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Abstract: Although skin-like pressure sensors exhibit high sensitivity with a high performance
over a wide area, they have limitations owing to the critical issue of being linear only in a narrow
strain range. Various strategies have been proposed to improve the performance of soft pressure
sensors, but such a nonlinearity issue still exists and the sensors are only effective within a very
narrow strain range. Herein, we fabricated a highly sensitive multi-channel pressure sensor array
by using a simple thermal evaporation process of conducting nanomembranes onto a stretchable
substrate. A rigid-island structure capable of dissipating accumulated strain energy induced by
external mechanical stimuli was adopted for the sensor. The performance of the sensor was precisely
controlled by optimizing the thickness of the stretchable substrate and the number of serpentines of
an Au membrane. The fabricated sensor exhibited a sensitivity of 0.675 kPa−1 in the broad pressure
range of 2.3–50 kPa with linearity (~0.990), and good stability (>300 Cycles). Finally, we successfully
demonstrated a mapping of pressure distribution.

Keywords: pressure sensor; stretchable electronics; piezoresistive; electronic skin

1. Introduction

E-skin [1–10], human–machine interfacing (HMI) [11–14], wearable healthcare de-
vices [15–18], and soft robotics [19–21] that can transmit external stimuli applied to the skin
as electrical signals, are receiving widespread attention in various fields. These devices re-
quire sensors that can transmit external stimuli as electrical signals. However, it is difficult
for these sensors to obtain stable signals because of their difference in modulus with the
skin. Therefore, the focus is on realizing a flexible and stretchable device that can overcome
this difference in modulus.

Among such flexible and stretchable sensors, pressure sensors have enormous poten-
tial and adaptability to various devices. They are used in healthcare devices because they
can provide vital bio-signals such as blood pressure and skin deformation with high relia-
bility and non-invasiveness. These sensors consist of four types: 2D material type [5,22,23],
capacitance type [7,24–26], piezoelectric type [27,28], or piezoresistive type [29–32]. Among
these types, the advantages of the capacitance-type pressure sensor include a simple pres-
sure derivation formula, low power consumption, and relatively high sensitivity. However,
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because the area occupied by the sensor affects the signal-to-noise ratio (SNR), and the
noise interference from various external stimuli is severe, it is difficult to achieve multi-
channel mode and miniaturization [33,34]. The piezoelectric-type pressure sensor converts
normal force into electrical charge using inorganic piezoelectric materials such as lead
zirconate titanate (PZT) and ZnO. Its advantages include a high sensitivity to dynamic
pressure and fast response. Conversely, errors may be induced by the presence of signal
drift, and its measurement properties have a low reliability [35–37]. An additional feedback
loop system is needed to solve this problem, which leads to a poor measurement modality.
The piezoresistive pressure sensor has a simple structure, so its manufacturing process is
also simple. Additionally, its signal readout mechanism and formula are simple, so easy
microfabrication is possible. In addition, the stretchable piezoresistive pressure sensor can
measure both dynamic and static pressure, and because of its high sensitivity and high
linearity over a wide pressure range, it is desirable for acquiring the physiological pressure
data of the human body. Therefore, in order to overcome the difference in modulus with the
skin, various strategies with piezoresistive pressure sensors were proposed. Among them,
a pressure sensor with high sensitivity was proposed by making microstructures such
as micropyramids [10,31,38,39], microdomes [40], and hollow spheres [41] on stretchable
dielectric layers. These strategies all essentially have high sensitivity. However, the fabrica-
tion process is relatively difficult, and it has low linearity due to the gradual deformation in
the high-pressure region [31]. As another strategy, a pressure sensor made to be stretchable
using a porous substrate like a sponge has been proposed [32,42]. However, these strate-
gies have a limited strain range, and the pre-existing space affects the sensitivity in the
low-pressure region [32]. It is important to have high linearity both in the high-pressure
region and in the low-pressure region.

Herein, we propose a soft pressure sensor array based on a conducting nanomembrane
for human–machine interfaces. Our device shows high linearity over a wide pressure range
using a serpentine rigid-islands structure with a Au nanomembrane. Since microstructure is
not required, the microfabrication process is quite simple and has relatively high sensitivity.
The stretchability of the device was ensured by using a highly stretchable styrene–ethylene–
butylene–styrene (SEBS) substrate. The performance of the devices was precisely controlled
by optimizing the thickness of the stretchable substrate and the number of serpentines in
the Au nanomembrane. The fabricated devices, by using a simple thermal evaporation
process, exhibited a sensitivity of 0.675 kPa−1 in the broad pressure range of 2.3–50 kPa with
linearity (~0.990) and good stability (>300 Cycles). Furthermore, a pressure sensor array
has been demonstrated for the mapping of pressure distribution. As shown in Figure 1a–c,
our device can be used as a multi–channel pressure sensor array in e–skin due to its soft
property.
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2. Materials and Methods
2.1. Simulation of Stretchable Pressure Sensor

Since the value of the pressure sensor depended on the strain of the Au nanomembrane,
it was important to understand the pressure-induced deformation of sensors. When the Au
nanomembrane was pressed, the electrical resistance changed. Under the specific pressure,
the substrate thickness and deformation affected the sensitivity of the sensor. Essentially,
thinner substrates were more deformed and more sensitive. However, a substrate that is
too thin may cause a larger deformation of the Au nanomembrane due to its poor strain
dissipation ability. As a result, the sensor with a very thin substrate has limited operating
pressure ranges because of irreversible damage to the Au nanomembrane [43]. With the
effect of the substrate thickness, the proportion of the actual pressed area to the entire
serpentine area of the sensor affects the strain value of the Au nanomembrane. This is
because the wider the pressed area, the greater the deflection of the contact edge of the
gold serpentine nanomembrane by the rigid and flat cylindrical bar. Thus, it is important
to systemically study the sensing mechanism, including the effect of the substrate thickness
on the sensor performance and the pressure-induced strain on the serpentine area using
simulation.

To understand the deformation of the sensor by external pressure and the strain of
the Au nanomembrane, we used engineering simulation software (ANSYS, Ansys Inc.,
Canonsburg, PA, USA) to simulate the finite element analysis (FEA) on the effects of the
reference temperature (stress-free) as shown in Figure 2. The simulation calculated the
deformation of the Au nanomembrane encapsulated with PI (Poly (pyromellitic dihydride-
co-4,4′-oxydianiline) and SEBS materials and, based on the results, the von Mises-Hencky
theory (also known as the shear-energy theory or maximum distortion energy theory) was
utilized. To compare the strain changes with the substrate thickness, five different types
of SEBS substrate (thickness of 50, 100, 150, 200, and 250 µm) were designed to conduct
contact assembly with the model. Figure 2a shows that samples of thin substrates have a
larger maximum von Mises strain change, compared to the samples of thicker substrates,
when pressed with the cylindrical bar on a full dimension of the serpentine area. However,
a rapid increase in strain changes below 100 µm thickness caused irreversible damage
to the Au nanomembrane. Figure 2b is a contour image comparing the von Mises strain
in the Au nanomembrane on 150 µm and 100 µm substrates. Unlike the strain on the
150 µm substrate, a critical strain occurred at the edge where the Au nanomembrane and
the cylindrical bar were contacting, and we analyzed that the poor strain dissipation ability
was shown on the 100 µm and the thinner substrate. To compare how the pressure with
different areas affected the amount of strain changes, the substrate thickness was fixed to
150 µm and five different diameters (20%, 40%, 60%, 80%, and 100% ratio of bar with 3 mm
bottom) were designed with a flat and high-strength ABS (Acrylonitrile butadiene styrene)
cylindrical bar. Subsequently, the simulation was performed by contact assembly with
the pressure sensor model of the serpentine structure. Figure 2c shows that the wider the
ratio of pressed serpentine area to the total area, the greater the amount of maximum von
Mises strain change in the Au nanomembrane. Specifically, the strain became critical when
pressed with a cylindrical bar with a diameter of more than 80% of the total area. When
pressure was applied to 80% of the total area of the sensing area, a larger strain occurred
at the contact edge, but irreversibly damaged the gold membrane [44,45]. Therefore, it is
estimated that a critical strain will occur when pressure is applied to the entire area and that
it will exhibit a relatively stable repeatability than the former case, as shown in Figure 2d.
From the FEA result, we set the condition to give the sensor above 150 µm substrates as
much pressure as the entire area of our pressure sensor design rule and predicted that it
would have the best sensitivity. Section 2.2 explains how to fabricate the sensor designed
with the above FEA results.
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2.2. Fabrication and Transfer Printing of a Stretchable Pressure Sensor

Figure 3a shows the fabrication process of the soft pressure sensor electrode. A
4 × 4 array of pressure sensor electrodes consists of a single electrode component with a
7.5 mm × 7.5 mm2 structure. The interconnection of each electrode consists of a serpentine
structure, enabling stretchability in the overall system deformation via mechanical strain.
The fabrication process of the metal-based electrodes was carried out on a SiO2 wafer
substrate, and the electrodes had a bilayer structure consisting of a chromium (Cr) adhesion
layer and a gold (Au) membrane layer. To separate the electrode from the wafer substrate,
the top and bottom sides of the electrodes were supported with polyimide (PI) backbone
layers. PI, amic acid solution 12.8 wt%, Sigma-Aldrich, Burlington, MA, USA) solution
was uniformly coated with a spin-coater (SPIN-3000D, MIDAS SYSTEM Co., Ltd., Daejeon,
Korea) on a treated substrate and baked in an oven. When the bottom layer of the PI
backbone was formed on the wafer, Cr/Au nanomembrane layers were deposited using a
thermal evaporator (A-SYSTEMS). Subsequently, a positive PR (GXR-601, AZ Electronic
Materials, Luxembourg) was spin coated, and the photolithography process was performed
using a mask aligner (MDA-400M, MIDAS SYSTEM Co., Ltd.) to draw electrode patterns
on the substrate. A developer (MIF-300, AZ Electronic Materials, Luxembourg) was used to
remove the exposed PR, resulting in electrode patterns. Afterward, the electrode patterns
were left on the substrate using Au etchant (TFA, Transene Company, Inc., Danvers, MA,
USA) and Cr etchant (CE-905N, Transene Company, Inc., Danvers, MA, USA) in order, and
the wafer was immersed in acetone (Sigma-Aldrich, Burlington, MA, USA) to remove the
undeveloped PR. A PI layer was coated once again and baked to encapsulate the electrode
pattern. An aluminum (Al) layer was used as an etching mask to draw patterns on the PI
backbone layers and open the sensing area of the electrode layer. On a PI-coated wafer,
Al was deposited using a thermal evaporator, the same PR used previously was coated,
and a photolithography process was performed to draw an etching mask pattern. The
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developer then formed an Al etching mask pattern; subsequently, the wafer was immersed
into an Al etchant (APAL-1, LABOTECH Co., Ltd., Daejeon, Korea), leaving the pattern
intact, and then immersed in acetone, leaving only the Al layer on the PI backbone. The
reactive ion etching (RIE; PlasmaLab system 80 RIE, Oxford Instruments, Abingdon, UK)
was performed to remove the exposed PI area. During the process, the Al layer on the
PI backbone and the Cr/Au membrane layers functioned as an etching mask to protect
the PI layer below. Subsequently, the wafer was immersed into the Al etchant to remove
the remaining Al layer, and the microfabrication process of the electrode devices was
completed. Further details of the fabrication process are described in Supplementary
Note 1.

After the fabrication of the electrode device, the transfer-printing method was applied
to move the device from the wafer to the stretchable SEBS (TuftecTM H1062, Asahi Kasei
Co., Tokyo, Japan) substrate. A piece of Teflon tape (903UL, Nitto Co., Ltd., Tokyo, Japan)
was attached to the slide glass so that the SEBS substrate could be well separated from
the glass, and the SEBS solution (75 mg/mL in chloroform) was uniformly drop-casted
and cured overnight. Using water-soluble tape (No. 5414, 3M Co., Ltd., Maplewood, MN,
USA), the stretchable pressure sensor was removed from the wafer and transferred to
the SEBS substrate. The water-soluble tape was dissolved in deionized water, and the
transfer printing of the stretchable pressure sensor electrode to the elastomer substrate
was completed. Figure 3b shows each element layer of the finished stretchable pressure
sensor electrode patch. There is a SEBS stretchable substrate below, above which the Au
membrane was encapsulated as a PI backbone with a Cr adhesion layer. Figure 3c shows a
photographic image of the electrode sample.
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3. Results
3.1. Single-Cell Pressure Sensor Test

A press test was performed to measure the change in the resistance value of the soft
pressure sensor fabricated in Section 2. All measurements were taken in an environment
with a humidity of 68% and a temperature of 23 ◦C. Figure 4 shows the press test of the
prototype pressure sensor fabricated by the process in Figure 3. Press test (Figure 4a) was
performed by using the motorized force tester (ESM303, Mark-10 Co., New York, NY, USA)
to press the sample with a cylindrical bar. Figure 4b is a schematic diagram showing the
experimental setup as a side view. The slide glass substrate was fixed on the chuck clamp
of the motorized force tester by the T-shaped stage and double-sided tape, and EcoFlex
(EcoflexTM 00–10, Smooth-on Inc., Macungie, PA, USA) with a thickness of 1 cm to mimic
the skin modulus. The press test was carried out with the pressure sensor on the top.
Each sample was transferred to a 1.5 cm × 1.5 cm dimension SEBS substrate, and a source
meter (2450 Digital Multimeter, Keithely, Solon, OH, USA) was used to measure relative
resistance changes. Additionally, the pad of the device and the annealed copper wire were
contacted with liquid metal (EGaIn, Sigma-Aldrich, Burlington, VT, USA). The press test
was performed with a 3 mm cylindrical bar at a speed of 12 mm/min.
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To optimize the highly sensing property of the serpentine structure-based pressure
sensor, various design rules were used. First, to optimize the number of sensing serpentines,
pressure sensors of various lengths were prepared (×2, ×3, ×4 and ×5 patterns). The SEBS
substrate of each sample was fixed to a thickness of 150 µm, a cylindrical bar diameter
of 3 mm, a pressing and releasing speed of 12 mm/min, and a deform range by pressing
to 2.75 mm. Because the 3 mm diameter bar was designed to correspond to 80% of the
width of the ×4 sensing serpentine, the ×1~×3 length sample had the effect of pressing
with more than 80% of the object dimension, and the ×5 length sample had an object
dimension of 80% or less at same 3 mm diameter bar. As a result of the experiment, the
change of relative resistance was the highest at approximately 0.025 in the ×4 pattern,
and lowest at approximately 0.0155 in the ×2 and ×5 patterns (Figures 4c and S1), the
same result as predicted in Figure 2a was confirmed by a real device. Based on this, ×4
sensing serpentines of the pressure sensor were selected. In addition, to optimize the
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thickness of the substrate, SEBS substrates of various thicknesses were manufactured (50,
100, 150, 200 and 250 µm). Each of the samples had ×4 sensing serpentines, and were
tested under the same conditions as the sensing serpentine optimization. As a result of the
experiment, the relative resistance change was validated to be the highest at approximately
0.024 at 50 µm thickness, 0.015 at 200 µm thickness, and 0.014 at the lowest thickness of
250 µm (Figures 4d and S2). As mentioned in Figure 2, the thinner the substrate, the higher
deformation and sensitivity can be secured. However, if the substrate is too thin, the strain
dissipation ability decreases when pressure is applied, causing greater deformation of
the sensing serpentine. In the end, damage to the Au nanomembrane structure made it
impossible to repeatedly operate. Therefore, from the result of Figure 4d, compared with
∆R/R0 with a thickness of 50 µm, normalized resistance was retained and the thickness
was set to 150 µm, the thinnest possible. As a result, it was confirmed that the prototype
sensor had the same tendency as predicted by the FEA simulation, and based on this, the
serpentine dimensions and substrate thickness of the most efficient pressure sensor were
selected.

Sensitivity of the prototype pressure sensor manufactured through these design rules
was calculated through the results of one cycle (Figure 4e) and 300 cyclic operations
(Figure 4f). However, fatigue of the SEBS substrate occurs due to hundreds and close to
1000 cyclic tests, and the results in Figure 4f and Figure S3 are confirmed. As in the previous
experiments (Figure 4c,d), the pressing and releasing speed was 12 mm/min, the cylinder
diameter was 3 mm, and the deform change was 2.75 mm. The sensitivity of the single
cell was confirmed to have a maximum sensitivity of 1.06 kPa−1 (S2) and 0.296 kPa−1 (S1);
near 10 kPa when applied pressure was constantly increased up to 50 kPa. In addition,
the device had a sensitivity of 0.675 kPa−1 (ST) from 10 kPa to 50 kPa. The 10 kPa, 10 to
50 kPa and 50 kPa linearity were 0.998 (R2

1), 0.999 (R2
2), and 0.990 (R2

T), respectively. It
was also confirmed that the linearity was 0.995 from 20 kPa to 50 kPa. This section showed
the highest sensitivity and linearity among the sensing range of a minimum of 5 kPa to
a maximum of 50 kPa; approximately 50 kPa, but it was linear in the specific range from
10 kPa to 50 kPa. Existing piezoresistive type sensors were highly sensitive from several Pa
to several kPa. However, it showed low sensitivity in the sensing range of several tens to
hundreds of kPa. In addition, it was easy to receive damage from harsh pressing conditions
applied to several tens of kPa. In contrast, the conducting nanomembrane-based pressure
sensor revealed that Pearson’s R value was about 0.999, enabling linear sensing up to
50 kPa and becoming highly deformable (Figure 4e). This means that, unlike the existing
piezoresistive-type sensor, linear measurement was possible even with the poked pressing
of a small-diameter object. We have shown that the device can be operated repeatedly,
which shows that this device can be used in applications such as HMI. Figure 4f shows the
cyclic press-and-release test result of the cell. Pressing test conditions are the same as in
Figure 4e, and even after repeating the operation for a total of 300 times, only approximately
1 ohm was shifted compared to the initial resistance. Figure S3 shows the same tendency of
the resistance value rises slightly even in about 1000 cyclic tests. As a result, the prototype
pressure sensor manufactured through the design rule has linearity and reliability among
the high-pressure range. Based on the above, it was scaled up to a 16-channel array.

3.2. Pressure Sensing Demonstration

Figure 5 shows the possibility of implementing the precise pressure sensing by using
the sensor array. Figure 5a shows a 16-channel pressure sensor array measurement system.
The reference resistor and the array sample were connected in series to ATmega 2560
(Arduino co., Boston, MA, USA) and the resistance was measured by the voltage dividing
method. In the same way as the prototype sensor, the measurement was carried out by
placing the sample on EcoFlex with a similar skin to Young’s modulus and pressing the
sample with a cylindrical bar 3 mm in diameter (Figure 5a, left). Pressing a cell located in
the second row and third column of the 4 × 4 array caused a deformation in adjacent cells.
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Also, when several cells of the sensor were pressed with an L-shaped PDMS (Dow
Chemical co., MIC, MI, USA) object for multi sensing, the deformation near the target area
was detected again. However, as the distance from the targeted cell increased, the effect
of deformation was rapidly reduced. Therefore, the nearby point pressed by an object
or a human finger can be clearly measured (Figure 5a, right). Figure 5b shows that cells
located near to the target cell had a ∆R/R0 ratio of about 0.87, but cells farther away show
a significantly lower ∆R/R0 ratio below 0.5. In the array device, when the target cell or
area was pressed, the end of the SEBS was lifted and the deformation of the cells at the
corresponding position occurred, yet the pressed position and area can be clearly sensed
from the ratio difference.
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4. Conclusions

We fabricated a highly sensitive and soft, passive pressure sensor array, with linearity
in wide range, by using simple microfabrication. The sensor can be attached to the skin
as an electronic mechanoreceptor due to its stretchability. The fabrication method of the
sensor is a simple process that is fully compatible with the semiconductor process. We
fabricated an array of sensors by optimizing their sensitivity, which varied depending on
the number of serpentines and the thickness of the substrate. This soft pressure sensor
array was shown to be measurable from approximately 2.3 kPa to 50 kPa with linearity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12080933/s1, Figure S1: Relative resistance change for various numbers of sensing
serpentine lengths, Figure S2: Relative resistance change for various thicknesses of SEBS substrates,
Figure S3: Cyclic test of the targeted pressure sensor and close-up view of cyclic pressure sensing at
middle range (inset).
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