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Due to their favourable tolerability profiles, endocrine therapies have long been considered the treatment of choice for hormone-
sensitive metastatic breast cancer. However, the oestrogen agonist effects of the available selective oestrogen receptor modulators,
such as tamoxifen, and the development of cross-resistance between endocrine therapies with similar modes of action have led to
the need for new treatments that act through different mechanisms. Fulvestrant (‘Faslodex’) is the first of a new type of endocrine
treatment – an oestrogen receptor (ER) antagonist that downregulates the ER and has no agonist effects. This article provides an
overview of the current understanding of ER signalling and illustrates the unique mode of action of fulvestrant. Preclinical and clinical
study data are presented in support of the novel mechanism of action of this new type of ER antagonist.
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New hormonal therapies with novel mechanisms of action that are
not cross-resistant with the existing treatments make important
additions to the repertoire of treatments for breast cancer. This
enables additional endocrine agents to be used sequentially, with
the aim of extending the effective duration of well-tolerated
treatment before cytotoxic chemotherapy becomes necessary
(Carlson, 2002).

Fulvestrant (‘Faslodex’) is the first of a new type of endocrine
treatment – an oestrogen receptor (ER) antagonist that down-
regulates the ER and has no agonist effects. An understanding of
ER signalling is essential to distinguish between the mode of action
of fulvestrant and that of tamoxifen and the other selective ER
modulators (SERMs). This article summarises the current knowl-
edge of oestrogen signalling, and outlines the mechanism of action
of fulvestrant.

OESTROGEN SIGNALLING AS A TARGET FOR BREAST
CANCER THERAPY

17b-oestradiol, the dominant circulating oestrogen, controls the
growth of many breast tumours. Oestradiol is secreted by the
ovaries in premenopausal women, but is also present at significant
levels in postmenopausal breast tumours. In postmenopausal
women, oestrogens are produced by aromatase-mediated conver-
sion of androgens (originating from the adrenal glands and the
ovaries) to oestrogens, in normal tissues (adipose tissue, muscle,
liver, or brain) as well as in breast tumours (Buzdar, 2001).

The ER is expressed in the majority of breast tumours (Jonat
and Maass, 1978; Lee and Markland, 1978; Paszko et al, 1978) and

in a number of endocrine tissues including the normal breast,
uterus and vagina, as well as in the pituitary and hypothalamus.

Oestradiol binds to the ER with a high affinity and specificity
and, once bound, the oestradiol/ER complex can exert its effects
at both nuclear and cell membranous sites (Figure 1). In the
classical nuclear ER pathway of transcriptional control, the
binding of oestradiol to the ER initiates dissociation of heat shock
proteins from the ER, followed by receptor dimerisation and
preferential nuclear localisation (Beato, 1989; MacGregor and
Jordan, 1998).

The oestrogen– ER dimer complex binds to specific DNA
sequences, the oestrogen response elements (EREs), which are
situated in the regulatory regions of oestrogen-sensitive genes.
Transcriptional control is mediated via two regions of the ER-
designated activation functions AF1 and AF2, which recruit other
proteins such as transcriptional co-activators and co-repressors to
the transcriptional complex (Beato, 1989; Tsai and O’Malley, 1994;
Horwitz et al, 1996; White and Parker, 1998). AF1 activity is
regulated by growth factors that act via the mitogen-activated
protein kinase (MAPK) pathway (Kato et al, 1995), while the AF2
domain is activated by oestrogen (Kumar et al, 1987). Both
domains are required to be active for full oestrogen agonist
activity. The ER mediates transcriptional regulation of a range of
genes, directly or indirectly associated with proliferation, invasion,
survival or angiogenesis in breast cancer.

To date, two ERs have been identified: the ‘classic’ ERa and the
relatively more recently described ERb (Kuiper et al, 1996). These
two ER subtypes have different tissue distributions (Speirs et al,
2002), different affinities and responsiveness to various SERMs
(Ogawa et al, 1998), and are under different regulatory control
(Katzenellenbogen and Katzenellenbogen, 2000). Oestrogen recep-
tora rather than ERb appears to be the predominant regulator of
oestrogen-induced genes in breast cancer (Palmieri et al, 2002;
Fuqua et al, 2003).
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In addition to the classical ER signalling pathway, the ER can
also undergo ‘crosstalk’ with growth factor and G-protein-coupled
signalling pathways (Philips et al, 1993; Losel and Wehling, 2003)
(Figure 1). For example, oestrogen can activate membrane-bound
ER and, via G-protein activation, can then activate growth factor
receptors such as the epidermal growth factor (EGF) receptor and
human epidermal growth factor receptor 2 (HER2/neu) (Filardo,
2002; Johnston et al, 2003). In turn, the ER itself may be activated
in a ligand-independent manner by other signalling molecules
such as growth factors and protein kinases that control the
phosphorylation state of the ER complex and play a part in
regulating activity of the ER (Katzenellenbogen et al, 2000).

THE NEED FOR ALTERNATIVE ENDOCRINE THERA-
PIES

In patients with hormone-sensitive advanced breast cancer,
endocrine therapy is better tolerated than cytotoxic chemotherapy,
while being equally effective (Buzdar, 2001). However, there are
specific risks associated with endocrine treatments. For example,
tamoxifen treatment is associated with a 2–4-fold increased risk of
endometrial cancer (Early Breast Cancer Trialists’ Collaborative
Group, 1998), attributable to its oestrogen-like, partial agonist
activity. The ‘Arimidex’, Tamoxifen Alone or in Combination
(ATAC) trial showed a significantly greater incidence of ischaemic
cerebrovascular events (2.1 vs 1.0%; P¼ 0.0006) and venous
thromboembolic events (3.5 vs 2.1%; P¼ 0.0006) with tamoxifen,
compared with the aromatase inhibitor (AI) anastrozole (ATAC
Trialists’ Group, 2002). A number of other antioestrogens grouped
together under the term SERMS have also been associated with
partial agonist properties (Johnston, 2001; Arun et al, 2002).

The AIs letrozole and exemestane may have an unfavourable
effect on plasma lipid levels, and androgenic side effects have been
reported with exemestane (Buzdar, 2003). Megestrol acetate,
historically the most widely used progestin, is associated with
weight gain and fluid retention (Espie, 1994) and the high-dose
oestrogen diethylstilboestrol is commonly associated with nausea,
oedema, vaginal bleeding and cardiac problems (Peethambaram
et al, 1999).

The sequential use of well-tolerated hormonal therapies has
become common clinical practice for the treatment of advanced
breast cancer, where maintenance of quality of life is a primary

aim. For this to be effective, it is necessary that the mechanism of
action of newer agents differ from those previously used. This
prerequisite prevents the sequential use of therapies belonging to
the same class, and that therefore demonstrates cross-resistance
with each other. Therefore, for some time, a search has been under
way for an antioestrogen that lacks partial agonist properties and
that has a mechanism of action different from tamoxifen
(Wakeling and Bowler, 1988).

FULVESTRANT: A POTENT ER ANTAGONIST WITH A
NOVEL MECHANISM OF ACTION

Blockade of oestrogen action via ER antagonism

Fulvestrant is a 7a-alkylsulphinyl analogue of 17b-oestradiol,
which is distinctly different in chemical structure from the
nonsteroidal structures of tamoxifen, raloxifene and other SERMs
(Figure 2). Fulvestrant competitively inhibits binding of oestradiol
to the ER, with a binding affinity that is 89% that of oestradiol
(Wakeling and Bowler, 1987). This is markedly greater than the
affinity of tamoxifen for the ER (which is 2.5% that of oestradiol)
(Wakeling and Bowler, 1987; Wakeling et al, 1991).

Fulvestrant –ER binding impairs receptor dimerisation, and
energy-dependent nucleo-cytoplasmic shuttling, thereby blocking
nuclear localisation of the receptor (Fawell et al, 1990; Dauvois
et al, 1993) (Figure 3). Additionally, any fulvestrant–ER complex
that enters the nucleus is transcriptionally inactive because both
AF1 and AF2 are disabled. Finally, the fulvestrant–ER complex is
unstable, resulting in accelerated degradation of the ER protein,
compared with oestradiol- or tamoxifen-bound ER (Nicholson
et al, 1995b). This downregulation of cellular ER protein occurs
without a reduction in ER mRNA. Thus, fulvestrant binds, blocks
and accelerates degradation of ER protein, leading to complete
inhibition of oestrogen signalling through the ER (Osborne et al,
1995; Wakeling, 1995, 2000; Wardley, 2002).

Fulvestrant has no demonstrable agonist activity

The disruption of both AF1 and AF2 sites means that, in contrast
to the SERMs such as tamoxifen which fail to inhibit AF1 activity
and thereby have partial oestrogen agonist activity, fulvestrant has
no oestrogen agonist activity in animals or man. This lack of
agonist activity has been demonstrated in numerous animal
models of oestrogen action. Thus, in immature female rats,
fulvestrant, unlike tamoxifen, was completely devoid of utero-
trophic activity. Correspondingly, co-administration of fulvestrant
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with either oestradiol or tamoxifen blocked the maximal and
partial uterotrophic activity of oestradiol or tamoxifen, respec-
tively, in a dose-dependent and complete manner (Wakeling et al,
1991). In contrast, co-administration of tamoxifen and oestradiol
only partially blocks the uterotrophic action of oestradiol. In
primate studies, fulvestrant inhibited oestradiol-induced increases
in the volume of the endometrium; the rate and extent of
endometrial involution in fulvestrant-treated monkeys was similar
to that seen following oestrogen withdrawal (Dukes et al, 1992). In
a Phase I trial involving 30 postmenopausal volunteers, fulvestrant
250 mg (intramuscular (i.m.) injection) demonstrated no agonist
effects on the human endometrium during the 14-day period of
administration. In addition, the antagonistic effects of fulvestrant
were confirmed by a significant inhibition of the oestrogen-
stimulated thickening of the endometrium compared with placebo
(P¼ 0.0001) (Addo et al, 2002).

BIOLOGICAL EFFECTS AND LACK OF
CROSS-RESISTANCE WITH TAMOXIFEN

Preclinical antitumour activity and effects on ER signalling

Studies in the MCF-7 human breast cancer cell line have shown
that fulvestrant significantly suppresses cellular levels of ER
protein (McClelland et al, 1996a) and inhibits ER-induced
expression of the progesterone receptor (PgR), the oestrogen-
regulated protein pS2 and cathepsin D more strongly than
tamoxifen (Nicholson et al, 1995a). In a study of global gene
expression in MCF-7 cells, after supplemental oestrogen, a subset
of ER-responsive genes upregulated by oestrogen were selected,
and the effects of fulvestrant and tamoxifen were analysed by
microarray expression profiling and Northern blot analysis (Inoue
et al, 2002). For most of these genes, oestrogen-regulated
expression was completely abolished by fulvestrant. In contrast,
in the presence of tamoxifen, some genes remained, in part,
transcriptionally responsive to oestrogen (Inoue et al, 2002).
Similarly, in MCF-7 tumour xenografts, fulvestrant has also been
shown to be more effective than tamoxifen in reducing cellular
levels of the ER and PgR; expression levels of other oestrogen-
regulated genes pLIV1 and pS2 were also greatly reduced (Osborne
et al, 1994, 1995).

Fulvestrant also blocks ER-mediated effects in the MCF-7 cell
line by decreasing the levels of transforming growth factor a
(TGFa), thereby reducing ‘crosstalk’ between these pathways
(Nicholson et al, 1995a). Furthermore, in rat adipocytes, physio-
logical concentrations (0.1– 10 nM) of oestrogen have been shown
to rapidly activate the p42/p44 MAPK independently of transcrip-
tional activation. This effect is also blocked by fulvestrant (Dos
Santos et al, 2002).

Fulvestrant is a more effective growth inhibitor of ER-positive
MCF-7 human breast cancer cells than tamoxifen, producing an

80% reduction in cell numbers under conditions where tamoxifen
achieved a maximum of 50% inhibition (Wakeling and Bowler,
1987). Flow cytometry of MCF-7 cells showed fulvestrant to be
more effective than tamoxifen in increasing the proportion of cells
in G0/G1 and decreasing the proportion of cells capable of
continued DNA synthesis (Wakeling and Bowler, 1987; Wakeling
et al, 1991). Importantly, fulvestrant has also demonstrated
antitumour activity in tamoxifen-resistant MCF-7/TAMR�1 cell
lines, confirming a lack of cross-resistance between tamoxifen and
fulvestrant (Hu et al, 1993; Lykkesfeldt et al, 1994). At fulvestrant
concentrations of 5–10 nmol l�1, cell growth of tamoxifen-
resistant MCF-7 cells was completely inhibited. Compared with
tamoxifen, fulvestrant was 150 times more effective at inhibiting
cell growth in the tamoxifen-sensitive parental line, and 1540 times
more effective in the tamoxifen-resistant variant cell line (Hu et al,
1993). Furthermore, in later preclinical studies, fulvestrant-
resistant MCF-7 cells demonstrated no resistance to tamoxifen,
with sensitivity similar to that of the parental cell line (Lykkesfeldt
et al, 1995).

In vivo, the antitumour activity of fulvestrant was first
demonstrated in two models of human breast cancer in nude
mice. In one of these models, the growth of MCF-7 tumour
xenografts, supported by continuous treatment with oestradiol,
was completely blocked for at least 4 weeks following a single
injection of fulvestrant 5 mg (Osborne et al, 1995). Similar
reductions in growth were seen in the Br10 human tumour model
(Wakeling et al, 1991). In other studies in nude mice bearing MCF-
7 xenografts, fulvestrant suppressed the growth of established
tumours for twice as long and tumour growth was delayed to a
greater extent than was observed with tamoxifen treatment.
Tamoxifen-resistant breast tumours, which grew in nude mice
after long-term treatment with tamoxifen, remained sensitive to
growth inhibition by fulvestrant (Osborne et al, 1994).

Antitumour activity and effects on ER signalling in
patients with breast cancer

The biological and antitumour effects of fulvestrant have also been
evaluated in several trials involving postmenopausal women with
primary breast cancer. The effects of daily i.m. injections of short-
acting fulvestrant (either 6 or 18 mg) for 7 days prior to surgery for
primary breast cancer were compared with no pretreatment
controls in 56 postmenopausal women (DeFriend et al, 1994). In
patients with ER-positive (ERþ ) tumours (28/56), fulvestrant
caused a significant reduction in median ER index (0.73 vs 0.02
pre- and post-treatment, respectively; Po0.001) and almost
abolished PgR expression; the median PgR index was reduced
from 0.50 to 0.01 post-treatment (Po0.05; n¼ 37) in ERþ
tumours. This reduction in cellular ER protein occurred without
a concurrent reduction in ER mRNA levels (McClelland et al,
1996b). Fulvestrant caused a significant reduction in pS2 expres-
sion and tumour proliferation. pS2 expression was reduced from 7
to 1% after treatment (Po0.05; n¼ 37) and the proliferation
marker Ki67 was reduced from 3.2 to 1.1% following fulvestrant
treatment (Po0.05) (DeFriend et al, 1994).

In a subsequent study that compared the effects of a single dose
of long-acting fulvestrant (50, 125, or 250 mg), continuous daily
tamoxifen, or placebo for 14–21 days in patients with primary
breast tumours, all fulvestrant doses produced statistically
significant reductions in ER expression compared with placebo
(50 mg: 32% reduction, P¼ 0.026; 125 mg: 55% reduction,
P¼ 0.0006; 250 mg: 72% reduction, P¼ 0.0001). At the higher
250 mg dose, the fulvestrant-induced reduction was significantly
greater than that observed with tamoxifen (P¼ 0.024) (Robertson
et al, 2001). Significant reductions in PgR expression were also
observed at the fulvestrant 125 mg (P¼ 0.003) and 250 mg
(P¼ 0.0002) doses compared with placebo. In contrast, tamoxifen
resulted in a significant increase in PgR expression relative to
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placebo, a finding attributed to its partial agonist effects and
further emphasising the differences in mode of action between
fulvestrant and tamoxifen (Robertson et al, 2001) (Figure 4).

Fulvestrant produced significant dose-dependent reductions in
Ki67 compared with placebo (50 mg: P¼ 0.046; 125 mg: P¼ 0.001;
250 mg: P¼ 0.0002), although there were no differences in Ki67
between fulvestrant and tamoxifen (Robertson et al, 2001). The cell
turnover index (CTI) is a composite measurement of both cell
proliferation and apoptosis, and provides a useful indicator of
drug action on breast tumour growth. In the same study, patients
receiving fulvestrant 250 mg showed a significant reduction in the
CTI compared with those who received placebo (P¼ 0.0003) and
tamoxifen (P¼ 0.026). The effect on CTI with tamoxifen was not
significantly different from that with placebo (Bundred et al, 2002).

Taken together with the preclinical data, these findings
emphasise the differences in mode of action and the lack of
cross-resistance between the SERMs and fulvestrant, which has
latterly been supported by phase III data, demonstrating the
efficacy of fulvestrant in patients with tamoxifen-resistant disease.

CONCLUSIONS

Fulvestrant is a new type of endocrine treatment – an ER
antagonist with a novel mode of action. Fulvestrant disrupts ER
dimerisation and nuclear localisation, completely blocking ER-
mediated transcriptional activity and accelerating receptor degra-
dation. Consequently, fulvestrant also blocks the activity of
oestrogen-regulated genes associated with breast tumour progres-
sion, invasion, metastasis and angiogenesis. The antitumour effects
of fulvestrant have been demonstrated both in preclinical studies
and in clinical trials, using a number of prognostic and predictive
markers. This new type of endocrine therapy has no oestrogen
agonist effects, and lacks cross-resistance with other antioestro-
gens. Antioestrogens with novel mechanisms of action such as
fulvestrant represent a valuable second-line treatment option for
postmenopausal women with hormone-sensitive advanced breast
cancer, who have progressed on prior tamoxifen therapy.
Fulvestrant and other new endocrine therapies may also provide
opportunities for a longer treatment period with well-tolerated
endocrine therapy before the need for cytotoxic chemotherapy.
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