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Abstract: Gender differences in the hemocyte immune response of Hong Kong oyster Crassostrea
hongkongensis to Vibrio harveyi and lipopolysaccharide (LPS) infection exist. To determine if a gender
difference also exists, we use a 1H NMR-based metabolomics method to investigate responses in
C. hongkongensis hepatopancreas tissues to V. harveyi and LPS infection. Both infections induced
pronounced gender- and immune-specific metabolic responses in hepatopancreas tissues. Responses
are mainly presented in changes in substances involved in energy metabolism (decreased glucose,
ATP, and AMP in males and increased ATP and AMP in LPS-infected females), oxidative stress
(decreased glutathione in males and decreased tryptophan and phenylalanine and increased choline
and proline in LPS-infected females), tricarboxylic acid (TCA) cycle (decreased α-ketoglutarate acid
and increased fumarate in LPS-infected males, and decreased fumarate in LPS-infected females),
and osmotic regulation (decreased trigonelline and increased taurine in V. harveyi-infected males
and decreased betaine in V. harveyi-infected females). Results suggest that post-spawning-phase
male oysters have a more significant energy metabolic response and greater ability to cope with
oxidative stress than female oysters. We propose that the impact of oyster gender should be taken
into consideration in the aftermath of oyster farming or oyster disease in natural seas.
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1. Introduction

Crassostrea hongkongensis is the most important, commercially valuable cultured oyster
species along the South China coast [1,2]. In recent years, the commercial production of this
species has been seriously affected by mass mortality during the boreal spring, possibly
caused by pathogen infection and environmental stress [3,4]. Therefore, understanding the
mechanisms by which oysters respond to different stresses will improve disease control
in farmed populations. The genes ChBeclin-1 [5], ChUbL40 [6], ChAkt1 [7], ChDFFA [8],
and p38 MAPKs [9] play important roles in the immune defense of C. hongkongensis against
bacterial challenge. The assembled whole genome sequences of C. hongkongensis have
recently been released [1]. Several immune-, reproduction-, and stress-related genes have
been identified [10], providing the resources and opportunity of in-depth studies at the
molecular level. Moreover, metabolomics has revealed that exposure to copper can disturb
osmotic regulation and energy metabolism [11]. Proteomic methods to analyze differentially
expressed proteins in oyster gills exposed to long-term heavy metal pollution have also
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revealed most stress and immune-reactive proteins, such as heat shock proteins (HSP) and
enzymes, to be significantly down-regulated [12].

Development of metabolomic techniques in aquaculture has led to more thorough
investigations of shellfish immunology. Physiological and stress responses of bivalves
have now been characterized using a variety of metabolomics platforms [13]. Nuclear
magnetic resonance (NMR)-based metabolomics is a powerful high-throughput technique
that simultaneously detects endogenous compounds representative of a biological state.
The low incremental cost and short data collection time of these analyses enable robust
experimental design characterized by high reproducibility and ease of sample prepara-
tion and measurement proceedings, and also allows for quantitative analysis and in vivo
metabolomics studies [14–16]. NMR-based metabolomics has been used to express bi-
valve responses to external disturbance, such as from pathogenic bacteria [17], estrogenic
mixtures [18], hepatotoxic microcystins [19], ammonia nitrogen exposure [20], and high
ρCO2 levels [21]. Proton (1H) NMR-based metabolomics has identified osmotic regulation
and energy metabolism in C. hongkongensis to be disturbed following exposure to Cu, Zn,
Pb, and other metals [22,23]. These diverse applications in bivalves suggest that NMR-
based metabolomics is a powerful tool for assessing the metabolic response mechanism of
stressed bivalves in general, and C. hongkongensis in particular.

Differences in the immunological responses of C. hongkongensis males and females have
seldom been taken into consideration [7,9]. Vibrio harveyi is a pathogenic bacterium isolated
in our laboratory, which can cause severe vibriosis in C. hongkongensis. Lipopolysaccharide
(LPS) is a cell wall component of Gram-negative bacteria, and injection of LPS triggers a
host immune response [24]. We previously reported gender-related differences in immune
responses to LPS and V. harveyi in hemocyte of C. hongkongensis [25]. Herein we use 1H
NMR-based metabolomics techniques to examine metabolic changes in hepatopancreas
tissues of female and male C. hongkongensis following infection with V. harveyi and LPS.
Our objectives are to identify gender-specific metabolic responses in this oyster following
infection and to identify potential new biomarkers for evaluating its health.

2. Materials and Methods
2.1. Animals and Experimental Design

Healthy post-spawning C. hongkongensis (shell length 11.23 ± 0.06 cm) were obtained
from a commercial farm in Taishan, Jiangmen, Guangdong Province, China. Oysters
were acclimated for 7 days in aerated sand-filtered seawater at 25 ◦C, salinity 20 ± 1,
and pH 8.1 ± 0.1, and regularly fed the algae Isochrysis galbana and Chaetoceros muelleri at
a ration of 2% of tissue per dry twice daily, namely at 08:00 and 16:00. A photoperiod of
12 h light/12 h dark was applied. Low salinity water is prepared by diluting seawater with
tap water and used after 2 days of aeration. No mortality occurred during the period of
acclimation. After acclimation, oysters were randomly divided into 3 treatments (control,
V. harveyi, LPS), each with 3 replicates, each replicate containing 20 oysters, in glass aquaria
(48 × 28 × 21 cm) with 30 L filtered seawater, in a completely randomized design.

2.2. Challenge Experiment

The bacterium V. harveyi was cultivated in liquid 2216E broth at 28 ◦C for 14 h and
centrifuged at 5000× g for 10 min. This bacterium was washed twice in sterile seawa-
ter before being suspended in sterile seawater at a final concentration of approximately
1 × 107 CFU/mL. LPS (from Escherichia coli O111: B4, Sigma-Aldrich, St. Louis, MO, USA)
was dissolved in sterile seawater to a concentration of 0.5 mg/mL [25]. Control group oys-
ters were injected with 50 µL sterile aquaculture seawater and the experimental treatment
oysters were injected with either 50 µL V. harveyi suspension or LPS solution. After 48 h
exposure, oyster gender was determined and the oyster hepatopancreas was extracted,
snap-frozen in liquid nitrogen, and stored at −80 ◦C for subsequent metabolite extraction.
Gender was determined by light-microscopic examination of mature gonad tissue: large
eggs indicated female and motile sperm male.
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2.3. Metabolite Extraction

Using a water/methanol method, polar metabolites were extracted from hepatopan-
creas tissues. In brief, 100 mg of hepatopancreas tissue and 1 mL of methanol and water
(2:1) were added into a 2 mL centrifuge tube. The mixture was crushed by shaking in a
sample freezing grinding machine (Luka, Guangzhou), followed by centrifugation (10 min,
12,000× g, 4 ◦C) and dried in a vacuum centrifugal concentrator. Tissue extracts were
resuspended in 600 µL of phosphate buffer in D2O, then vortexed and centrifuged (5 min,
3000× g, 4 ◦C). The supernatant (500 µL) was transferred to a 5 mm NMR tube and ana-
lyzed by NMR [26]. One-dimensional 1H NMR spectra of all samples were obtained at
298K using the 1D NOESYGPPRLD pulse on the Bruker Avance III 600 MHz spectrometer,
with 128 scans and a 4 s acquisition time.

2.4. Spectral Processing and Statistical Analyses

NMRProcFlow 1.3.10 (INRA UMR 1332 BFP, Bordeaux Metabolomics Facility, Vil-
lenave d’Ornon, France) [27] was used to perform PPM calibration, baseline correction,
alignment, spectra bucketing, and data normalization of raw 1H NMR spectra. The DSS
internal standard was taken as the chemical shift reference peak (DSS = 0.0 ppm), and
the spectral images within 0.66–10 ppm were integrated to remove the chemical shift
region where the water peak was located (4.67–4.86 ppm). PQN (Probabilistic Quotient
Normalization) was selected for normalization. NMR spectra were preprocessed using
adaptive intelligent bucketing, with buckets with a signal-to-noise ratio > 3 chosen for
further investigation. The end result is a 599-bucket matrix. To increase the weight of
low-intensity peaks, all NMR spectra were logarithmically transformed before multivariate
statistical analysis.

SIMCA 14.1 software (Umetrics, Umeå, Sweden) was used to analyze NMR spectrum
datasets. Intrinsic metabolic trends and differential metabolites of V. harveyi or LPS exposure
were determined using principal component analysis, partial least squares discriminant
analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA).
In addition, 200 permutation tests and cross-validation analysis of variance (CV-ANOVA)
were used to confirm the significance of the OPLS-DA model. Differential buckets with
variable importance in the projection > 1.0 determined by OPLS-DA, and p-values < 0.05
determined by two-tailed Student’s t-tests were identified. Chenomx NMR Suite 8.6
professional software (Chenomx Inc., Edmonton, AB, Canada) was used to analyze the
chemical shift of buckets to complete identification of main metabolites.

2.5. Systematic Statistical Metabolic Correlation and Network Analysis

The transformations and sequential chemical reactions of substrates and products in-
volved in diverse catabolic and anabolic processes are described by metabolic pathways [28].
We screened out different metabolites and performed metabolic pathway analysis from
KEGG database analysis by MetaboAnalyst 5.0 website [29], and to all the identification
of the metabolites of clustering. We used the R software package to identify the KEGG
pathways of enriched metabolites in different treatments and to draw correlation heat maps
between metabolites and immune-related factors.

3. Results

3.1. Hepatopancreas 1H NMR Spectra

NMR spectra identified 49 different metabolites (Figure 1), including energy metabolism-
related metabolites (e.g., glucose, glycogen, ATP, AMP), amino acids (e.g., tryptophan,
arginine, phenylalanine, proline, tyrosine) and organic osmolytes (e.g., betaine, taurine,
trigonelline). The hepatopancreas 1H NMR profile was dominated largely by betaine and
taurine, as previously reported for oysters [30,31].
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Figure 1. 1H NMR spectra of Crassostrea hongkongensis hepatopancreas extract under infected (control)
condition, with spectral regions 0.0–4.8 ppm amplified by a factor of 4, and 4.8–9.9 ppm by 10. Key:
Ace, acetate; Ade, adenine; Ads, adenosine; Ala, alanine; AMP, adenosine monophosphate; Ara, ara-
binose; Arg, arginine; Asn, asparagine; Asp, aspartate; ATP, adenosine triphosphate; Bet, betaine; Chl,
chlorogenate; Cho, choline; Cyt, cytosine; DSS, dextran sulfate sodium; Fum, fumarate; Glc, glucose;
Glc-1-p, glucose-1-phosphate; Glu, glutamate; Glucur, glucuronate; Gly, glycine; GSH, glutathione;
GTP, guanosine triphosphate; Guo, guanosine; Hom, homarine; Hyd, hydroxyacetone; Ile, isoleucine;
Ino, inosine; Leu, leucine; Lys, lysine; Mal, malonate; Met, methionine; N-Ace, N-acetylornithine;
Orn, ornithine; Pan, pantothenate; Phe, phenylalanine; Pro, proline; Pyr, pyridoxine; Rib, ribose; Ribo,
riboflavin; Sar, sarcosine; Tau, taurine; TMA, trimethylamine; TGL, trigonelline; Tre, trehalose; Try,
tryptophan; Tyr, tyrosine; UDP-Glc, UDP-glucose; UDP-N-Ace, UDP-N-acetylglucosamine; UMP,
uridine monophosphate; Ura, uracil; Urd, uridine; Val, valine; 3-Ami, 3-aminoisobutyrate; α-Ket,
α-ketoglutarate acid; β-Ala, β-alanine.

3.2. Multivariate Data Analyses

To identify metabolic differences between the control and two treatments, and between
males and females, PLS-DA analysis was first performed. Treatments were well separated
(Figure 2A). To analyze metabolic differences between gender, OPLS-DA was performed
on NMR spectral data of males and females from all groups; a clear separation between
male and female groups with reliable Q2 values, both with p values < 0.003 calculated
using CV-ANOVA (Figure 2B). We conducted 200 iterations of permutation tests to assess
if models were over-fitted to demonstrate that the OPLS-DA model was reliable. Inherent
biological and metabolic differences appear to exist between genders.
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Figure 2. Multivariate statistical analysis plot based on 1H NMR spectra of C. hongkongensis hep-
atopancreas tissues. (A) PLS-DA plots for all treatments; (B) OPLS-DA score plots of male and female
oysters (R2X = 68.8%, R2Y = 0.927, Q2 = 0.565, p < 0.003); (C) permutation test for the model in (B).
Groups: F, female; M, male; C, control; B, Vibrio harveyi infection; L, LPS infection.
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OPLS-DA score plots (left panels in Figure 3) show good separation between infected
treatments and the corresponding control group for males and females. As shown in vol-
cano maps (right panels in Figure 3) and heatmaps (Figure S1), compared with the control
group, 19 metabolites were down-regulated and 1 metabolite was up-regulated in V. har-
veyi-infected females. In LPS-infected females, 14 metabolites were down-regulated and
20 metabolites were up-regulated. In V. harveyi-infected males, 12 metabolites were down-
regulated and 16 metabolites were up-regulated, while in LPS-infected males, 15 metabo-
lites were down-regulated and 16 metabolites were up-regulated. Table S1 provide details
of these metabolites.
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Figure 3. OPLS-DA score plots of 1H NMR spectra of C. hongkongensis hepatopancreas extract from
different paired groups (left panel) and the corresponding model permutation test chart (middle
panel) and its corresponding volcano map (right panel). (A) F_B vs F_C. (B) M_B vs M_C. (C) F_L vs
F_C. (D) M_C vs M_L. Groups: F, female; M, male; C, control; B, V. harveyi infection; L, LPS infection.

To further analyze changes in differential metabolites in C. hongkongensis in different
treatments, an Upset diagram was prepared using R language (Figure 4). Compared
with control group females, different metabolites increased in female oysters in the two
treatments, but the V. harveyi treatment had 1 specific increased metabolite, and the LPS
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group had 15 specific increased metabolites. However, six metabolites were down-regulated
in both treatments, while eight metabolites were up-regulated in the V. harveyi treatment
and five metabolites were down-regulated in the LPS treatment. Compared with the control
group male oysters, in the V. harveyi treatment eight metabolites were commonly elevated
in male oysters, with three particularly elevated, and three were particularly elevated
in LPS treatment male oysters. Six metabolites were commonly down-regulated in both
treatments, while the V. harveyi treatment had no particularly decreased metabolite, and
the LPS treatment had one. These metabolites, which are only up- or down-regulated
in females or males, suggest that oyster responses to either infection is gender specific.
Additionally, different infections in the same gender oysters can lead to different metabolite
changes, indicating that oysters are immune-specific for different stresses.
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Increased metabolites (A), decreased metabolites (B). Groups: F, female; M, male; C, control; B,
V. harveyi infection; L, LPS infection.

KEGG enrichment metabolic pathways prepared by R language clearly differ between
male and female oysters (Figure 5). For example, differential metabolites in females oc-
curred mainly in D-glutamine and D-glutamate metabolism, aminoacyl-tRNA biosynthesis
and phenylalanine, and tyrosine and tryptophan biosynthesis, while males do not have
these enrichment pathways. Additionally, metabolic pathways enriched by either infection
in females also differ. For example, differential metabolites in oysters infected with V. har-
veyi were enriched with phenylalanine, tyrosine, and tryptophan biosynthesis and arginine
and proline metabolism, while those infected with LPS were enriched with pentose and
glucuronate interconversions and galactose metabolism. Based on KEGG pathway analysis,
we summarize the different metabolic pathways of oyster infection in hepatopancreas tis-
sues, mainly involving arginine biosynthesis, energy metabolism, glutathione metabolism,
and other metabolic pathways (Figure 6).

A correlation network diagram (Figure 7) was used to represent Spearman’s correla-
tion coefficients between hemocyte immunological parameters and different metabolites.
Changes in immunological parameters of granulocytes, including ROS and calcium lev-
els, lysosome and mitochondrial masses, and early apoptotic, NO, phagocytic, and late
apoptotic or necrotic ratios of total hemocytes in C. hongkongensis during immune stress,
have been reported earlier [25]. Significant correlations between parameters may indicate
an equilibrium or that immune stimulation in oysters simultaneously modulates param-
eters. Correlation analysis reveals glucose, AMP, and ATP to be positively correlated, as
are proline and choline, and for phenylalanine and tyrosine to be positively correlated
with ROS.
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Figure 7. Differential metabolites and immune factors correlated by Spearman’s correlation analysis.
A color gradient denoting Spearman’s correlation coefficient is shown for pairwise comparisons of
metabolites. Spearman’s correlation coefficients are depicted using line size and line color denotes
statistical significance. Lines: dashed, positive correlation; solid, negative connection. Apo, apoptotic
ratio; Ca, calcium content; Est, esterase activity; Lyso, lysosome mass; Mito, mitochondrial mass;
Mor, mortality; NO, nitric oxide level; Pha, phagocytic ratio; ROS, reactive oxygen species level.
*** p < 0.001, ** p < 0.01, * p < 0.05.

4. Discussion

Gender-specific differences in physiological response mechanisms are reported for
several aquatic invertebrates when exposed to environmental stress. Using NMR-based
metabolomics, gender differences have been reported for the mussel Mytilus edulis exposed
to lower pH, higher temperature and pathogens in seawater [32], and for metabolic re-
sponses in gonads of Perna viridis to triazophos [33]. We previously reported gender-specific
immunological responses in oyster hemocytes following exposure to V. harveyi and LPS.
Herein, through analysis of OPLS-DA score plots (Figure 2B), we report gender differences
in oysters in metabolic responses to two infections.

LPS and V. harveyi infection can produce ROS in female oysters [25]. Cell damage
occurs when the level of ROS exceeds a cell’s ability to scavenge them, eventually leading
to DNA oxidative damage and abnormal protein expression, inducing inflammation and
oxidative stress. We herein report proline and choline to be positively correlated, and
to significantly increase after LPS infection in females. Antioxidant enzyme activity and
antioxidant content are correlated with proline, and by regulating proline metabolism, dam-
age caused by stress can be alleviated [34]. Therefore, we believe that the high expression of
proline in females relieves oxidative stress induced by LPS, protecting the oysters, and that
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the manner of adjustment is gender specific. As components of phospholipids, choline
and phosphocholine play important roles in maintaining cell membrane integrity [35].
Therefore, an increase in female oyster hepatopancreas-tissue choline levels following
LPS infection indicates that the hepatopancreas membrane is damaged by excessive ROS.
In contrast, these metabolites did not change in male oysters after infection, suggesting that
male oysters are more capable of coping with V. harveyi and LPS stress and maintaining
a relatively normal metabolism. Glutathione is an important metabolite that maintains
cellular redox balance [36,37] that can be used to enhance antioxidant enzyme activity and
antioxidative stress capacity. Glutathione plays a vital role in cellular proliferation, main-
taining intracellular redox homeostasis and protecting against oxidative damage [38,39].
In male oysters, glutathione levels decreased with V. harveyi and LPS infection, indicating
that they mobilized more glutathione to regulate ROS levels after infection, providing
further evidence that males are more capable of coping with oxidative stress.

We report phenylalanine and tryptophan levels in female oysters to decrease in both
infections, and tyrosine levels following V. harveyi infection in female oysters to be down-
regulated and in males up-regulated. Oysters are infected, with changes in aromatic amino
acids being gender specific. Additionally, we report phenylalanine and tyrosine to be
positively correlated with ROS. Because phenylalanine inhibits ROS-induced oxidative
damage in gills of grass carp [40], we speculate that decreased phenylalanine reduces the
oxidative damage of high ROS levels in female oysters, further supporting the notion that
males have a stronger defense mechanism against oxidative stress than females.

In male oysters, metabolites involved in energy metabolism, glucose-1-phosphate,
were up-regulated, and glucose, ATP, and AMP were down-regulated in both infections
compared with control treatment levels. A decrease in glucose means that male oysters re-
quire more energy to resist infection, which will accelerate the hydrolysis of glucose within
the body, and generate ATP through the glycolysis pathway and TCA cycle. The process
of ATP generation is consistent with this research [41]. Coincidentally, correlation analy-
sis revealed glucose, AMP, and ATP levels to be positively correlated. In female oysters,
an increase in ATP, glucose-1-phosphate, and AMP and a decrease in glucose and glycogen
occurred following LPS infection. After LPS infection, down-regulation of glucose and
glycogen levels promoted the up-regulation of ATP levels. Because the breakdown of glu-
cose and glycogen produces ATP to provide energy to fight infection, but the ATP produced
is insufficient to support resistance to LPS infection, the breakdown of glycogen produces
glucose-1-phosphate to provide energy. Because none of these metabolites changed after
female oysters were infected with V. harveyi, females may use different energy metabolism
strategies in response to different infections in a manner similar to how the hepatopancreas
of the clam Ruditapes philippinarum regulates V. anguillarum and V. splendidus infections
using different energy metabolism mechanisms [26]. Collectively, for the same infection
conditions, male and female oysters have different energy metabolism mechanisms, indi-
cating that their post-infection energy metabolism mechanism is gender specific. When
challenged with V. harveyi, male and female Mytilus galloprovincialis mussels also induced
different energy metabolic responses [42]. For both V. harveyi and LPS infections, metabo-
lites involved in energy metabolism such as glucose, ATP, glucose-1-phosphate, and AMP
in male oysters changed significantly, while metabolite glucose, ATP, glucose-1-phosphate,
AMP, and glycogen in females only changed after LPS infection. This indicates that gender-
and immune-specific energy metabolic responses were induced in C. hongkongensis and
suggests that male oysters have a high antioxidant capacity because most of their energy is
used to fight ROS caused by infection.

The TCA cycle is the primary catabolic pathway for energy production. An increase
in intermediates in the TCA cycle has been reported in marine bivalves exposed to
pathogens [13]. Conversely, the disruption of the TCA cycle shifts energy pathways from
aerobic to anaerobic metabolism [43]. For invertebrates, anaerobic metabolism produces
high levels of alanine and succinic acid as end products [44]. We found no increase in
either succinic acid or alanine in oysters exposed to V. harveyi or LPS, suggesting that a
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shift from aerobic to anaerobic metabolism did not occur. However, fumarate, an inter-
mediate substance of the TCA cycle, decreased in LPS-infected females and increased in
V. harveyi-infected males, and levels of α-ketoglutarate acid decreased in males in both
infections. This indicates that the TCA cycle pathway of oysters in both infections is also
gender specific.

Organic osmotic substances (including betaine, trigonelline, and taurine), major com-
ponents of water-soluble metabolites that often play crucial roles in osmotic regulation
of marine mollusks are affected by external influences [45]. Amino acids are involved in
marine mollusk osmotic regulation [46]. In male oysters, taurine levels were up-regulated
in the V. harveyi treatment, while levels of trigonelline and aspartate decreased in both
infection treatments. In females, betaine and arginine levels were down-regulated in both
infection treatments. In oysters, the depletion of betaine and trigonelline indicates that
V. harveyi and LPS had disturbed osmotic regulation, as did a decrease in most amino
acid levels. Increased taurine may compensate for lost betaine and trigonelline. A similar
metabolic response occurred when V. harveyi attacked the hepatopancreas of female M. gal-
loprovincialis mussels [42]. Accordingly, gender-specific responses to both infections in the
oyster hepatopancreas are confirmed by differences in changes in their organic osmotic
substances and amino acids.

5. Conclusions

The metabolic response of the C. hongkongensis hepatopancreas to V. harveyi and LPS
infection was examined using 1H NMR-based metabolomic methods. We conclude that the
infection of V. harveyi and LPS caused gender- and immune-specific effects on oxidative
stress, energy metabolism, the TCA cycle, and in osmotic regulation. The antioxidant
capacity of male oysters was stronger than that of females. Overall, in terms of energy
metabolism, ATP, AMP, and glucose decreased in males, while ATP and AMP increased
in LPS-infected females. In terms of oxidative stress, glutathione decreased in males,
and phenylalanine and tryptophan decreased in females, while proline and choline also
increased in LPS-infected females. In terms of the TCA cycle, α-ketoglutarate acid decreased
in males, and fumarate decreased in LPS-infected females and increased in LPS-infected
males. In terms of osmotic regulation, trigonelline decreased in males, taurine increased
in V. harveyi-infected males, and betaine decreased n V. harveyi-infected females. These
findings help explain the response mechanisms of different oyster genders to immune
stimulation and provide a reference for stress research in marine animals.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11061178/s1, Figure S1: Heat map analysis of changes in
metabolites of hepatopancreas tissues in male and female oysters under Vibrio harveyi and LPS infec-
tion compared to control groups; Table S1: Summary of metabolic changes of oyster hepatopancreas
caused by infection with Vibrio harveyi or LPS in different sexes.
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