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The need for systematic drug repurposing has seen a steady increase over the past
decade and may be particularly valuable to quickly remedy unexpected pandemics. The
abundance of functional interaction data has allowed mapping of substantial parts of the
human interactome modeled using functional association networks, favoring network-
based drug repurposing. Network crosstalk-based approaches have never been tested
for drug repurposing despite their success in the related and more mature field of pathway
enrichment analysis. We have, therefore, evaluated the top performing crosstalk-based
approaches for drug repurposing. Additionally, the volume of new interaction data as well
as more sophisticated network integration approaches compelled us to construct a new
benchmark for performance assessment of network-based drug repurposing tools, which
we used to compare network crosstalk-based methods with a state-of-the-art technique.
We find that network crosstalk-based drug repurposing is able to rival the state-of-the-art
method and in some cases outperform it.
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1 INTRODUCTION

Drug repurposing or repositioning has seen a steady increase over the past decade, culminating in a
doubling of the number of published articles in PubMed during 2020 (959) compared with 2019
(458). Increased time and cost associated with traditional forms of drug discovery as well as the
increase in data for drug repurposing methods are driving the observed rise (Jourdan et al., 2020).
The exponential increase seen during the last year can primarily be attributed to the start of the
COVID-19 pandemic that launched the scientific community into a desperate search for a quick and
affordable solution to the crisis (Singh et al., 2020).

The initial repurposing approaches, during 2020, turned to clinical experience and anecdata-
driven predictions, resulting in futile clinical trials investigating the same treatments, such as
hydroxychloroquine (Gysi et al., 2021). However, as the panic subsided, a more systematic approach
to drug repurposing involving computational drug repurposing methods started to gain more
traction. Taking advantage of the increased availability of functional interaction data such as
protein–protein interactions (PPIs) and co-regulation in pathways of biological processes, network-
based approaches are shown to excel at the drug repurposing task (Guney et al., 2016).

At its core, network-based drug repurposing relies on some form of topological similarity
between the set of disease-related proteins and the proteins targeted by a drug in the context of a
PPI network. The network in question is the amalgamation of knowledge about the complex
biology of the cellular mechanisms involved in the pathology of the studied disease and the
mechanism of action of the drugs intended for repurposing. It is, therefore, imperative that the
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network used for the network-based approaches is
comprehensive and biologically sound (Guala et al., 2019).

A previous study of drug repurposing methods (Guney et al.,
2016) used a network that consisted of a collection of PPIs,
retrieved from a few databases, to benchmark different ways to
measure topological similarity and compared the best approach
to other state-of-the-art computational drug repurposing
methods. The network-based approach relying on the shortest
path between the drug-targeted proteins and the closest disease-
related protein outperformed other approaches, such as those
based on the network distance between targets, network diffusion,
chemical similarity, Gene Ontology (Ashburner et al., 2000) term
overlap for drug–drug similarity, co-regulation of genes in LINCS
(Stathias et al., 2020), and shared side effects.

An adjacent area of bioinformatics that relies on robust and
comprehensive functional association networks is functional
enrichment analysis, also known as pathway analysis (Maleki
et al., 2020). Pathway analysis is often used to uncover the
underlying biological mechanisms and processes mediating the
effects of drugs, and pathology in diseases. The newest methods,
in pathway analysis, study network crosstalk, i.e., the interaction
between sets of genes in the network, for example, the crosstalk
between a set of disease-related genes and pathways with known
biological functions. Given the substantial performance increase
of crosstalk-based pathway analysis compared with other
approaches (Ogris et al., 2017; Castresana-Aguirre and
Sonnhammer, 2020), we propose to use crosstalk-based tools
also for drug repurposing. One way to achieve this is to evaluate
the similarity between drug-target proteins and disease-related
proteins by measuring the crosstalk between the two sets
compared with an expected crosstalk in the underlying
network between similar sets of nodes in terms of size and
connectivity. Another approach would be to use network
diffusion (Köhler et al., 2008), also commonly used for
network-based pathway analysis (Glaab et al., 2012), to assess
drug–disease similarity. However, a network diffusion approach
in which longer paths are down-weighted exponentially was
already evaluated for drug repurposing and was outperformed
by the shortest path approach previously (Guney et al., 2016).
Additionally, the same shortest path–based approach performed
better than a random walk–based diffusion method in an
evaluation of drug repurposing for COVID-19 (Gysi et al., 2021).

The need for reliable computational drug repurposing
methods was clear during the outbreak of the COVID-19
pandemic. Since the previous evaluation of drug repurposing
methods (Guney et al., 2016), new methods have been developed,
more data on drugs and their actions have become available, and
the networks of functional associations have become more
comprehensive (Guala et al., 2019). Given that new data only
partially is used in the form of an updated network in the
evaluation of drug repurposing for COVID-19 (Gysi et al.,
2021), a complete update of drug repurposing evaluation is
highly relevant. A further issue with the Guney et al. (2016)
benchmark is that it assumes all unknown drug–disease
associations to be negatives, which is unnecessarily strict as
some of them are yet to be discovered positives that can be
identified by overlap. Taken together, this warrants an update of

the benchmark in terms of both data and methodology. In this
study, we, therefore, compare the performance of network
crosstalk-based drug repurposing with the shortest path–based
method considered to be the state of the art on a much larger
drug–disease interaction data set in the context of a
comprehensive functional association network.

2 MATERIALS AND METHODS

2.1 The Guney2016 Benchmark
To evaluate the performance of the studied drug repurposing
tools, the data set initially published by Guney et al. was used
(Guney et al., 2016). In that data set, disease-associated genes
were retrieved from the Online Mendelian Inheritance of Man,
OMIM (Hamosh et al., 2005) database and the GWAS catalog at
PheGenI (Ramos et al., 2013), keeping 79 diseases with at least 20
genes in the underlying human PPI network from a previous
study (Menche et al., 2015). The network comprised a collection
of PPIs from a few experimental databases consisting of 13,329
proteins and 141,150 interactions. Drugs and drug targets were
downloaded from DrugBank (Wishart et al., 2018) and mapped
to diseases using medical subject headings. Drugs without targets
in the underlying network as well as drugs with the same
therapeutic indication and targets as already included drugs
were removed, yielding 238 drugs. This produced a
benchmark of 402 positive and 18,162 negative
drug–disease pairs.

2.2 The FunCoup Benchmark
2.2.1 The Functional Association Network
One of the most comprehensive functional association networks,
FunCoup (Alexeyenko et al., 2011; Persson et al., 2021), was used
as the substrate for the network-based drug repurposing
algorithms in this benchmark. FunCoup is a framework for
integrating large-scale experimental data on gene–gene and
protein–protein interactions. It uses naïve Bayesian integration
to combine both direct and indirect interactions stemming from
11 different types of data, pertaining to co-expression, co-
localization, co-evolution, co-regulation, domain–domain
interaction, genetic interaction, and PPI (Guala et al., 2019).
Each type of evidence is uniquely scored, shared via orthology
across the included species, and trained using gold standards,
such as metabolic and signaling pathways from Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa,
2000), confirmed pairwise and complex PPIs from iRefIndex
(Razick et al., 2008), CORUM (Giurgiu et al., 2019), and
ComplexPortal (Meldal et al., 2019) as well as operon
information from OperonDB (Pertea et al., 2009). The latest
update of FunCoup, release 5, which was used in the study,
encompasses genome-wide networks for 21 different species from
all domains of life and the SARS-CoV2 virus–human interactome
(Persson et al., 2021); however, only its Homo sapiens network
was used in this study. The default interaction confidence
threshold of 0.8, applied to enrich the resulting network for
high quality interactions, generated a H. sapiens network
containing 12,848 proteins and 612,284 interactions.
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2.2.2 Disease and Drug Target Data
The Comparative Toxicogenomic Database (CTD) (Davis et al.,
2021) was used as the source of manually curated information
about drugs and diseases including drug–target interactions as
well as disease-related genes, or disease genes in short. Drug
target information in CTD is manually curated from published
literature as well as public databases, such as DrugBank. The
information on diseases and related genes is also manually
curated from published literature or extracted from OMIM.
For the purpose of this study, the initial set of CTD drugs was
filtered for drugs with at least one drug target in the FunCoup
network, resulting in 1370 drugs. A similar filtering was
performed for the CTD diseases. However only diseases with
at least 20 disease-related genes in the FunCoup network were
kept as in similar evaluations (Guney et al., 2016), yielding
212 well-characterized diseases. The combination of diseases
and drugs comprised 8518 drug–disease associations, which
were designated as positive in the continued analysis. The
remaining 281,922 drug–disease combinations were designated
as negative.

For a negative drug–disease combination with an overlap
between drug targets and disease genes, the studied
drug–disease pair may be positive but yet unverified. To
minimize the risk of misclassifying a positive drug–disease
combination as a false positive, all combinations with gene
overlap were removed from the negatives set. The final
benchmark contained 8518 positive and 159,144 negative
drug–disease pairs.

2.3 The Time-Stamped Benchmark
To validate newly predicted drug–disease combinations, we used
new indications that have come about after the Guney2016
benchmark and used these together with the original network
to construct a time-stamped benchmark. There were 40 diseases
that could be matched by name in both the Guney2016
benchmark and the FCbench. Drugs that have been
repurposed since the Guney2016 benchmark, i.e., drugs that

received a new indication for at least one of the 40 diseases,
caused a change in the label of the corresponding drug–disease
combinations, switching from negative status in the Guney2016
benchmark to positive status in the time-stamped benchmark.
This produced 362 new drug–disease combinations. After
removing 473 negatives due to overlap between drug targets
and disease genes, the time-stamped benchmark comprised
764 positive and 17,327 negative drug–disease pairs.

2.4 Network-Based Drug Repurposing
Methods
Network-based drug repurposing methods in this study used
either shortest path or network crosstalk to assess the
similarity between the set of drug targets and the set of
disease genes (Figure 1). There are different ways of
measuring the shortest path between two sets of nodes in a
network. In a previous study (Guney et al., 2016), the shortest
path between drug targets and the closest disease gene is shown
to outperform the other distance measures. We, therefore,
used that method in our study and refer to it as “proximity.”
Because crosstalk-based distance measures have never before
been used for drug repurposing, we used the three most
prominent crosstalk-based approaches here.

2.4.1 Proximity
To assess the distance, d, between a drug, T, and a disease, S, the
shortest path between all drug targets and all disease-related
proteins was calculated. The distance, d(T, S), was the average
shortest path between every drug target and its closest disease
gene, where ||T|| is the number of drug targets.

d(T, S) � 1
‖T‖ ∑t∈Tmins∈Sd(t, s)

To normalize the distance with respect to the topological
properties of the network, a degree-aware node permutation

FIGURE 1 | Network-based drug repurposing, proximity vs. crosstalk, for a given disease and drug. In crosstalk, the number of network links between all drug
targets and disease genes is used while, in proximity, the length of the single shortest path between any drug target and any closest disease gene is used.
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approach was adopted. The nodes in the network were divided
into bins according to node degree with 100 nodes in each bin. A
random sample of drug targets and disease genes was performed,
matching the sampled nodes in both the number and degree
distribution by sampling nodes from the same bin as the observed
targets/genes. The d(T, S)was calculated for the sampled sets and
the procedure was repeated 1000 times. The mean, μR, and
standard deviation, σR, of the distribution of randomly
sampled distances was used to normalize the observed
distance and to assess its significance. (Guney et al., 2016).

zprox � d − μR
σR

Proximity was sped up and re-implemented in R for the
purpose of this study from the original Python version
(https://github.com/emreg00/proximity) published by Guney
et al. (2016).

2.4.2 NEAT
For this drug repurposing method, similarity between two sets of
nodes in a network is estimated by measuring the crosstalk,
i.e., the number of links, between the two sets. A larger crosstalk
suggests a greater similarity between the two sets. To normalize
the observed crosstalk, x, the mean, μH, and the standard
deviation, σH, of the expected crosstalk between sets of nodes
with the same size as the drug targets and disease genes can be
calculated assuming a hypergeometric distribution of links in the
underlying functional association network (Signorelli et al.,
2016). Below the number of drug targets, K, the number of
disease genes, n, and the total number of genes in the network,N,
can be used to determine, the mean, μH, and the standard

deviation, σH, μH � n K
N and σH �

����������
μH

(N−K)
N

N−n
N−1

√
.

Normalization of crosstalk is carried out as follows:

zNEAT � x − μH
σH

2.4.3 BinoX
The BinoX approach to drug repurposing also uses crosstalk as a
measure of similarity, but assumes a binomial distribution,
i.e., Bin(nx, px), of crosstalk between two sets of nodes in the
underlying network (Ogris et al., 2017), where nx is the maximum
possible crosstalk. To estimate the parameter px of the underlying
distribution, to serve as a comparator for the observed crosstalk,
x, the network is randomizedM times using topology-preserving
link shuffling (McCormack et al., 2013).

px �
1
M∑M

i xi

nx

The mean, μb � nxpx, and the standard deviation,
σb � nxpx(1−px) can be calculated for the expected crosstalk,
using nx and px, and the observed crosstalk can be normalized
producing a z-score as for NEAT.

For calculating μb and σb, the stand-alone version of the
pathway enrichment tool BinoX (https://bitbucket.org/
sonnhammergroup/binox/) was used (Ogris et al., 2017).

2.4.4 ANUBIX
The ANUBIX approach assumes that network crosstalk follows a
beta-binomial distribution, where the probability of crosstalk is
binomially distributed with the parameter px following a Beta
distribution, i.e., Beta(α, β). To compare the observed crosstalk to
the expected crosstalk, a degree-aware randomization procedure
is applied. In this procedure, for each drug–disease pair, a set of
nodes with the same size and degree distribution as the set of drug
targets is sampled from the network, and its crosstalk with the set
of disease genes is calculated. The procedure is repeated 100
times, and maximum likelihood estimation is used to estimate the
parameters of the Beta distribution. The mean and standard
deviation of the sampled crosstalk are calculated as for BinoX
and a similar normalization procedure is applied to obtain the
normalized crosstalk score, zanubix. The estimation of parameters
for the Beta distribution as well as the calculation of mean,
standard deviation, and p-values was conducted using a re-
implementation of the pathway enrichment tool ANUBIX
(Castresana-Aguirre and Sonnhammer, 2020).

2.5 Drug–Drug Similarity–Based
Repurposing
For diseases that already have approved treatment options, a
common repurposing technique is to study the similarity of new
drugs to the already approved ones. We, therefore, applied the
above-mentioned repurposing methodologies to assess
drug–drug similarity of new drugs to the drugs already
approved for a disease.

For proximity, the drug–drug similarity, s(T, S), between
drug T and disease S is

sprox(T, S) � e−min(zT,S)

For the crosstalk-based methods, the drug–drug similarity is

scrosstalk (T, S) � max(zT,S)
The z vector in both equations above refers to the method-

specific normalized z-scores calculated between drugs indicated
for a disease and each of the other candidate drugs, where Ts

denotes drugs approved for disease S with ts being all the drug
targets for the drug Ts.

zT,S � ∀Ts approved Sz(t ∈ T, ts ∈ Ts)

2.6 Performance Evaluation
Prior to running the drug repurposing methods on the
drug–disease combinations in the three data sets, we examined
the set of negative drug–disease combinations for potential
positives misclassified as negatives. The potential positives
were deemed to be those drug–disease combinations for which
there was gene overlap between drug targets and disease genes.
Potential positives were filtered from the analysis.

Running each drug repurposing approach on every
drug–disease combination produced z-scores and corrected
p-values, which were used in the evaluation. To interpret the
z-score output from a drug repurposing method as a classification
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of drug–disease combinations into positives or negatives, a
z-score threshold was required. In the Guney2016 benchmark,
the threshold was set as the z-score at the intersection of the
sensitivity and specificity curves when visualizing the change in
sensitivity and specificity as functions of the z-score in the same
graph. Sensitivity was defined as the proportion of correctly
assigned instances of the positive class, also known as recall or
true positives among all positives. Specificity was defined as the
proportion of correctly assigned instances of the negative class,
also known as true negatives among all negatives.

Performance metrics used in the Guney2016 benchmark
and in this study are considered to be among the most
commonly used performance metrics for evaluation of drug
repurposing approaches (Schuler et al., 2020) and include
receiver operating characteristic (ROC) curve and area
under the ROC curve, AUROC. The ROC curve is a
convenient visualization of the change in sensitivity also
known as recall or true positive rate, TPR, and the false
positive rate, FPR, at various thresholds, T. The AUROC
provides a summary metric for the performance of a
classifier visualized in the ROC curve and can be
interpreted as the probability of ranking a randomly chosen
positive sample higher than a randomly chosen negative one
(Bradley, 1997).

AUROC � ∫∞
−∞
TPR(T)FPR′(T)dT

AUROC was calculated both for the full data set of all
drug–disease combinations as well as on 100 randomly
sampled sets containing all positives and equally many
negatives. The sampling procedure was applied to address the
inherent class imbalance of the data set. The Wilcoxon signed-
rank test was used to compare the performance of different drug
repurposing methods.

Additionally, we also assessed the precision recall (PR) curve as
well as the area under it (AUPR) (Keilwagen et al., 2014) because
both are also commonly used to assess performance of classifiers.
The PR curve visualizes the change in precision and recall at
different thresholds. Because the number of true positive
drug–disease combinations is much lower than the number of
false positive ones, the AUPR punishes the top-ranked FPs more
than AUROC (Davis and Goadrich, 2006). However, the whole
premise of drug repurposing is that our knowledge of valid
drug–disease combinations is incomplete, meaning that many of
the drug–disease combinations that we currently consider as false
positive are merely untested true positives. This notion is supported
by both the time-stamped benchmark and other work (Rivero-
García et al., 2021) and is causing the AUPR to be an unreasonably
conservative and, thus, less suitable performance measure as
compared with AUROC.

The abovementioned metrics rely on the knowledge of both
true positives and true negatives. However, most of the
drug–disease combinations designated as negatives are, in fact,
unknown. Although we did try to address this by filtering
combinations with overlap in drug targets and disease genes,
there may still be many potential positives left. We, therefore, also

assessed performance of drug repurposing using the less rigorous
metric of the recall at the z-score cutoff (Brown and Patel, 2018).

2.7 Multiple Hypothesis Testing
All p-values produced in the study were corrected for multiple
hypothesis testing using the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995).

3 RESULTS

3.1 Benchmark Characteristics
The benchmark presented here comprises a total of 290,437
drug–disease combinations, where 8,397 came from approved
indications, 180 from clinical trials, 242 were contraindicated,
and 121 were registered as off-label. The remaining 281,500 came
from linking drugs to diseases with which they are not associated,
denoted as “unknown.” Drug–disease pairs with approved
indication or used off-label were considered as positives.
Contraindicated combinations and drug–disease pairs in
clinical trials were removed. The remaining drug–disease
combinations, i.e., the unknown, were denoted as negatives.
Sensitivity analysis when adding back contraindicated
drug–disease pairs as well as pairs studied in clinical trials to
the positive class was conducted and yielded the same results
(Supplementary Figure S1).

For a negative drug–disease combination with an overlap
between drug targets and disease genes the studied
drug–disease pair may be positive but yet unverified. This is
supported by the fact that the proportion of drug–disease
combinations with overlapping genes was markedly enriched
for approved or off-label annotations compared with those
annotated as “unknown” (Figure 2). Removing drug–disease
combinations with gene overlap from the negative set resulted
in the FCbench containing 8,518 positives and 159,144 negatives.
This represents a 21-fold increase of positives and a nine-fold
increase of negatives compared with the Guney2016 benchmark.

A subset of 40 diseases that appeared in both the Guney and
the current benchmarks had received at least one new drug as a
treatment. We, therefore, updated the classification of these new
drug–disease combinations in the Guney2016 benchmark from
negative to positive to produce a time-stamped benchmark. The
time-stamped benchmark comprises 764 positives and 17,327
negatives.

3.2 Evaluation of Methods to Score
Drug–Disease Association–Based Drug
Repurposing
The relationship between drug targets and disease genes in the
context of a functional association network was assessed using
four different drug repurposing approaches: one based on the
shortest paths, proximity, and three based on crosstalk, NEAT,
BinoX, and ANUBIX. Since the studied relationship was
between drug targets and disease genes, we refer to the
outcome as a drug–disease association. Each of the evaluated
drug repurposing approaches produced an association score
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between a drug and a disease with higher score, i.e., shorter
distance for proximity and higher crosstalk for the other
methods, suggesting a higher probability of the studied drug
being used for the specific disease. The scoring was evaluated on
three data sets with drug–disease combinations, using ROC
curves, AUROC, and recall (see Materials and Methods). PR
curves, AUPR, and some other metrics, e.g., Matthews
correlation coefficient (mcc) and F1-score, were also
evaluated for completeness, but due to their unsuitability as
performance metrics for this task were only included in the
Supplementary Material.

3.2.1 Performance on the Guney2016 Benchmark
Visual inspection of the ROC curves for the full Guney2016
data set suggests superior performance of the BinoX
approach compared with all the other approaches (Figure 3A).
The AUROC achieved by BinoX (median = 0.714) stands
out from the rest that tightly follow each other: proximity
(median = 0.677), ANUBIX (median = 0.667), and NEAT
(median = 0.657) (Table 1). The AUROC under the equal label
sampling from the benchmark confirms the order and indicates
that the observed differences in performance were statistically
significant (p < .01).

3.2.2 Performances on the Time-Stamped Validation
In the time-stamped validation of the Guney2016 benchmark,
362 drug–disease associations were changed from negatives to
positives, resulting in almost a doubling of the number of
positive combinations from 402 to 764. This resulted in a
variable degree of loss of performance for all the methods
(Table 1). The largest drop in AUROC performance was
noted for BinoX by 17% (AUROC = 0.541) followed by
NEAT 12% (AUROC = 0.535). As a result, BinoX no

longer outperformed the other methods, and instead, the top
methods became ANUBIX (AUROC = 0.645) and proximity
(AUROC = 0.633), which were considerably more accurate.
The difference in performance between the methods was once
again statistically significant (Figure 4).

The explanation for the large drop in performance for BinoX
and NEAT is the fact that both methods correctly classified only
roughly 10% of the new positives as positives while ANUBIX and
proximity correctly classified 33% and 35% of the new positives,
respectively (Table 1).

3.2.3 Performances on the FCbench
The FCbench contains an order of magnitude more positives
than the Guney2016 one (8,397 versus 402) and the time
stamped one, 764 vs. 402. It is also based on a denser and
more complete underlying network, which boosted the
performance of all methods (Figure 5). The difference in
performance proved once again to be statistically significant
with proximity outperforming ANUBIX with an AUROC of
0.868 vs. 0.849, followed by NEAT at 0.759, and finally BinoX at
0.728 (Table 1). A much higher recall was also observed,
primarily for proximity and ANUBIX at 0.793 and 0.782,
respectively, almost doubling the recall from the Guney2016
and time-stamped benchmarks. NEAT and BinoX had a recall of
0.694 and 0.672, respectively.

Performance of the tested drug repurposing methods
differed for the used benchmarks with each benchmark
having a different winner. However, since proximity was
always ranked as the top or second best method, it could
be considered an overall winner with ANUBIX performing
equally well if the old benchmark is ignored. Both proximity
and ANUBIX performed considerably better than NEAT and
BinoX on the benchmarks based on new data.

FIGURE 2 | The proportion of gene overlap (marked “TRUE”) between drug targets and disease genes in the different sets of positive and negative drug–disease
combinations. The proportion of not overlapping genes is marked “FALSE”.
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3.3 Application of Predicted Drug–Disease
Associations for Drug Repurposing
In the FCbench, the two top-performing methods, ANUBIX
and proximity, produced similar AUROC and recall values
with a difference of about 2% in AUROC in favor of ANUBIX
and 1% in recall in favor of proximity. Although this difference
is statistically significant (p < .01) for AUROC, it is hardly
meaningful in terms of overall performance.

Do these two approaches recover the same or similar sets of
drug–disease combinations? The intersection of correctly classified
drug–disease combinations for ANUBIX and proximity contained
6,261 elements while each method uniquely correctly classified 404
and 497 drug–disease combinations, respectively; i.e., they
overlapped by ~94%. Despite the relatively high coverage
demonstrated by both methods and using the same prior
knowledge in the form of the FunCoup network, there were still
unique predictions provided by both methods.

FIGURE 3 | Drug–disease association–based performance on the Guney2016 benchmark. Performance of the different drug repurposing tools: ANUBIX (green),
BinoX (orange), NEAT (purple), and proximity (prox, pink) on (A) ROC curves, where the dotted line represents random prediction, and (B) AUROC using sampled sets
from the benchmark containing equal numbers of positive and negative drug–disease combinations. The pairwise Wilcoxon rank sum test was used to assess the
significance of difference on AUROC. FDR-corrected p-values were obtained using the Benjamini–Hochberg procedure.

TABLE 1 | Performance metrics for all three benchmarks. Performance on the three benchmarks, Guney 2016, time-stamped (time), and FCbench, was assessed for
different drug repurposing tools: ANUBIX, BinoX, NEAT, and proximity (prox). The evaluated metrics include AUROC, recall, and recall on the pairs with changed label in
the time-stamped benchmark (new positives).

AUROC recall

Guney2016 Time FCbench Guney2016 Time Time (new positives) FCbench

ANUBIX 0.667 0.645 0.849 0.433 0.386 0.334 0.782
BinoX 0.714 0.541 0.728 0.635 0.126 0.094 0.672
NEAT 0.657 0.535 0.759 0.602 0.120 0.099 0.694
prox 0.677 0.633 0.868 0.493 0.425 0.351 0.793
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To suggest potential drug repurposing opportunities, we
investigated the drug–disease combinations assigned as
negatives, including combinations previously removed due to
overlap between drug targets and disease genes. We chose to
focus on predictions from the two top performing methods,
ANUBIX and proximity. To increase the chances of
identifying potential positives, we set a method-specific z-score
cutoff, zcutoff � μz + 2σz , only considering combinations with
z-scores above the cutoff. This produced 5,654 combinations
agreed upon by both methods (Supplementary Table S2) as well
as 5,967 and 6,302 combinations assigned uniquely by ANUBIX
(Supplementary Table S3) and proximity (Supplementary Table
S4), respectively. It should be noted that the z-score cutoff was higher
for ANUBIX (z = 8.25) vs. proximity (z = 5.89), which can explain
the slightly lower number of uniquely retrieved combinations.
Among the identified combinations, 97% contained an overlap
between drug targets and disease genes.

After sorting the retrieved drug–disease combinations by the
highest z-scores from proximity and ANUBIX, we looked at the

top 10 suggestions. The top suggestion for repurposing was
palbociclib (DB09073) for hepatocellular carcinoma (HCC).
Palbociclib is a selective inhibitor of cyclin dependent kinases
CD4/CD6, used to treat HER2-negative and HR-positive
advanced or metastatic breast cancer (Finn et al., 2009).
However, it also showed promising results as a novel
therapeutic strategy in preclinical models of HCC (Bollard
et al., 2017). Only looking at the results from proximity, this
combination would have been in 10th place, but adding the
prediction from ANUBIX, we were able to identify this
combination as the top candidate for repurposing.

The second drug–disease combination on the candidates list
was azathioprine (DB00933) and HCC. Azathioprine is an
immunosuppressant used to prevent renal transplant rejection
as well as in treatment of autoimmune disorders, such as Crohn’s
disease and rheumatoid arthritis. Although a conclusive link
between azathioprine and HCC has never been established,
multiple case reports suggest a possible association (Heron
et al., 2016). This finding exemplifies a case when the

FIGURE 4 |Drug–disease association–based performance on the time-stamped benchmark. Performance of the different drug repurposing tools: ANUBIX (green),
BinoX (orange), NEAT (purple), and proximity (prox, pink) on (A) ROC curves, where the dotted line represents random prediction, and (B) AUROC using sampled sets
from the benchmark containing equal numbers of positive and negative drug–disease combinations. The pairwise Wilcoxon rank sum test was used to assess the
significance of difference on AUROC. FDR-corrected p-values were obtained using the Benjamini–Hochberg procedure.
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uncovered drug–disease combination is of a potential side effect
nature rather than a treatment effect, which is usually desired. At
the same time, this supports previously observed results that
network-based drug repurposing can identify potential side
effects and negative drug interactions (Badkas et al., 2021).

Third on the list is testosterone (DB00624) and HCC.
Testosterone is indicated for treatment of hypogonadism and
hypogonadotropic hypogonadism. However, animal models
suggest the implication of testosterone in the etiology of HCC,
which was later supported by the results from a study in humans
where elevated levels of testosterone were associated with
increased risk of HCC (Yu and Chen, 1993). This type of
association could be considered as disease-biomarker rather
than disease treatment or drug–disease side effect. It is not the
primary goal of drug repurposing but could potentially open
other avenues for the use of network-based approaches.

In the eighth place is the combination of one of the few gold-
based drugs, Sodium aurothiomalate (DB09276) and the human
influenza. The human influenza is 50%–65% suppressed by the

current vaccination program, so there may not be a real need for
repurposing any drugs for it. However, there is evidence showing
the potential of gold-based treatments against other viruses. One
such example is auranofin that inhibits replication of the SARS-
COV-2 virus (Rothan et al., 2020), suggesting that gold-based
compounds may also be useful against influenza virus.

Looking at the combinations uniquely predicted for
repurposing by ANUBIX, we found enalaprilat (DB09477) for
left ventricular dysfunction (LVD) as one of the top suggestions
with a z-score of 66.3 (Supplementary Table S3). Enalaprilat is
indicated for treatment of hypertension. However, there is clinical
evidence of enalaprilat causing marked reduction of development
of atrial fibrillation in patients with LVD (Vermes et al., 2003). In
sixth place, the combination of tetrabenazine (DB04844) and
Parkinsonian disorders received a z-score of 49.9. Tetrabenazine
is approved for treatment of Huntington’s disease but is widely
used for various movement disorders for which, among other
effects, it improves levodopa-induced peak-dose dyskinesias in
patients with Parkinson’s disease (Brusa et al., 2013).

FIGURE 5 | Drug–disease association–based performance on the FCbench. Performance of the different drug repurposing tools: ANUBIX (green), BinoX (orange),
NEAT (purple), and proximity (prox, pink) on (A) ROC curves, where the dotted line represents random prediction, and (B) AUROC using sampled sets from the
benchmark containing equal numbers of positive and negative drug–disease combinations. The pairwise Wilcoxon rank sum test was used to assess the significance of
difference on AUROC. FDR-corrected p-values were obtained using the Benjamini–Hochberg procedure.
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3.4 Evaluation of Methods to Score
Drug–Drug Similarity–Based Repurposing
A common approach in drug repurposing for diseases with
already approved drugs is to identify other drugs that are
similar to the already approved ones. To this end, we here
calculate a score for a drug–disease combination based on the
similarity between a drug candidate and a drug already
approved for that disease. This similarity is based on either
the shortest path or crosstalk between the drug targets of a
candidate drug and the drug targets of a drug approved for the
disease, resulting in a z-score for the pair of drugs. The z-scores
are then combined across all approved drugs to produce a
drug–disease similarity score for the drug candidate (see
Methods).

3.4.1 Performances on the Guney2016 Benchmark
The ROC and AUROC performance was markedly increased
compared with drug–disease association with over 30%
improvements for proximity and ANUBIX, followed by 22%
improvement for NEAT, and 17% for BinoX (Table 1 and
Table 2). The results show significantly (p < .01) different
performance for all pairwise comparisons except between
NEAT and BinoX (Figure 6). At an AUROC of 0.989,
proximity showed 1.4% higher performance than ANUBIX
(AUROC = 0.975), followed by BinoX and NEAT at an
AUROC of 0.885 and 0.883, respectively. The recall
increased by about twofold compared with the drug–disease
evaluation for proximity and ANUBIX, resulting in 0.925 and
0.960, respectively, meaning that almost a complete recovery of
all positives was achieved. An increased recall was observed for
NEAT and BinoX as well.

3.4.2 Performances on the Time-Stamped Validation
Also for the time-stamped analysis, performance of drug–drug
similarity was higher for all studied approaches than when
drug–disease association was used. However, in comparison
with the performance of drug–drug similarity on the
Guney2016 data set, the time-stamped performance was lower,
in particular for the previously best-performing tools, proximity
and ANUBIX (Table 2). With a 1% margin, ANUBIX
significantly outperformed proximity in this analysis with an
AUROC of 0.829 vs. 0.820. The difference in AUROC was not
statistically significant between proximity, NEAT, and BinoX
(Figure 7). The recall for the time-stamped data set was
markedly lower than in the Guney2016 benchmark for all
methods except BinoX, which was only slightly lower. BinoX
achieved the highest recall of 0.766 followed by NEAT at 0.748,
proximity at 0.730, and ANUBIX at 0.719. Compared with
drug–disease association, the recall on the new positives was
only marginally higher for proximity and ANUBIX, landing on
0.414 and 0.391, respectively. The already low recall of new
positives seen for BinoX and NEAT in the drug–disease
association analysis shrank further to 0.046 for drug–drug
similarity (Table 2).

3.4.3 Performances on the FCbench
The drug–drug similarity–based performance on the FCbench
also increased compared with the corresponding drug–disease
association–based one for all studied approaches. Proximity
reached the highest AUROC of 0.973, followed by ANUBIX at
0.883, BinoX at 0.823, and NEAT at 0.803 (Figure 8). The same
ranking was reflected in the recall values, where proximity,
ANUBIX, BinoX, and NEAT reached 0.910, 0.823, 0.740, and
0.732, respectively (Table 2). All differences in AUROC were
statistically significant (p < .01) (Figure 8).

4 DISCUSSION

The last couple of years shows that the possibilities for drug
repurposing were far from satisfactory and called for better
methods, in particular computational network-based
approaches that can combine all existing knowledge of drugs,
targets, disease genes, and networks. This study introduces a new
approach to network-based drug repurposing based on network
crosstalk, rivalling available state-of-the-art methods, together
with an updated and comprehensive in silico performance
assessment platform.

The Guney2016 benchmark for drug repurposing tools
introduced by Guney et al. (2016) was applied naïvely but
also utilized as the basis for a time-stamped update. Although
the BinoX tool outperformed the other approaches on the
Guney2016 benchmark, the same achievement was not
reproduced in the time-stamped approach nor in the new,
more comprehensive FCbench. Except for the ranking on the
Guney2016 benchmark, it was clear that the top crosstalk-
based approach was ANUBIX. This can be attributed to the fact
that the both BinoX and NEAT approaches are more prone to
false positives compared with ANUBIX due to the beta-
binomial distribution being a more accurate model of
random crosstalk in the underlying network and that
ANUBIX accounts for nonrandom intrapathway interactions
(Castresana-Aguirre and Sonnhammer, 2020). An additional
insight from the three benchmarks was that all methods
performed much better on the FCbench, which can be
attributed to the more comprehensive underlying functional
association network, FunCoup.

When it comes to the choice of the underlying network, other
comprehensive functional association networks exist, such as
STRING (Szklarczyk et al., 2020) and HumanNet (Yang et al.,
2018). The reason for using FunCoup is both because it relies
solely on experimental evidence, avoiding the noise introduced
by, e.g., text mining that forms the largest evidence type in
STRING, and FunCoup’s superior performance when it comes
to link quality compared with the other networks (Persson et al.,
2021). However, networks keep evolving constantly, and their
comparison is nontrivial. Therefore, the current benchmarking
approach is intentionally flexible and does not require FunCoup
to be used, allowing for any other network to be used in
FunCoup’s place.
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Performance of the studied tools was primarily assessed using
ROC, AUROC, and recall. These metrics are commonly used in
the field of drug repurposing. Despite being an incomplete metric
by only focusing on the positive cases, the importance of recall is
suggested to be favored for drug repurposing due to incomplete
knowledge of all positive drug–disease combinations (Brown and
Patel, 2018). The latter is also the reason why other popular

metrics, such as precision, PR curves, AUPR, Matthew’s
correlation coefficient, and F-measure, may be unreliably
conservative for drug repurposing because they are based on
the false positive rate, which may be highly overestimated. They
were calculated but not included in the final tool evaluation.

Although statistically significant differences were noted
between the top two methods, proximity and ANUBIX, the

TABLE 2 | Drug–drug similarity–based performance metrics for all three benchmarks. Performance on the three benchmarks, Guney 2016, time-stamped (time), and
FCbench, was assessed for different drug repurposing tools: ANUBIX, BinoX, NEAT, and proximity (prox). The evaluated metrics included AUROC, recall, and recall on
the pairs in the time-stamped benchmark (new positives).

AUROC recall

Guney2016 Time FCbench Guney2016 Time Time (new positives) FCbench

ANUBIX 0.975 0.829 0.883 0.925 0.719 0.391 0.823
BinoX 0.885 0.813 0.823 0.791 0.766 0.046 0.740
NEAT 0.883 0.813 0.803 0.831 0.748 0.046 0.732
prox 0.989 0.820 0.973 0.960 0.730 0.414 0.910

FIGURE 6 | Drug–drug similarity–based performance on the Guney2016 benchmark. Performance of the different drug repurposing tools: ANUBIX (green), BinoX
(orange), NEAT (purple), and proximity (prox, pink) on (A) ROC curves, where the dotted line represents random prediction, and (B) AUROC using sampled sets from the
benchmark containing equal numbers of positive and negative drug–disease combinations. The pairwise Wilcoxon rank sum test was used to assess the significance of
difference on AUROC. FDR-corrected p-values were obtained using the Benjamini–Hochberg procedure.
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practical importance of one or a few percent differences is
questionable. Besides, in some evaluations one tool
outperformed the other while the situation was reversed in
other assessments. In the end, both methods present
complementary approaches contributing almost equally to a
substantial proportion of unique predictions, i.e., 68.5% of all
drug–disease predictions being unique to one or the other tool.
This is a clear indication of the potential benefit of using the top
methods in concert both for validation of predictions from one
tool by the other and to get a higher coverage of the
repurposable space.

Another outcome of our analysis supports the findings of the
Guney2016 benchmark. The performance of drug–drug
similarity–based approaches was higher than was seen for the
drug–disease based ones, irrespective of the used drug
repurposing method or benchmark. This could be driven by
the higher recall when similarity between drug targets of
approved drugs and candidate drugs is evaluated. The sets of
disease genes are usually heterogeneous, containing both disease-

causing genes, i.e., drivers, and genes merely affected by the
disease, i.e., passengers. Drug target association with the drivers
may yield a potential therapeutic effect while association with the
passengers does not guarantee an effect on the disease. When
association is assessed for the whole set of disease genes, the
passenger genes may, therefore, introduce noise, decreasing
signal-to-noise ratio and thereby also performance. A potential
way to address this issue could be to purify the set of disease genes
by preclustering, an approach that is shown to increase sensitivity
in pathway analysis (Castresana-Aguirre, 2021). While many
disease genes are known for each disease, most drugs have
only one or a few drug targets, e.g., for the FDA-approved
drugs in DrugBank, the median number of targets was three
(Rivero-García et al., 2020). This suggests that the set of drug
targets for a drug is, for the most part, a more homogeneous set.
Many of the novel treatments consist of monoclonal antibodies
with only one target, suggesting that even more specificity is on
the horizon. This increases the signal-to-noise ratio when
drug–drug similarity is used for repurposing. However, the

FIGURE 7 | Drug–drug similarity–based performance on the time-stamped benchmark. Performance of the different drug repurposing tools: ANUBIX (green),
BinoX (orange), NEAT (purple), and proximity (prox, pink) on (A) ROC curves, where the dotted line represents random prediction, and (B) AUROC using sampled sets
from the benchmark containing equal numbers of positive and negative drug–disease combinations. The pairwise Wilcoxon rank sum test was used to assess the
significance of difference on AUROC. FDR-corrected p-values were obtained using the Benjamini–Hochberg procedure.
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drawback is that drug–drug similarity requires at least one drug to
be approved for a disease to repurpose more drugs for that
disease. On the other hand, the approach could be attempted
even for diseases without approved treatments if related diseases
do have drugs approved for them.

In the assessment of the potential drug repurposing
candidates, it was apparent that not all the predictions were
related to potential new treatment opportunities. Some
drug–disease combinations were suggestive of potential drug-
related side effects. This supports the fact that network-based
drug repurposing methodologies can also be used to identify
potential side effects, something we hope to explore in the future.

In conclusion, in this study, we employed a comprehensive
framework of functional interaction data to create a platform for
in silico assessment of network-based drug repurposing, which
can be utilized for robust evaluation of new drug repurposing
strategies. Additionally, we show that network crosstalk-based
approaches can rival the state-of-the-art network-based
repurposing method, thereby adding to the arsenal of tools

that can be used by the scientific community in the search for
novel applications of already approved treatments for the benefit
of patients.
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