). The former requires

specialized equipment and increases the cost and reduces throughput. Therefore, it is recommended to

use decoupling. The fundamental physics of how this decoupling works is beyond the scope of this review,

but it is recommended to use 1D NOESY (Nuclear Overhauser Effect Spectroscopy) to isolate metabolite

signals from water (Emwas et al., 2019). The approach is robust, widely applied, and requires no sample

processing to be done. It should be noted that because of variation in technical specifications between in-

struments, performingmeasurements on a single spectrometer across samples is key to maintaining repro-

ducibility of measurements (Mckay, 2011).

Carbon NMR in contrast, detects signals from the magnetic moments of carbon nuclei. As with protons, the

chemical context of the carbon nucleus gives rise to chemical shifts in the resonance and this permits the

disambiguation of carbon nuclei in different compounds. One advantage of Carbon NMR is that it does not

require suppression of water signals. The main drawback to carbon NMR is sensitivity. The dominant

isotope of carbon (12C, 99% prevalence) is not NMR active, while13C is NMR active, but present at about

1% natural abundance. This means that most nuclei do not contribute to the observed signal. Second,
13C has a magnetic moment that is roughly 4-fold lower than 1H reducing the signal-to-noise ratio. These

two considerations imply that acquiring carbon spectra requires extensive averaging and can take hours for

a single sample. However, the low isotopic abundance of 13C can be overcome by using 13C labeled com-

pounds as nutrients, with order of magnitude increases in signal-to-noise. Unfortunately, these compounds

are expensive (hundreds of dollars per gram) increasing costs.

Carbon and proton NMR are the two most commonly applied metabolomic profiling techniques for micro-

bial communities. Typical studies range from targeted detection of a single metabolite in a well-defined

community (Andrade-Domı́nguez et al., 2014) to untargeted profiling in very complex consortia such as

anaerobic digesters (Gonzalez-Gil et al., 2015). Here we present a few examples of NMR based measure-

ments of metabolite dynamics in communities as case-studies that might be more broadly applicable.

One compelling approach taken by Date et al. (2010) and Nakanishi et al. (2011) is to combine NMR based

metabolite measurements in time with quantification of abundance dynamics. Date et al. use 13C labeled

glucose to initiate growth in fecal microbiota (Date et al., 2010) (note that 13C is a stable isotope). The au-

thors then performed time series of abundance dynamics and carbon NMR measurements. Given labeled

glucose as the sole carbon source, the authors could track the dynamic production and consumption of 13C

labeled compounds as the glucose was converted to organic acids in time. The authors could then (crudely,

given the electrophoresis methods at the time of the study) classify the community into primary and sec-

ondary degraders. The compelling aspect of this study is the potential to statistically correlate large-scale

variation in the community structure with metabolite dynamics. One could imagine a similar experiment

with amplicon sequencing-based abundance dynamics measurements. This approach would be especially

powerful for looking at the community level response to carbon fixation by autotrophs in systems like mats

or CES. In these situations, initiating a community with 13C labeled bicarbonate as the sole carbon source

would allow the direct measurement of carbon flux from autotrophs to associated heterotroph commu-

nities. Since NMR relies on magnetic fields and emitted RF signals, it is non-invasive and could be applied

to ongoing experiments (e.g., CES) without invasive sampling.

We conclude with a brief note on throughput. NMR spectrometers are large, expensive machines that rely

on superconducting magnets to apply large magnetic fields. Running parallel experiments on NMR ma-

chines is therefore prohibitive. Throughput is achieved by using robotics or fluidic systems to automatically

load samples into the spectrometer. Such experiments typically achieve a throughput of order 100 samples

per day (Macnaughtan et al., 2003; Soininen et al., 2009). Increasing NMR throughput by a factor of 10–100

would constitute a major advance.

Finally, despite the current limitations, there is a revolution underway in quantum sensing systems from

superconducting quantum interference devices (SQUIDs) (McDermott et al., 2002) to spin-based magnetic

field sensors, impurities in diamonds (nitrogen-vacancy (NV) centers) (Cujia et al., 2019) or force measure-

ments (Kuehn et al., 2008). SQUIDs enable ultra-low field NMR, obviating the need for large expensive

magnets, and NV-centers enable high sensitivity magnetic resonance detection at the single-molecule

level. The applications of these technologies to metabolic function in microbial communities await future
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discovery, but one can imagine massively parallel NMRmeasurements or in situ detection of metabolites in

complex settings.

Mass spectrometry

Mass spectrometry is the most widely used platform for metabolomics and several good reviews of the

methodology are available (Beale et al., 2018; Mastrangelo et al., 2015; Dettmer et al., 2007; Raftery,

2014; Alseekh et al., 2021; Jemal, 2000).

Therefore, our discussion of mass spectrometry will be limited, but we include it as an important point of

comparison with the other techniques discussed in this section.

Mass spectrometry ionizes the molecules in a sample, using a variety of different methods, and then accel-

erates the charged molecules using an electric field. The beam of ions is then passed through a magnetic

field that (via the Lorentz force law) results in a force on each ion that depends on its mass to charge ratio.

The result is a physical separation of ions in space in proportion to the mass-to-charge ratio. A huge num-

ber of variations exist on this basic theme, including measurements of time of flight (TOF) and quadrupole

mass filters that apply oscillating fields to the ion beam. The reviews cited above contain detailed discus-

sions of the type of ionization and detection methods that are best suited for metabolomic applications.

In the context of metabolomics, where samples are often of considerable chemical complexity, mass spec-

trometry is almost always preceded by either gas or liquid chromatography to separate compounds and

therefore increase the specificity and sensitivity of downstream mass spectrometry. As a result, gas chro-

matography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) are

the two most widely used forms of mass spectrometry for metabolomics. GC-MS is restricted to volatile

compounds typically of molecular weight less than 600 Da (Beale et al., 2018), while LC-MS applies to a

broader spectrum of metabolites.

Mass spectrometry has significantly higher sensitivity thanNMR, and can achieve singlemolecule sensitivity

(Robertson et al., 2007), although this is not routine. This advantage is especially crucial for measuring

metabolite fluxes in cells and communities where concentrations are often low (micromolar and below)

(Bennett et al., 2009; Basan et al., 2020). This combination of sensitivity and the ability to distinguish broad

classes of compounds has contributed to the widespread usage of MS-based metabolomics methods

(Aiyar et al., 2017).

Mass spectrometry is often used in communities where specific nutrients (amino acids, sugars) are labeled

with stable heavy isotopes (e.g., 13C or 15N). Using stable isotope labels on nutrients allows measurements

of fluxes even when the steady state concentrations of metabolites are low, for example when nutrients are

produced/consumed at high rates. These powerful techniques allow for quantifying which pathways are

utilized (Zamboni et al., 2009), and to observe dynamic changes in those pathways (Yuan et al., 2008). By

integrating these approaches with protein mass spectrometry, flux measurements can be assigned to

phylogenetically specified strains in a community (Ghosh et al., 2014; Jehmlich et al., 2010; Rühl et al.,

2011) and measurements can even capture spatiotemporal dynamics (Mandy et al., 2014).

The throughput of these techniques is significantly lower than the optical methods discussed below and

comparable, at present, to NMR. So it is routine to run �100 samples over the course of a day or two

(see (Jemal, 2000) or a review). Some robotic systems have been developed to automate the sampling

and analysis process (Molstad et al., 2007). However, making mass spectrometry measurements on thou-

sands or tens of thousands of samples, while feasible, is costly and slow. Given the remarkable sensitivity,

specificity and broad applicability of the technique, especially for untargeted measurements of metabolite

pools, it would represent a major advance if mass spectrometry could be routinely applied to thousands of

samples in parallel. Here, we mention a handful of notable studies that leverage mass spectrometry to

quantify metabolite dynamics in microbial communities. The goal is not to present an exhaustive list but

simply to point the reader toward some representative studies.

Amarnath et al. (2021) used untargeted metabolomics to study the metabolites that are exchanged be-

tween two strains of bacteria in a serial dilution experiment. The authors revealed a broad spectrum of me-

tabolites excreted by one strain in response to stress. These excreted compounds facilitated cross-feeding
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between the two strains. Shi et al. (2017) use LC-MS to study metabolite exchange in a fungal-bacterial

community. A statistical analysis of the LC-MS data shows that the metabolites excreted are distinct for

co-cultures and mono-cultures.

Mass spectrometry is widely used to study the degradation of compounds from pharmaceuticals to soil

contaminants (Pieper et al., 2010; Thelusmond et al., 2016). For example, common environmental contam-

inants are polycyclic aromatic hydrocarbons (PAHs), which are routinely degraded by bacterial consortia.

The breakdown of these compounds in time is typically interrogated by GC- or LC-MS (Luan et al., 2006).

Mass spectrometry is widely applied to food-related microbial communities. In these cases the untargeted

nature of mass spectrometry is important as the compounds of interest (e.g., for flavor) are typically un-

known. For example, GC-MS has been used to identify starting components in traditional Cambodian

rice wine (Ly et al., 2018). Similarly, it was used in fermentation of red peppers to investigate changes in

bacterial and fungal communities and volatile flavor compounds (Xu et al., 2020), and high throughput

GCMS has been used to correlate metabolites with taxonomic structure in kimchi fermentation (Park

et al., 2019), glutinous rice wine (Huang et al., 2019), the liquor Daqu (Jin et al., 2019) and pickled radishes

(Rao et al., 2020).

Infrared spectroscopy

Infrared spectroscopy detects absorption and emission of photons in the infrared region of the electro-

magnetic spectrum and characterizes molecular vibrations. As with NMR, the resonance frequency of a mo-

lecular vibration depends strongly on molecular structure. This dependence affords IR spectroscopy its

chemical specificity. Infrared spectroscopy offers perhaps the best combination of sensitivity, specificity,

high-dimensional characterization of complex metabolite pools and throughput. There are two commonly

used methods for measuring infrared spectra that differ in their fundamental physical mechanisms: (1) IR

absorption and (2) Raman spectroscopy.

Infrared absorption involves passing light in the infrared range (�2.5 mm–10 mm wavelengths or 1000 cm�1

to 4000 cm�1 wave numbers) through an aqueous or gas phase sample and measuring the absorption.

Compounds containing different chemical bonds absorb light at different frequencies and the resulting

spectrum can provide extensive information on the chemical composition of the sample. As with proton

NMR, a major downside of absorption spectroscopy is the broad absorption of water in the informative

region of the spectrum (around 3200 cm�1 and 1600 cm�1), which can limit the information for aqueous

samples without cumbersome drying. Simple dispersive spectrometers that shine a narrow band of wave-

lengths through a sample have limits on sensitivity, spectral resolution and the duration of acquisition.

These limitations can be overcome using Fourier Transform infrared spectroscopy (FTIR), which uses

broadband excitation and an interferometer to rapidly acquire spectra in specific spectral bands, and

this is the most commonly applied technique. Plate readers that perform FTIR measurements en masse

on microtiter plates are available and can acquire data from both liquid and solid phase samples.

In contrast to FTIR or dispersive IR spectroscopy, Raman spectroscopymeasuresmolecular vibrations using

photons in the visible portion of the spectrum. When visible photons interact with a sample, most are scat-

tered with the same energy as the incident photon (Reyleigh scattering). However, with low probability, the

incident light undergoes inelastic scattering and in the process photons are emitted from the sample with

either slightly lower (Stokes) or higher (anti-Stokes) energy than the incident radiation. These small changes

in the emitted photon wavelength correspond to the molecular vibrations in the sample. For reasons

beyond the scope of this review, Raman spectroscopy does not suffer from broad band absorption from

water, making it especially attractive for microbial communities in the aqueous phase. However, due to

the inefficiency of inelastic photon scattering, Raman spectroscopy requires high laser power and the re-

sulting heating can be a problem for biological samples, a limitation that can be overcome by techniques

such as resonance Raman spectroscopy or surface enhanced Raman scattering. However, these methods

are not yet routine for metabolomic profiling. Raman spectroscopy can be performed on bulk samples us-

ing plate readers, or integrated with a microscope for localized measurements. More recently, Raman

spectra can be acquired via flow cytometry (Suzuki et al., 2019; Nitta et al., 2020). These platforms enable

much higher throughput than is now standard by NMR or mass spectrometry.
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FTIR and Raman spectroscopy have proven to be powerful methods for interrogating cellular physiology at

the single-cell level when combined with microscopy (see Hatzenpichler et al., 2020 for a recent review).

Remarkably, Raman spectroscopy signals can be used as fingerprints to demarcate cells of one species

in different growth states (Escoriza et al., 2006), or different taxa at the strain, species and genus levels

(Rosch et al., 2005; Harz et al., 2005). A recent study showed that the global transcriptional profile of yeast

and bacteria could be predicted via a linear model from single cell Raman spectra (Kobayashi-Kirschvink

et al., 2018). This success owes to the high-dimensional nature of Raman spectra, which are often chal-

lenging to interpret in terms of individual peaks but are rich in information that can be decoded statistically.

Despite the power of infrared spectroscopies for chemical characterization, they have seen comparatively

little use in the context of communities of microbes. We regard this as a missed opportunity, and suggest

that these methods could and should be used more broadly. One of the limitations of the technique is the

challenge of assigning specific peaks to specific compounds. As Kobayashi et al. have shown, this limitation

can be overcome by using simple statistical methods to map infrared spectra to other cellular properties

(Kobayashi-Kirschvink et al., 2018). The approach is to measure Raman or IR spectra on a set of samples and

then use a lower throughput technique such as LC-MS to measure the absolute concentration of a metab-

olite of interest. A combination of dimensionality reduction and regression can then be used to map the

LC-MS data to the infrared spectra. This approach has been used to track substrate concentrations in

time in monocultures (Paul et al., 2016) and phenol degradation in complex communities (Wharfe et al.,

2010).

The advantages of Raman spectroscopy and, to a lesser extent, FTIR over mass spectrometry and NMR

have the potential for the rapid acquisition of high-dimensional characterization of metabolite pools.

The complexity of the resulting spectra is similar to proton NMR, and therefore is perhaps most useful

for statistically characterizing differences between community metabolite profiles. Such complex spectra

can then be used either to measure specific metabolites via a calibration approach discussed in the previ-

ous paragraph, or to demarcate global metabolic states of consortia without concern for specific metab-

olite levels.

UV-visible spectroscopy

We briefly note that simple UV and visible spectroscopy (UV-Vis) can be used to characterize electronic

transitions in compounds of interest for metabolic characterization. These methods can be performed

with widely available plate readers, particularly those that are equipped with monochromators rather

than filters, which permit excitation and emission to be arbitrarily selected by the user. The main limitation

of this technique is the fact that electronic transitions in the visible are restricted primarily to chemical spe-

cies with delocalized electron density (e.g., conjugated rings such as benzene, tryptophan). As a result,

these spectra are low specificity and cannot be used for targeted metabolomics. However, the high

throughput of common plate readers facilitates rapid measurements, and the spectra can give coarse char-

acterization of excreted compounds from autotrophs, for example (Tenorio et al., 2017). Moreover, tar-

geted UV-Vis measurements can be integrated with common fluorescencemicroscopes and therefore offer

the possibility of detecting metabolites in massively parallelized platforms such as droplet microfluidics

(Kehe et al., 2019, 2021) or in spatially structured communities.

Targeted assays

In situations where the metabolic function of the community under study is known a priori and restricted to

a specific chemical compound a targeted metabolite assay can be powerful. Such assays typically utilize

chemical reactions to create an optically active compound in proportion to the concentration of a metab-

olite of interest. For example, starch can be degraded to glucose enzymatically and then glucose concen-

tration can be assayed via standardmethods (Holm et al., 1986) or iodine can be used to stain starch directly

and detect degradation (Fuwa, 1954). Similarly, nitrate and nitrite can be detected via the Griess assay

(Miranda et al., 2001), which utilizes a colorimetric reporter (dye) generated via a reaction with nitrite.

Such assays can easily be performed in 96-well plates facilitating high throughput (Gowda et al., 2022).

These measurements can be powerful for studying specific metabolic processes in communities. However,

typically the chemistry involved is not easily automated nor are the conditions of the reaction biocompat-

ible. So, such measurements are made offline after sampling and are challenging to automate in situ.
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QUANTIFYING STRUCTURE

We briefly outline the main ways in which community structure can be quantified. As mentioned above a

suite of next generation sequencing technologies are capable of quantifying community structure on mul-

tiple levels. For example, amplicon sequencing of the 16S rRNA gene uses PCR to amplify this universally

conserved ribosomal subunit and then uses the number of reads mapping to sequence variants (amplicon

sequence variants, ASVs) as a proxy for the relative abundance of each taxon. This widely used method has

many well documented downsides including variation in the copy number of the 16S gene across taxa, PCR

bias and the challenge of associating taxonomy with metabolic capabilities of each strain (Callahan et al.,

2016). Despite these shortcomings, amplicon sequencing does permit rapid and high throughput charac-

terization of the community composition, and methods exist for inferring metabolic capabilities of strains

from 16S gene sequence alone (Douglas et al., 2020).

In contrast, shotgun metagenomic sequencing amplifies all genomic DNA in a sample. These data enable

the characterization of the gene content of an entire community by annotating reads. Metagenomics gives

a much more complete picture of the genomic structure of a community but several technical hurdles limit

this approach. First, annotating reads mapping to genes remains a challenge and roughly 30–50% of the

open reading frames are annotated, leaving much of the genomic content unclassified in terms of function.

Second, assigning annotated genes to specific taxa within the community and inferring their relative abun-

dances remains a hard problem. In particular, assembling reads into genomes (metagenome-assembled

genomes, MAGs) has been performed but the quality of these assemblies remains hard to assess. Applying

cutting edge machine learning methods is likely to improve this process (Nissen et al., 2021). Another

method to analyze shotgun metagenomics data is to use a database of reference genomes as templates

to recruit reads from a metagenome. The upside of this approach is the ability to reliably detect variation

at the level of single nucleotides (Garud et al., 2019), and reliably assemble genomes from metagenomes.

The cost of course is that the methodmisses any diversity that is not present in the reference genome data-

base. Despite these challenges, metagenomics perhaps gives clearest picture of the genomic structure of a

community as a whole.

Transcriptional profiling of entire communities is also feasible via RNA-sequencing based methods (An-

tunes et al., 2016; Zhang et al., 2021). Despite the potential predictive power of knowing which genes in

a community are transcriptionally active, these measurements have been applied much less widely than

taxonomic amplicon or shotgun metagenomic methods. However, as the costs of sequencing continue

to fall, it remains a compelling proposition to use metagenomics and transcriptional profiling on the

same samples. We propose that such measurements could very well lead to deeper insights into the com-

munity structure and function by potentially simplifying the picture. For example, transcriptional profiling

could reveal which collective components of the metagenome are inactive and therefore could potentially

be left out of a predictive framework.

LEARNING FROM DATA: FUNCTION FROM STRUCTURE

Equipped with measurements of metabolites (either dynamically or at a fixed point in time) and some char-

acterization of the community structure, we are then left to ask what to do with these data. In reality, the

answer to this question is an empirical one that depends on the structure the data, the model system under

study and the precise question being posed. We offer no pipeline or prescription for how best to proceed,

but instead offer a few suggestions and examples and point out some important technical pitfalls. Our

intention is to suggest some approaches to learning the structure-function mapping from these data

and to leverage the results for predicting community metabolism. As with most data analysis tasks, simple

is better. Using the latest methods in machine learning or dimension reduction may be tempting but it is

almost always better to explore the data with methods that are simple to interpret and straightforward to

implement.

Typically, any sequencing based characterization of community structure will be high dimensional. For

example, 16S amplicon sequencing will often yield 10 to 1000 of taxa per sample, similarly metagenomic

data can contain 10,000 or more annotated open reading frames depending on the complexity of the com-

munity. In contrast, assembling an ensemble of more than 100 or 1000 communities is a huge challenge

even for the highest throughput methodologies. As a result, we are almost always in the limit of a small

number of data points (communities) and large number of variables (taxa, genes, transcripts, etc.). In

this regard, predicting functional properties from these structural data requires reducing the
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Figure 5. Learning the structure-function map from data

(A) Hypothetical structure-function data from an ensemble of n communities. y denotes ametabolite measurement, either

level or rate that could also be dynamic. Colored dots correspond to data points in (B and C). X denotes a matrix of n rows

each denoting a single community in an ensemble. The columns denote the relative abundances (colored bars) of taxa,

genes in the metagenome or transcripts in the metatranscriptome. (B) An unsupervised approach where dimensionality

reduction is applied to X yielding a lower dimensional representation of community structure that is then associated with

communities of differing function. (C) A supervised approach where the function f ð x!Þ is learned for mapping structural

variation to functional variation. Regressors denote independent variables in a lower dimensional representation of X that

provides good predictive power of y.
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dimensionality of the data describing community structure. For the purposes of the discussion below we

define the number of features (genes, taxa, transcripts) as p and the number of communities in a given

ensemble n (Figure 5A). A sequencing dataset can then be described by a matrix X that is n3p with n �
p in most cases. The rows of this matrix, x!i correspond to sequencing data for the ith community in the

dataset. The entries of this vector are then the number of reads mapping to a specific ASV in a 16S dataset

or gene in the metagenome of that community. For each of these communities we assume that the dataset

includes some functional measurement, yi, which may be a dynamic quantity (yiðtÞ). The goal then is to learn

a representation of this functional measurement of the community in terms of the columns of X.
Compositional data and zero counts

All of the standard sequencing methods for quantifying community structure result in compositional data –

that is, they do not report the absolute abundances of taxa, genes or transcripts in the sample, but only the

relative contribution (e.g., the rows of X are defined only up to an unknown constant). Recently, methods

using qPCR or the addition of oligos at known concentrations have been developed to measure absolute
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abundances via sequencing. However, as yet these methods are not widespread. Therefore, in any analysis

we must contend with the compositional nature of sequencing data. Much has been written about this

problem (Gloor et al., 2017), and members of the field are now generally aware of the issues that can arise

when the compositional nature of the data are ignored.

Briefly, compositional data can, and should, be log-ratio transformed using log ratios of counts. Log-ratio

transformations take compositional data from a simplex andmap them to real numbers with the properties

of a vector space. This transformation therefore permits the application of conventional statistical ap-

proaches to compositional data. Typically, this is done via the center-log transform (CLR) or an additive

log-transform (ALR) (Aitchison et al., 2000; Gloor et al., 2017). Computing log-ratio is not compatible

with zeros (e.g., zero abundances of an ASV or gene transcript), a problem that has received a significant

amount of attention. A host of methods from adding pseudocounts uniformly to all zeros or using Bayesian

approaches to replacing zeros (Aitchison, 1982; Love et al., 2014; McMurdie and Holmes, 2014) have been

proposed. We urge caution here, as many methods are both ad hoc and can qualitatively impact the results

of downstream analyses. We will not review the technical details, but readers should engage carefully with

their data rather than blindly applying existing pipelines for log-transforms and handling zeros. For

example, variance decompositions applied to log-transformed data can be dominated by large numbers

of taxa or transcripts with zero counts. In this scenario, the details of how zeros are handled (e.g., themagni-

tude of the pseudocounts added to all taxa) can have huge impacts on the variance decomposition. More

recently, phylogenetically aware methods have been developed, which may enable more reliable decom-

position of relative abundance data (Silverman et al. (2017)).
Dimension reduction: with or without supervision

The goal is to associate structural components or sets of components with the metabolic function of a

community. As discussed above we are almost always in the limit of small numbers of data points. We

are therefore forced to consider reducing the dimensionality of the data from p by some form of dimension

reduction. Above we suggested that low-dimensionality is a common feature of biological systems from

proteins to higher organisms and behavior. Despite the fact that this observation seems to hold quite

broadly, it is important that we not take low-dimensionality as given in any analysis of a microbial commu-

nity. In this sense, we must make a principled search for a simpler description of community structure while

judiciously considering the possibility that no such description exists or that we are considering the system

at the wrong level of organization. For example, in an ensemble of communities with strong functional

redundancy, where very distinct taxa perform similar metabolic functions, it may not be possible to find

a low-dimensional description of the ensemble in terms of taxa present across replicates in the ensemble.

There are two ways to go about approaching this problem: supervised and unsupervised dimension reduc-

tion (Figures 5B and 5C). We note that for most of the techniques described below, the statistical learning

textbook from Hastie, Tibshirani and Friedman (Hastie et al., 2016) provides an excellent and readable

reference. For a more recent review article we recommend the paper of Mehta et al. (2019) that covers

both supervised and unsupervised methods.

Unsupervised learning

In unsupervised dimension reduction, we seek a lower dimensional representation of the matrix X without

any explicit consideration given to y in selecting low-dimensional features (Figure 5B). The idea is to reduce

the dimensionality of X and then examine the relationship between this lower dimensional representation

of community structure and the function, y!. The hope is that some lower dimensional representation of the

community captures all of the useful information in the matrix X. All of these methods change the basis of X

in order to recast community structure in terms of groups of genes or taxa. The dimension reduction arises

when a small number of such groups of taxa provide a good description of all communities in the dataset. If

this is case, each community x! can be represented not in terms of the abundances of p taxa, but instead as

a combination of m � p groups or combinations of taxa. Formally, these methods are based on a matrix

decomposition (X = AB, with A an n3mmatrix and B an m3pmatrix) subjected to constraints. Dimension

reduction comes about if X can be well approximated for m � p. In this case, each community in an

ensemble can be represented in terms of just m features. These low-dimensional representations, when

they exist, can sometimes dramatically simplify our understanding of complex systems.
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The canonical unsupervised methods are variance-based decompositions like principal component anal-

ysis (PCA) or the more general version, singular-value decomposition (SVD). These methods find the set

of orthogonal directions in the p-dimensional feature space that maximize the variance in the data along

each direction (eigenvectors of the covariance matrix of X). The advantage here is the clean interpretability

of these decompositions. Each direction (principal component) is a simple p-dimensional vector represent-

ing a direction of high data variance. Each data point (community) in the original dataset can be repre-

sented in the basis of principal components x!i,p
!

1;.; x!i,p
!

j;. (with p!j the principle components). If

a small number of principal components capture a substantial fraction of the data variance, thenm is small

and each community can be represented as projections on a handful of p!j components.

Many modifications to this basic idea exist. Perhaps the two most notable are independent component

analysis (ICA) and non-negative matrix factorization (NMF). ICA finds a lower dimensional representation

of X in terms of components that are statistically independent, rather than simply uncorrelated, through

an iterative process. The approach is to represent each community x! as a sum of statistically independent

components (Hyvärinen andOja, 1997). In this case x!i =
P

jai;j s
!

j where the ai;j are the weights that ‘mix’ the

independent components s to form the observed data x!. ICA is most often applied to signal separation

problems where multiple independent inputs are combined. One can speculate that this perspective

may be useful for communities if they possess a modular organization where independent modules within

the community are responsible for functionally distinct processes. NMF is another matrix decomposition

method that is applicable whenever the entries of X are constrained to be positive (as is the case in

sequencing data). NMF decomposes the data as XzWH with all entries of W and H positive (Lee and

Seung, 1999). In this case x!i =
P

jwi;j h
!

j where the w are weights and the h
!

are vectors of length p. The

advantage of this approach is that the columns of H, that act as ‘eigen-communities’ contain all positive

entries and are therefore interpretable. In contrast, the eigenvectors of a PCA decomposition can contain

negative entries, which is not interpretable in the context of X that contains only positive values (abun-

dances or relative abundances). NMF has seen limited application in the microbiome context (Cai et al.,

2017). We have focused here on well-established methods with simple interpretations. We are aware

that over the past two decades many new methods have been developed, especially those that can learn

low-dimensional representations of highly non-linear data (e.g., autoencoders (Kramer, 1991) or stochastic

neighbor embedding methods (Hinton and Roweis, 2002)). These methods may be useful in the context

discussed here, but we advocate starting with the simpler approaches discussed above before moving

on to these methods.

Regardless of the method of unsupervised learning applied, the result is a new representation of commu-

nity structure (X) in a new basis (e.g., principal components, p!, s!, h
!
). Ideally,m � p and communities with

many hundreds or thousands of genes or taxa can be represented in a much lower dimensional space (Fig-

ure 5B). The task then remains to associate this lower dimensional representation with metabolic function

(yi ). A common approach to this problem is simply to ask which basis vectors correlate with specific meta-

bolic properties of the community. One common approach is to treat the question as a regression problem

to predict yi from the decomposed x!i for example by using the projections of each x!i along each principal

component as independent variables.

Supervised learning

One major shortcoming of the unsupervised approach is that the low-dimensional representation of X that

we learn by unsupervised dimension reduction may not be the best representation of the data in terms of

predicting yi. In essence, PCA or NMFmay find a low dimensional representation of the data, but there is no

reason or guarantee that this representation will be informative of the community metabolic function.

Indeed, the unsupervised approach artificially separates the process of finding low-dimensional descrip-

tions of the community and predicting the response variable (metabolic function). A supervised approach

overcomes these limitations by performing both dimension reduction and prediction at the same time.

In the supervised approach we seek some prediction of the metabolic function in terms of the structure

(Figure 5C). Concretely, we would like to estimate yi = f ð x!iÞ for our entire dataset. This can be posed as

a regression problemwhere we either posit a functional form for f ð x!iÞ or, using more flexible but less inter-

pretable methods like neural networks, learn a mapping from x!i to yi without positing a specific functional

form.
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Before discussing how one can approach this problemwe would like to clarify the meaning of f ð x!iÞ. We are

proposing learning a statistical map from x!i to yi. We are not proposing fitting an explicit ecological model

such as a consumer-resource or Lotka-Volterra model to the data. We regard fitting such amodel as a much

harder proposition than learning a statistical mapping from structure to function. Indeed, a statistical

approach to learning f necessarily abstracts away these dynamics that relate x!i to yi. We note that two

of us recently took a hybrid approach to the problem with synthetic communities that did explicitly model

the ecological dynamics (Gowda et al., 2022). In this case, we used a regression to map gene content to

consumer-resource model parameters and then used the consumer-resource model to predict metabolite

dynamics in consortia. Remarkably, the approach worked, but the downside is that it requires isolating in-

dividual taxa and constructing synthetic communities, a more laborious task than studying communities

directly.

There are many statistical approaches to learning the function f. The simplest approaches are linear regres-

sion methods that simply posit a model of the form f ð x!iÞ = b0 +
Pp

k = 1bkxi;k , where the b are regression co-

efficients. There are two major problems with this approach. First, if n � pwe have many fewer data points

than independent variables, which means that an ordinary least-squares regression will almost certainly

overfit and yield poor out of sample predictions (as determined by cross validation). The second related

issue is that this approach gives equal weight to each entry (gene, taxon) in x! and does not provide any

dimensional reduction. One way to solve this problem is via regularization (Hastie et al., 2016) where the

model is optimized with an additional penalty term that seeks to reduce the number of non-zero b coeffi-

cients (see LASSO and Ridge Regression). Regularization provides a solution to the problem of selecting

which regressors (entries of x!i) provide the most predictive power while also avoiding overfitting. In situ-

ations where the levels of noise are not too high and a sparse solution (small number of non-zero bk ) do

allow for good predictions, these regularization methods typically succeed (Fraebel et al., 2020). However,

if the noise levels are high or the underlying process is not sparse, then even these methods will fail. Care

must be taken in diagnosing when such a regression works and when it does not, see (Fraebel et al., 2020;

Gowda et al., 2022).

A major shortcoming of the simple formulation outlined above is that it lacks any interaction terms (e.g.,

xk;ixl;i). Adding these terms to the regression above increases the number of independent variables from

p to � p+p2=2. Given limited data n, it is typically not advised to take this approach. However, including

such interaction terms is desirable given the utility of considering pair-wise interactions in complex systems

(Bialek and Ranganathan, 2007; Schneidman et al., 2006). One way to proceed is to use linear regression

approaches that use groups of independent variables as regressors. For example, principal component

regression (Hastie et al., 2016) uses principal components as independent variables in a linear regression.

This is qualitatively similar to the unsupervised approach outlined above.

The models above are linear, and this aids in their interpretation. However, explicitly non-linear methods

for estimating f are also possible. When and why such approaches are more or less appropriate in the mi-

crobial context is not yet clear. However, decision tree based methods such as random forests have proven

useful for relating taxonomic variation to host phenotypes in themicrobiome (Blanton et al., 2016). Random

forests can model complex non-linear relationships between regressors and response variables (Hastie

et al., 2016), while retaining some interpretability by assigning ‘importance scores’ to each independent

variable. As a result, these methods can be used to assess the impact of a given taxon or gene on the com-

munity function (in a statistical, not causal, sense). Random forest regressions fit many decision trees to

bootstrapped replicates of the data and average the result. This averaging procedure, often called

‘bagging’, reduces the variance of the prediction and as a result, high variance/low bias regression ap-

proaches can provide lower variance predictions.

Finally, as the amount of high quality data on microbial communities increases, the applicability of more

recently developed neural network supervised prediction methods (Mehta et al., 2019) will become

more appropriate. These methods typically contain many millions or even billions of parameters and there-

fore require reasonably sized datasets to train. Advances in methods such as transfer learning (Weiss et al.,

2016), where existing trained networks are trained to solve a new problem given some data, mean that the

user need not start from scratch. The challenge will be what we can learn from these networks once they are

used to approximate f. In many cases neural networks do not generalize well and are susceptible to small

amounts of noise on the input variables. We regard the application and interpretation of these network
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approaches to communities a problem at the forefront. It may be that we need to reconsider how networks

are trained to properly learn the salient features of the structure function problem inmicrobial communities

(Blazek and Lin, 2021).
WHAT WE DO AND DO NOT LEARN FROM A STATISTICAL APPROACH

What can the ensemble approach coupled with a statistical analysis like the one described above teach us

about communities? We contend that by looking at an ensemble of well-chosen communities, and learning

the main statistical features of community structure that determine function we can begin to learn what

general properties of communities must be present to admit their functional properties. A handful of

recent studies have begun to show the power of this approach (Goldford et al., 2018; Blanton et al.,

2016; Raman et al., 2019; Gowda et al., 2022). What we recover from these studies is what reproducible fea-

tures of communities are retained across replicate consortia. These reproducible features can be regarded

as ‘good variables’ for predicting community function from structure. In some cases, understanding these

variables lets us control or predict the functional properties of consortia in synthetic systems (Gowda et al.,

2022) and in hosts (Blanton et al., 2016). Ultimately, we hope this approach can be used to design, predict

and control microbial consortia in engineered and wild contexts to address the existential threat of climate

change.

One limitation of the ensemble approach is that it requires variation in structure and function across the

ensemble (Figure 5). One can imagine little variation in community structure might occur for metabolic pro-

cesses that are performed by only a few closely related taxa (e.g., nitrification). In this case, one approach

would be to examine allelic variation in the enzymes present or variation in transcriptional regulation of

relevant pathways. However, it may also be that more direct mechanistic approaches are more appropriate

when the ensemble exhibits small levels of variation.

However, even when these statistical approaches succeed in predicting community structure from function

we often do not understand why, at a mechanistic level, the prediction succeeds. For example, in the case

of (Gowda et al., 2022) the reason for the success of the regression from gene content to phenotypes is not

entirely clear. Nor do we believe that the regression can predict the impact of gene gain or loss mutations.

Similarly, in the case of (Blanton et al., 2016) the precise metabolic role of each bacterial taxon in the stunt-

ing of the host is unclear. In essence, the statistical approach lets us find good variables for design and con-

trol of communities, but it does not, by itself, tell us why these are good variables.

Understanding the mechanistic basis of community function requires a more detailed look under the hood

of a community. In certain cases, where we have some knowledge of the metabolic players in a consortium,

metabolic modeling such as flux balance analysis can be a powerful tool to achieve this goal. Recent suc-

cesses include descriptions of syntrophy in methanogenic communities (Embree et al., 2015) and mutu-

alism in spatially structured communities (Harcombe et al., 2014).
FUTUREDIRECTIONS: EVOLUTIONARY RULESOF THE STRUCTURE-FUNCTIONMAPPING

So, while the ensemble approach can help us solve the structure-function problem the deeper question of

why nature constructs communities the way it does remains. We argue that the answer to this question will

require considering the eco-evolutionary basis of the observed structure function mapping. Addressing

this question is subject enough for a separatemanuscript. However, we hope that through the careful appli-

cation of quantitative methods, like those discussed here, to some of the model systems discussed above,

we can open the door to understanding how nature constructs dynamic functional consortia.
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J.W., Kühl, M., and Grossman, A.R. (2006). In situ
analysis of nitrogen fixation and metabolic
switching in unicellular thermophilic
cyanobacteria inhabiting hot spring microbial
mats. Proc. Natl. Acad. Sci. 103, 2398–2403.

Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima,
J.R., Labadie, K., Salazar, G., Djahanschiri, B.,
Zeller, G., Mende, D.R., Alberti, A., et al. (2015).
Structure and function of the global ocean
microbiome. Science 348, 1261359.
Suzuki, Y., Kobayashi, K., Wakisaka, Y., Deng, D.,
Tanaka, S., Huang, C.-J., Lei, C., Sun, C.-W., Liu,
H., Fujiwaki, Y., et al. (2019). Label-free chemical
imaging flow cytometry by high-speed multicolor
stimulated Raman scattering. Proc. Natl. Acad.
Sci. 116, 15842–15848.

Taub, F.B. (1974). Closed ecological systems.
Annu. Rev. Ecol. Syst. 5, 139–160.

Taub, F.B. (2009). Community metabolism of
aquatic closed ecological systems: effects of
nitrogen sources. Adv. Space Res. 44, 949–957.

Teeling, H., Fuchs, B.M., Becher, D., Klockow, C.,
Gardebrecht, A., Bennke, C.M., Kassabgy, M.,
Huang, S., Mann, A.J., Waldmann, J., et al. (2012).
Substrate-controlled succession of marine
bacterioplankton populations induced by a
phytoplankton bloom. Science 336, 608–611.

Tejera, F., Libchaber, A., and Petroff, A.P. (2018).
Oxygen dynamics in a two-dimensional microbial
ecosystem. Phys. Rev. E 98, 042409.

Tenorio, R., Fedders, A.C., Strathmann, T.J., and
Guest, J.S. (2017). Impact of growth phases on
photochemically produced reactive species in
the extracellular matrix of algal cultivation
systems. Environ. Sci. Water Res. Technol. 3,
1095–1108.

Terekhov, S.S., Smirnov, I.V., Malakhova, M.V.,
Samoilov, A.E., Manolov, A.I., Nazarov, A.S.,
Danilov, D.V., Dubiley, S.A., Osterman, I.A.,
Rubtsova, M.P., et al. (2018). Ultrahigh-
throughput functional profiling of microbiota
communities. Proc. Natl. Acad. Sci. 115, 9551–
9556.

Thelusmond, J.-R., Strathmann, T.J., and
Cupples, A.M. (2016). The identification of
carbamazepine biodegrading phylotypes and
phylotypes sensitive to carbamazepine exposure
in two soil microbial communities. Sci. Total
Environ. 571, 1241–1252.

Tian, H., Xu, R., Canadell, J.G., Thompson, R.L.,
Winiwarter, W., Suntharalingam, P., Davidson,
E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout,
G., et al. (2020). A comprehensive quantification
of global nitrous oxide sources and sinks. Nature
586, 248–256.

Tiedje, J.M., Sexstone, A.J., Myrold, D.D., and
Robinson, J.A. (1983). Denitrification: ecological
niches, competition and survival. Antonie van
Leeuwenhoek 48, 569–583.

Toerien, D.F., and Hattingh, W.H.J. (1969).
Anaerobic digestion I. The microbiology of
anaerobic digestion. Water Res. 3, 385–416.

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A.,
Magrini, V., Mardis, E.R., and Gordon, J.I. (2006).
An obesity-associated gut microbiome with
increased capacity for energy harvest. Nature
444, 1027–1031.

Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-
Liggett, C.M., Knight, R., and Gordon, J.I. (2007).
The human microbiome project. Nature 449,
804–810.

Vanwonterghem, I., Jensen, P.D., Dennis, P.G.,
Hugenholtz, P., Rabaey, K., and Tyson, G.W.
(2014). Deterministic processes guide long-term
synchronised population dynamics in replicate
anaerobic digesters. ISME J. 8, 2015–2028.
iScience 25, 103761, February 18, 2022 33

http://refhub.elsevier.com/S2589-0042(22)00031-1/sref168
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref168
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref168
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref169
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref169
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref169
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref169
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref169
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref170
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref170
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref170
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref171
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref171
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref171
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref172
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref172
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref172
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref172
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref173
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref173
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref173
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref173
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref174
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref174
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref174
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref174
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref174
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref175
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref175
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref175
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref175
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref175
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref176
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref177
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref178
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref178
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref178
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref178
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref178
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref179
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref179
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref179
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref180
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref180
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref180
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref180
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref180
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref180
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref181
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref181
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref181
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref181
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref181
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref182
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref182
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref182
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref182
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref183
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref183
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref183
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref183
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref183
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref184
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref184
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref184
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref184
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref185
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref185
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref185
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref185
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref185
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref186
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref186
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref186
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref186
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref186
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref186
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref187
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref187
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref187
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref187
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref187
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref188
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref188
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref188
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref188
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref188
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref189
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref189
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref189
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref189
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref190
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref190
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref190
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref191
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref191
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref191
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref191
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref191
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref191
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref192
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref192
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref192
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref192
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref192
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref193
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref193
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref194
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref195
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref195
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref195
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref195
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref195
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref196
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref196
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref196
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref196
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref196
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref196
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref197
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref197
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref198
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref198
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref198
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref199
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref199
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref199
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref199
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref199
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref199
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref200
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref200
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref200
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref201
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref201
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref201
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref201
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref201
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref201
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref202
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref203
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref203
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref203
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref203
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref203
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref203
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref204
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref204
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref204
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref204
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref204
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref204
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref205
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref205
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref205
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref205
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref206
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref206
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref206
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref207
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref207
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref207
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref207
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref207
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref208
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref208
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref208
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref208
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref209
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref209
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref209
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref209
http://refhub.elsevier.com/S2589-0042(22)00031-1/sref209


ll
OPEN ACCESS

iScience
Perspective
Vetsigian, K., Jajoo, R., and Kishony, R. (2011).
Structure and evolution of streptomyces
interaction networks in soil and in silico. PLoS
Biol. 9, e1001184.

Ward, D.M., Ferris, M.J., Nold, S.C., and Bateson,
M.M. (1998). A natural view of microbial
biodiversity within hot spring cyanobacterial mat
communities. Microbiol. Mol. Biol. Rev. 62, 1353–
1370.

Weiss, K., Khoshgoftaar, T.M., and Wang, D.
(2016). A survey of transfer learning. J. Big Data 3.

Werner, J.J., Knights, D., Garcia, M.L., Scalfone,
N.B., Smith, S., Yarasheski, K., Cummings, T.A.,
Beers, A.R., Knight, R., and Angenent, L.T. (2011).
Bacterial community structures are unique and
resilient in full-scale bioenergy systems. Proc.
Natl. Acad. Sci. U S A. 108, 4158–4163.

Wharfe, E.S., Jarvis, R.M., Winder, C.L., Whiteley,
A.S., and Goodacre, R. (2010). Fourier transform
infrared spectroscopy as a metabolite
fingerprinting tool for monitoring the phenotypic
changes in complex bacterial communities
capable of degrading phenol. Environ. Microbiol.
12, 3253–3263.

Wilbanks, E.G., Jaekel, U., Salman, V., Humphrey,
P.T., Eisen, J.A., Facciotti, M.T., Buckley, D.H.,
Zinder, S.H., Druschel, G.K., Fike, D.A., and
Orphan, V.J. (2014). Microscale sulfur cycling in
the phototrophic pink berry consortia of the
34 iScience 25, 103761, February 18, 2022
Sippewissett Salt Marsh. Environ. Microbiol. 16,
3398–3415.

Wintermute, E.H., and Silver, P.A. (2010).
Emergent cooperation in microbial metabolism.
Mol. Syst. Biol. 6, 407.

Woese, C.R. (2004). A new biology for a new
century. Microbiol. Mol. Biol. Rev. 68, 173–186.

Wolfe, B.E., Button, J.E., Santarelli, M., and
Dutton, R.J. (2014). Cheese rind communities
provide tractable systems for in situ and in vitro
studies of microbial diversity. Cell 158, 422–433.

Xu, X., Wu, B., Zhao, W., Pang, X., Lao, F., Liao, X.,
and Wu, J. (2020). Correlation between
autochthonous microbial communities and key
odorants during the fermentation of red pepper
(capsicum annuum l.). Food Microbiol. 91,
103510.

Yu, X., Polz, M.F., and Alm, E.J. (2019).
Interactions in self-assembled microbial
communities saturate with diversity. ISME J 13,
1602–1617.

Yuan, J., Bennett, B.D., and Rabinowitz, J.D.
(2008). Kinetic flux profiling for quantitation of
cellular metabolic fluxes. Nat. Protoc. 3, 1328–
1340.
Zakem, E.J., Polz, M.F., and Follows, M.J. (2020).
Redox-informed models of global
biogeochemical cycles. Nat. Commun. 11, 5680.

Zamboni, N., Fendt, S.-M., Rühl, M., and Sauer, U.
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