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Chronset: An automated tool for detecting speech onset
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Abstract The analysis of speech onset times has a
longstanding tradition in experimental psychology as a mea-
sure of how a stimulus influences a spoken response. Yet the
lack of accurate automatic methods to measure such effects
forces researchers to rely on time-intensive manual or semi-
automatic techniques. Here we present Chronset, a fully auto-
mated tool that estimates speech onset on the basis of multiple
acoustic features extracted via multitaper spectral analysis.
Using statistical optimization techniques, we show that the
present approach generalizes across different languages and
speaker populations, and that it extracts speech onset latencies
that agree closely with those from human observations.
Finally, we show how the present approach can be integrated
with previous work (Jansen & Watter Behavior Research
Methods, 40:744-751, 2008) to further improve the precision
of onset detection. Chronset is publicly available online at
www.bcbl.eu/databases/chronset.
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Reaction time (RT) experiments have a longstanding history
in experimental psychology and have been instrumental to
achieving several fundamental insights into human cognition
(Donders, 1868; Posner & Mitchell, 1967; Sternberg, 1966;
Stroop, 1935). Although RTs are classically measured as the
time needed to execute a button press, another useful tech-
nique consists in measuring the time required to produce spo-
ken responses. Given the ubiquity of speech in human behav-
ior, this approach offers a natural way of measuring response
latencies.

To assess speech onset, the current gold standard is to rely
on human raters, often aided by semi-automatic rating tech-
niques (Jansen & Watter, 2008; Protopapas, 2007). To date,
this approach has yielded some of the most accurate and con-
sistent estimates of speech onsets. Nevertheless, this approach
is suboptimal in several respects. First, it is extremely time-
consuming, because human raters have to process the wave-
forms of vocal recordings on a trial-by-trial basis. Second,
although agreement levels among raters are typically relative-
ly high, they are prone to subjective bias and other sources of
measurement error (Green & Swets, 1966; Morrow, Mood,
Disch, & Kang, 2016). Consequently, a considerable amount
of work has been dedicated to developing fully automated
approaches (Bansal, Griffin, & Spieler, 2001; Jansen &
Watter, 2008; Kawamoto & Kello, 1999; Protopapas, 2007).

Hardware-based methods for onset detection, such as
voice-key devices, operate by detecting the point in time at
which sound pressure levels exceed a given threshold (Rastle
& Davis, 2002). In the absence of noise or nonspeech sounds
(e.g., lip smacking, respiration, or coughing), voice keys can
produce accurate measurements if the experiments are
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carefully controlled (Korvorst, Roelofs, & Levelt, 2006;
Meyer & van der Meulen, 2000; Roelofs, 2005). However,
in the majority of cases voice keys fail to achieve accurate
measurements whenever vocal responses are preceded by
loud noise sounds or are characterized by complex acoustic
onsets (Kessler, Treiman, & Mullennix, 2002; Rastle & Davis,
2002), both of which are frequent occurrences in natural
speech.

With the ubiquity of personal computers, several software-
based solutions have been developed to improve semi- and
fully automatic speech onset detection, thereby providing a
novel framework for the automatic assessment of speech onset
times (Bansal et al., 2001; Donkin, Brown, & Heathcote,
2009; Jansen & Watter, 2008; Kawamoto & Kello, 1999).
One important limitation of these approaches, however, is that
speech onset is estimated on the basis of a sustained elevation
of sound amplitude over time, which in fact can also be trig-
gered by loud nonspeech sounds (Rastle & Davis, 2002). This
causes amplitude-based approaches to produce a large number
of spurious speech onset estimates, thereby decreasing the
overall reliability of these techniques. To overcome this limi-
tation, recent work has focused on estimating speech onset
from multiple acoustic features, to make automatic algorithms
more robust against noise (Jansen & Watter, 2008; Kello &
Kawamoto, 1998). However, despite the significant improve-
ments that have been achieved by adding multiple features to
speech onset detection, the accuracy achieved by current hard-
ware and software has remained below the precision of human
raters.

Here we present Chronset, a fully automated technique
aimed at further enhancing the robustness and accuracy of
automatic speech onset detection. The present approach is
inspired by previous work in songbirds showing that vocal-
ized sounds have a rich harmonic structure that is absent in
noise or nonvocal sounds (Tchernichovski, Nottebohm, Ho,
Pesaran, & Mitra, 2000). Building on these findings, we hy-
pothesized that human speech onset and noise sounds have
distinct spectral signatures on the basis of which they can be
distinguished from each other. We extracted multiple spectral
features from audio waveforms, and signaled a speech onset if
four different features were simultaneously above a set of
threshold levels. To estimate a set of speaker and language-
independent threshold parameters, we used an optimization
procedure to tune the thresholds for a broad range of wave-
forms sampled from two laboratories where spoken responses
were recorded in two different languages and experimental
contexts (Jansen & Watter, 2008; Sadat, Martin, Alario, &
Costa, 2012).

Our findings show that Chronset detects voice onset with a
high degree of precision relative to human ratings, such that
most of its errors occur in a small (<50 ms) window surround-
ing a manually annotated RT. On the basis of Monte Carlo
simulations, we show that the size of Chronset’s estimation

error does not substantially reduce the statistical power of
experimental data analyses for experiments with standard
sample sizes. Furthermore, we show how our approach can
be combined with the SayWhen algorithm to achieve esti-
mates of speech onset that are even closer to human rater
precision. The present work therefore demonstrates a novel
approach for the automatic extraction of speech onset times
that provides a substantial improvement over previously re-
ported techniques.

Method
Human onset detection

To assess the algorithm’s performance, two previously
published datasets were analyzed in the present study:
one dataset comprised waveforms in the Spanish lan-
guage (hereafter, the Spanish dataset; Sadat et al.,
2012) and a second dataset comprised waveforms in
the English language (hereafter, the English dataset;
Jansen & Watter, 2008). For each dataset, speech onset
latencies were calculated by a group of human raters.
For the Spanish dataset analyzed in the present study,
the data from two raters who used the CheckVocal soft-
ware (Protopapas, 2007) were already available. In the
case of the English dataset, ratings from one individual
were supplemented by the data from two additional
raters who manually identified onsets after splitting the
continuous recording of the audio from the entire exper-
iment for each participant into separate waveforms for
each trial. The two additional raters used the Audacity
software to measure onsets using a combination of lis-
tening, waveform inspection, and spectrogram inspec-
tion, whereas the original rater used the SayWhen soft-
ware (Jansen & Watter, 2008).

Spectral analysis and acoustic features

Speech onset detection in Chronset relies on six basic
acoustic features of speech sounds. To derive these six
features, we first computed a time—frequency spectrogram
as well as its derivatives over time and frequency, based
on the raw waveform (Figs. la—h). Spectrograms were
computed using multitaper spectral analysis, which is sim-
ilar to standard spectral analysis but produces more robust
parameter estimates; it also allowed us to compute the
derivatives of the spectrogram and to extract the features
of harmonic activity (Percival & Walden, 1993;
Tchernichovski et al., 2000; Thomson, 1982). The
multitaper analysis in the present study involved a se-
quence of k = 8 discrete prolate spheroidal tapers, a win-
dow length of 10 ms, and a step size of 1 ms. As a result,
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Fig. 1 The sound features. (a) Spectrogram of the frequency derivatives
of spectral power, where x-axis is time and the y-axis is frequency. The
pseudocolor code represents the sign of the spectral derivatives along the
time-versus-frequency plane (black = reduction in power along the y-axis,
white = increase of power along the y-axis). The individual thresholds
(dotted lines) and thresholded time series (solid lines) of three acoustic
voice features are shown on top of the spectrogram (yellow = frequency
modulation [FM]; red & magenta = amplitude; blue & cyan = harmonic
pitch [HP]). (b) Raw voice signal in the time domain. The red solid lines

the spectral concentration of energy for each frequency
bin had a half-bandwidth of £0.5 kHz. The choices of
the parameters for window length and step size values
were based on previous work in which similar parameter
values were employed to study the development of rhyth-
mic structure in bird song (Saar & Mitra, 2008).

Unless stated otherwise, all features were normalized to
range from 0 to 1 for each sound recording, with 0 and 1
corresponding to the minimum and maximum values of each
feature. Gaussian smoothing over time (10 ms) was applied to
all voice features, thus ensuring that only large, systematic
changes in the feature would be used in determining the voice
onset. A brief description of each feature follows below (for
additional details, see Tchernichovski et al., 2000). These and
all subsequent analyses were carried out using the Chronux
toolbox (http://chronux.org/; Bokil, Andrews, Kulkarni,
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mark the on- and offsets of voice sounds measured by the algorithm. Note
that the large-amplitude prevocal sound that occurs close to the actual
onset of speech is not classified as speech because several features, in-
cluding FM and HP, remain below threshold levels. x-axis = time, y-axis =
standardized amplitude (z score). (c—h) Acoustic features of speech
obtained from the various spectral estimates (black solid lines) and the
individual feature thresholds (red dotted lines). x-axes = time in
milliseconds, y-axes = normalized feature magnitude

Mehta, & Mitra, 2010), as well as custom scripts written in
MATLAB (The Mathworks).

Amplitude The amplitudes of the speech sounds were com-
puted as the logarithm of spectral power integrated over fre-
quencies between 0.15 and 22.05 kHz (Fig. lc). Speech
sounds typically have higher amplitude than noise, and thus
provide an indicator of speech onset. However, other sounds
(e.g., coughing, lip smacking) have high amplitude as well,
thereby reducing the reliability of this feature for speech onset
detection.

Wiener entropy (WE) Entropy is a measure of how random
versus organized a signal is. In the context of voice sounds, it
can be applied to measure whether a sound is occurring rela-
tively uniformly across the entire spectrum, or only in specific
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frequency bands. Noise sounds tend to have a flat spectrum,
whereas the spectrum of voiced sounds will be organized into
clear peaks. Many different mathematical formulations of en-
tropy have been developed, which all relate to these same
principles (Shannon, 1948). Here, we used WE, which is com-
puted as the ratio of the geometric mean and the arithmetic
mean of the spectrum (Tchernichovski et al., 2000).
Importantly for the present purposes, WE is amplitude-inde-
pendent, and thus is not affected by the distance of the speaker
from the recording device, the speaker’s overall loudness, or
the absolute signal-to-noise ratio (Fig. 1d).

Spectral change (SC) SC is a combined measure of how
power changes simultaneously in both time and frequency
(Fig. le). Noise typically shows less spectral change than do
voiced sounds.

Amplitude modulation (AM) AM is the overall change in
power across all frequencies, and thus reflects the magnitude
of the change in energy of a speech sound over time (Fig. 1f).
Voiced sounds will tend to modulate amplitude more strongly
than other sounds, such as lip smacks, which typically gener-
ate a very transient sound.

Frequency modulation (FM) FM assesses how much the
concentration of power changes across spectral bands over
time (Fig. 1g). The energy of tonal sounds tends to remain
concentrated within specific spectral bands (low FM), where-
as noise typically has a rapidly changing, nonconstant concen-
tration of power across frequencies (high FM).

Harmonic pitch (HP) HP estimates the spectral structure of
harmonic sounds. To estimate HP, we computed a second
spectrum of the power spectrum, which measures the period-
icity of the peaks in the power spectrum (Bogert & Healy,
1963; Oppenheim & Schafer, 1989) for each time point
(Fig. 1h). A high value of HP signifies that the acoustic signal
is composed of harmonically related frequencies. In contrast,
low HP indicates the absence of harmonic structure. Voiced
sounds, which typically contain a collection of harmonics
(formants), will show a high level of periodicity in the power
spectrum (Noll, 1967), whereas the spectrum of noise is typ-
ically characterized by the absence of resonance.

Automatic detection criteria

To improve the robustness of our algorithm against loud noise
sounds, speech onset was detected if four of the six features
were simultaneously elevated above threshold levels for
35 ms. Furthermore, to ensure that our algorithm could detect
unvoiced onsets such as [s], [f], or [p], we quantified speech
onset as the first point in time at which the amplitude was
elevated above threshold within the time window defined by

the four-feature criterion. Because the algorithm uses a low
threshold for the amplitude feature, this additional criterion
allowed us to detect low-amplitude unvoiced sounds that often
precede voiced sounds but do not have a harmonic spectrum.

Statistical tuning of optimized feature thresholds

To identify a set of thresholds that provided good sensitivity
and validity across waveforms, we estimated the thresholds
for each individual feature using a customized version of the
gradient descent algorithm (Hinton & Sejnowski, 1986; see
also Armstrong, Watson, & Plaut, 2012). Feature thresholds
were optimized on the basis of vocal responses recorded in the
Spanish dataset, which comprised 150 waveforms per partic-
ipant (n = 14) for which the individual voice onsets were
estimated by two human raters using semi-automatic tech-
niques (total number of analyzed waveforms: 2,100). To en-
sure that the optimized feature thresholds were not overfitted,
we randomly divided the waveforms of the Spanish dataset
into a training set (80 % of the data) and a testing set (20 %).
Optimization was performed on the training set, whereas the
testing set was used to assess the accuracy achieved by the
optimized feature thresholds. In both sets, the fit associated
with a particular set of feature thresholds was quantified by
measuring the maximum likelihood estimate of the standard
deviation (SD) of the regression residuals, which assessed the
difference between the individual hand-coded onset latencies
and the fitted regression line. A poor fit of the estimated
thresholds was thus associated with a higher SD for the regres-
sion residuals, whereas a better fit was associated with a lower
SD. By selecting those thresholds that lowered the overall SD
of the test data, it was possible to optimize the thresholds such
that the returned automatic estimates of speech onset were in
close agreement with those of the human ratings across a
broad range of waveforms (for more details, see the
supplemental information). The optimization algorithm
stopped either after 1,000 attempts to modify the thresholds
or if 50 consecutive attempts failed to improve the fit. To
maximize the likelihood that the best possible thresholds
would be identified, we repeated this optimization process
for 100 randomly chosen partitions of the waveforms into
training and test sets. The final thresholds that we selected
were those associated with the smallest SD and the largest
R? on the testing data.

Dependent measures of algorithm performance

To assess the performance of both Chronset and the other
speech onset detection algorithms, we evaluated each algo-
rithm using two dependent measures: (1) absolute-difference
scores and (2) regression fits in terms of R* and regression
residuals.
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Absolute difference (AD): The AD reflects the absolute dif-
ference between the automatic and manually estimated speech
onset latencies and is computed as

ADg) =y —xa),

where y;, is the manual rating of speech onset for a single
waveform /, and x; is the corresponding automatic estimate.
ADs are currently used as the gold standard to quantify the
precision of automatic speech detection, and we report both a
“tight” measure of fit (automatic estimates within 10 ms of the
manual estimates) and the characteristics of the cumulative
distribution of ADs (for a similar approach, see Jansen &
Watter, 2008; Lin & Wang, 2011; Sonderegger & Keshet,
2012).

Regression fits (¥ and regression residuals): The regression
fit quantified how well the regression line fit the unobserved
linear relationship between the automatic estimates and man-
ual ratings. Note that R? is more sensitive to large deviations
from the optimal fit than are ADs, and is less sensitive to small
deviations from the regression line, because differences are
squared. These properties are a strength of the regression mea-
sure, because they highlight whether an algorithm generates
large numbers of outliers, and because they eliminate any
measurement bias that can be attributed to either a rater’s
perceptual bias (Green & Swets, 1966; Morrow et al., 2016)
or an algorithm’s systematic measurement error (for more
details, see Figs. S1-S4 in the supplement materials).

Indeed, linear regression offers a way to quantify measure-
ment bias, by estimating the linear relationship between the
automatic scores X(; and the manual scores Y{;, for each audio
waveform 7 as

Yy = B0 + B1X ;) + e,

where (0 represents the intercept of the regression slope (1,
and e(; represents the measurement error. Because e is the
population error, which is not directly observable, the sam-
ple’s measurement error is computed as

where é;, is the sample’s measurement error or regression
residual, y';) is the predicted manual score, and Y, is the
actual observed manual score. Thus, the regression residuals
reflect the amounts of unobserved error that can be attributed
to either the manual or the automatic scores.

One important limitation of using regression statistics to
evaluate algorithm performance, however, is that a good fit
(high R?) will not necessarily mean that the absolute values of
the onsets are identical. Rather, it means that relative changes
in the manual onsets are reflected by highly systematic chang-
es in the automatic onsets. Thus, here we argue that an optimal

@ Springer

algorithm should maximize performance on a new composite
measure that minimizes ADs and maximizes regression fit.

Algorithm benchmarking

To benchmark the accuracy of Chronset and the other
previously reported algorithms, we first compared the per-
formance of Chronset against two frequently employed
techniques: Epd (Bansal et al., 2001) and CheckVocal
(Protopapas, 2007). In the case of CheckVocal, which
was originally designed for semi-automatic onset detec-
tion, the onset latencies were accepted without visual in-
spection, so the reported performance of CheckVocal does
not reflect the accuracy of semi-automatic analyses.

Cross-validation of optimized feature thresholds

We cross-validated the thresholds optimized on the basis
of the first dataset (Spanish dataset) by testing the robust-
ness of these same thresholds on a second set of audio
recordings obtained from a sample of waveforms recorded
in English (English dataset). These new waveforms had
been used previously to develop and assess the reliability
of the SayWhen onset detection software (Jansen &
Watter, 2008). In total, this dataset comprised approxi-
mately 167 trials per participant (n = 22), from which
voice onsets were identified manually by three human
raters as well as by the SayWhen algorithm (total number
of analyzed waveforms: 3,674). This second dataset thus
provided a benchmark against which we examined the
robustness of the optimized thresholds for influences spe-
cific to different languages and speakers, as well as to
recording equipment-related influences. It also enabled
us to compare our results to those from the SayWhen
algorithm.

Human onset detection and interrater variability

Systematic differences between the individual raters were
measured by using the intraclass correlation (ICC). Given that
all raters independently coded all trials, the ICC was computed
using a two-way mixed-effects model of the single-trial voice
onset latencies (Shrout & Fleiss, 1979). According to this
approach, an ICC value of 0 reflects the absence of agree-
ment—that is, all scores differed systematically across
raters—whereas an ICC value of 1 reflects perfect agreement
between the raters. The different datasets employed a combi-
nation of ratings from new raters and the original ratings from
the published research. In the case of the English dataset,
raters segmented the raw continuous audio file into individual
waveforms for each trial (for more details on the original data,
see Jansen & Watter, 2008).
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Detection performance for distinct phonetic onset
categories

To examine how the onset detection performance of
Chronset may be affected by distinct phonetic onset types,
such as unvoiced consonants, which are more challenging
to detect than voiced vowels, we carried out a separate
analysis in which we split the data from the English
dataset into different groups of waveforms that
corresponded to different phonetic onsets. The phonetic
code of each individual waveform was determined by
two human raters who listened to each waveform and then
selected the corresponding phonetic onset code from the
Carnegie Mellon University Pronouncing dictionary
(www.speech.cs.cmu.edu/cgi-bin/cmudict#about). We
then examined the fit in terms of the AD and regression
fits for each phonetic onset for both Chronset and
SayWhen.

Results

Agreement between human ratings for the speech
recordings in the Spanish dataset

We first examined the correspondence between the hand-
coded onset latencies calculated using a semi-automatic meth-
od by the two human raters for vocal responses in the Spanish
dataset (Fig. 2a). This revealed that the hand-coded onset la-
tencies were highly consistent and strongly correlated be-
tween the human raters (ICC = .99, R® = .99, offset =
0.95 ms). Accordingly, large proportions of the AD scores
(100 %; SD = 0.26 ms) and regression residuals (98.2 %; SD
= 8 ms) remained within the £10 ms range. This very high
level of agreement was likely due to the semi-automatic meth-
od employed by both raters, who could accept a fit suggested
by CheckVocal and thus produce exactly the same onset
estimates.

Comparison of automatic speech onset detection
for the speech recordings in the Spanish dataset

We observed a strong linear relationship between the
human ratings and the automatic scores as measured
by Chronset (R2 = .97, offset = 28 ms; Fig. 2b). This
strong linear relationship was observed across the entire
range of participants (mean R® = .95, SD R* = .05;
Fig. 3). Furthermore, the proportions of regression re-
siduals and AD scores within the =10 ms range
corresponded to 63 % (SD = 30 ms) and 28 % (SD =
56 ms), respectively. As is depicted in the cumulative
density functions, the majority of the automatic esti-
mates achieved by Chronset occurred in the 10 to

50 ms range, relative to the human ratings, with virtu-
ally no outlier misestimations outside of this range
(Figs. 2e-h).

Lower correspondences between the automatic and
manual scores were observed for the two other examined
algorithms. The proportions of regression residuals that
were within the £10 ms range remained below 10 % for
both Epd and CheckVocal (Epd, 8 %, SD = 118.8 ms;
CheckVocal, 6 %, SD = 164 ms; Figs. 2e and f), which
was considerably lower than Chronset’s performance. The
tendency for these algorithms to misestimate the regres-
sion residuals persisted across the entire distribution, as is
shown in these figures and reflected in the poor summa-
ries of the fits via R? (Epd, R?> = .57, offset = 235 ms;
CheckVocal, R? = .18, offset = 651 ms; Figs. 2c and d).
The proportions of AD scores that remained below 10 ms
were fractionally higher than with Chronset for both
CheckVocal (30 %; Fig. 2g) and Epd (33 %; Fig. 2h) than
for Chronset. However, assessment of the cumulative den-
sity functions revealed that these algorithms produced
highly variable misestimations throughout the 0 to
1,000 ms range. This is reflected by the standard devia-
tion of the difference scores, which showed four to ten
times more overall variability for these algorithms than
for Chronset (SDs: CheckVocal = 313 ms, Epd =
129 ms). These algorithms were thus fractionally better
at estimating latencies within the 10 ms window, but
when they failed to do so, the misestimations were sub-
stantial. These deviations appear to be attributable primar-
ily to false early detections.

Agreement between the human ratings for the speech
recordings in the English dataset

The robustness and validity of the optimized feature
thresholds was assessed by computing the linear regres-
sion between the human ratings and the onset latencies
estimated by Chronset in the English dataset. The onset
latencies estimated by three human raters in the English
dataset were highly consistent across raters, and

Fig. 2 Comparisons of pooled manual and automatic measurements in P
the Spanish dataset. (a) Regression fit between the human ratings. The
dark dots correspond to the individual onset latencies, and the red solid
line reflects the line of identical correspondence. x-axis = latencies hand-
coded by Rater 1; y-axis = latencies hand-coded by Rater 2. (b—d)
Regression fits between different automatic estimates and the manual
ratings. The same conventions are applied as in panel a. x-axes =
automatic latencies, y-axes = average of hand-coded latencies. (¢ & f)
Solid lines represent the cumulative density functions (CDFs) of
regression residuals for the different automatic methods. Chronset is
always depicted in blue, and the alternative algorithms in red. (g & h)
Analogous plots to panels e and f, but for AD scores. Note that the x-axes
in panels e—h have been scaled differentially to emphasize the differences
between the algorithms
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Fig. 3 Comparison of manual and automatic measurements for individual speakers in the Spanish dataset. The black dots represent the individual
measurements, and the red solid lines represent the lines of identical correspondence. Same conventions are applied as in Figs. 2b—d

therefore provided a reliable benchmark against which
to assess the robustness of the optimized thresholds
(ICC = .99, R?> = .98, offset = 9 ms; Figs. 4a and b).
The regression residuals that remained within the range
of £10 ms corresponded to 72 % of the data (SD =

44 ms), whereas only 70 % of the AD scores remained
below 10 ms across the three raters (SD = 2 ms). In
practical terms, the variability in the manual onset measure-
ments (vs. the semi- automated onsets generated by the human
raters in Spanish) provides a better quantification of the
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Fig. 4 Comparisons of pooled manual and automatic measurements in
the English dataset, following the same conventions as in Fig. 2. (a, b)
Regression fits between the human ratings. The dark dots correspond to
the individual onset latencies, and the red solid lines are the regression
lines. (a) Relationship between Raters 1 and 2. (b) Relationship between
the average ratings of Raters 1 and 2 and the manual ratings of Rater 3.

variability between raters when applying the gold standard
manually. In turn, this shows why the variability in human
raters is becoming an increasingly important issue, and why
a gold standard based on the ADs from human ratings is
lacking in some respects.
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(c—f) Regression fits between various automatic estimates and the manual
ratings. (g—i) Cumulative density functions (CDFs) of regression
residuals for the different automatic methods. (j—1) CDFs of AD scores
for the different automatic methods. Scaling of the x-axes in panels e-h
follows the same conventions as in Fig. 2

Comparison of automatic accuracy levels for the speech
recordings in the English dataset

We observed a strong linear relationship between the average
human ratings and the automatic latencies estimated by
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Chronset over the pooled waveforms in the English dataset
(R* = .97, offset = 21 ms; proportion of regression residuals
within +10 ms range = 26 %, SD = 90 ms; Figs. 4c, g and 1).
The AD scores showed that Chronset produced 24 % of its
automatic responses within 10 ms of the manual responses
(Figs. 4c, j, and 1). Inspection of the cumulative density func-
tions indicated that the bulk of Chronset’s misestimations oc-
curred within 50 ms of the human RT, with very few outliers.
The high quality of the fits was also observed at the level of
individual participants (mean R* = .96, SD R* = .03; Fig. 5).
Collectively, these results show that the thresholds derived
from the optimization in the Spanish dataset enabled
Chronset to perform well in the English dataset.

Turning to the other algorithms, the correlations were sub-
stantially lower between the manual ratings and the automatic
scores estimated by all of the other algorithms examined
(SayWhen, R’ = .87, offset = 76 ms; Epd, R’ = .11, offset =
786 ms; CheckVocal, R? = .45, offset = 451 ms; Figs. 4d-f). In
addition, when compared to Chronset, lower proportions of
the regression residuals were observed within the £10 ms
range for all of the other algorithms (SayWhen: 6 %, SD =
172 ms; Epd: 2 %, SD = 454 ms; CheckVocal: 3 %, SD =
356 ms; Figs. 4g—i). The higher accuracy of Chronset
persisted when we examined the full distributions of regres-
sion residuals, and not only those falling within the 10 ms
window. Turning to the AD scores, a different pattern of re-
sults emerged: Both SayWhen and Epd produced more AD
scores within 10 ms of the human rating (64 % for SayWhen,
54 % for Epd), whereas Check Vocal produced only 17 % ofits
RTs in this window (Figs. 4j-1). This indicates that both
SayWhen and Epd are capable of producing very precise
RTs on a substantial number of trials. However, inspection
of the full cumulative density functions showed that all three
algorithms also produced more outlier misestimations outside
the 50 ms range than did Chronset, particularly in the cases of
Epd and CheckVocal. Thus, the extreme sensitivity to real
speech onset displayed by these other algorithms is accompa-
nied by an increased likelihood to be triggered prematurely by
nonspeech sounds.

Comparison of speech onset detections for distinct
phonetic onset categories

To examine whether the performance of Chronset varied as a
function of different phonemes, and hence whether some of
the residual error in our regression fits could be attributable to
issues with particular onsets, we subdivided our data on the
basis of the onset phoneme. Figure 6 plots these data for
Chronset, and Fig. 7 plots the analogous data for SayWhen.
Each individual plot also reports the SD of the AD scores and
the R? measure of fit.

On the basis of inspection of the Chronset data for regres-
sion residuals, it is clear that estimating a few of the onsets

(EH, AW, M, and TH) was more difficult, notwithstanding
that performance was nevertheless still relatively good (R
range for these onsets: .75-.91). Performance for all of the
other onsets was near ceiling (all R*s > .96). Similarly, AD
scores tended to decrease as R? increased, although there were
many small and a few more substantial rearrangements in
performance. Of particular note are that, again, four phonemes
showed notably worse performance than the others, with SDs
of the AD scores >50 ms. Two of these items were also asso-
ciated with the poorest R* scores (EH and M), but the two
others were not (AE and CH), although they still fell in the
lower half of all observed R scores.

As compared to Chronset, SayWhen had a similar overall
range of performance across all phonemes in terms of the
regression fits (R* range: .74—1.0). However, there was more
variability and gradation in how well SayWhen was able to
predict onsets for the different phonemes: Whereas Chronset
only had three phonemes with R? fits below .9, SayWhen had
16 such phonemes. Similarly, whereas Chronset had only four
phonemes for which the SD in the overall AD scores was
>50 ms, SayWhen had eight such phonemes.

These results suggest that the better performance for
Chonset in overall R? and its different distribution of AD
scores is largely attributable to better fits for many of the
phonemes that were most challenging for SayWhen (the fact
that SayWhen still performed well on those phonemes not-
withstanding). These results also point to two practical impli-
cations: On the one hand, they provide guidance for which
types of onsets should be targeted in future improvements to
automatic onset detection algorithms. On the other hand, these
results suggest that insofar as some experimental conclusions
can be derived without relying on the four most problematic
onsets for Chronset, there should be an even smaller differ-
ence between manual onset detection and our automated
approach.

Discussion

In the present article, we report an approach that permits the
automatic detection of speech onsets in audio recordings of
human voice recordings, thereby allowing this measure to be
used by researchers studying cognitive and perceptual pro-
cesses including, but not limited to, speech (Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001; Donders, 1868;
Plaut, McClelland, Seidenberg, & Patterson, 1996; Posner &
Mitchell, 1967; Sternberg, 1966; Stroop, 1935). The present
approach represents a novel technique for the automatic de-
tection of speech onsets in audio recordings of human speech.

Fig. 5 Comparison of manual and the automatic measurements for P
individual speakers in the English dataset. The same conventions are
used as in Fig. 3
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Fig. 6 Speech detection performance of Chronset for different phonetic
onsets. Each individual panel represents the fit achieved by Chronset for a
different phone. The phone set is based on the adapted ARPAbet used in

It demonstrates that the onset latencies identified by Chronset
are substantially more robust than those produced by other
popular algorithms, particularly in terms of avoiding outliers,
at the expense of a small degree of fine-grained precision
relative to an alternative algorithm, SayWhen. It also shows
that our (and other) approaches produce measurements that

@\

the Carnegie Mellon Pronouncing Dictionary (www.speech.cs.cmu.
edu/cgi-bin/cmudict)

are rapidly converging on “gold standard” human levels of
precision. Related to this point, we also observed nontrivial
variability in our raters’ generation of manual onsets—partic-
ularly with respect to the absolute value of the onset.
Collectively, these observations indicate that a more rigorous
consideration of the gold standard is warranted when
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comparing automated and manual onset detection in the fu-
ture. This could include efforts to better estimate the gold
standard by extracting the latent “true” onset by using dimen-
sionality reduction, as we have done in our analyses.
Similarly, it could include updating the gold standard to a
composite measure, which would include both ADs and re-
gression fits.

Advantage of using multiple features in speech onset
detection

Threshold-dependent measures that estimate voice onset
from fluctuations in the amplitude level of speech wave-
forms often fail to detect complex onsets of speech
(Kessler et al., 2002; Rastle & Davis, 2002). Similarly,
these techniques frequently produce false alarms if high-
energy nonvocal or prevocal sounds occur prior to ac-
tual vocal responses (Rastle & Davis, 2002). Our results
show that the combination of multiple features achieves
higher accuracy levels than do approaches that detect
voice onset only on the basis of amplitude fluctuations
(albeit at the expense of a small amount of fine-grained preci-
sion). This claim is also supported by the substantially higher
proportion of overall variability in human measurements that
is explained by Chronset estimates but not by other algo-
rithms, by the reduction in variability across different onset
phonemes, and by the smaller set of phonemes whose estima-
tion performance was not near ceiling. These differences in
performance are likely due to the fact that amplitude is sensi-
tive to absolute sound levels, and therefore cannot reliably
discern loud nonspeech from genuine speech sounds, whereas
a combination of features (some of which are amplitude-
independent) can.

Optimization and cross-validation of feature thresholds
in a different language and experimental setting

To derive a set of thresholds that could be well-suited
for application to a broad range of waveforms and yield
accurate onset estimates, we used statistical optimization
(Papadimitriou & Steiglitz, 1982) and tuned the thresh-
olds for each individual feature by minimizing the SD
of the regression residuals. This allowed us to identify a
set of thresholds that were robust against speaker spe-
cific differences and that achieved accuracy levels near
identical to human observations. Moreover, we assessed
the basic validity of our method by testing our opti-
mized thresholds on a second novel dataset, which com-
prised speech waveforms recorded in a different lan-
guage using different equipment and another task that
required spoken responses. Together, these results sup-
port the robustness of our optimized thresholds against
differences in language and lab equipment.

Toward a composite gold standard for algorithm
benchmarking: Integrating insights from difference scores
and regression fits

Differences between manual ratings and automatic
scores have been reported in the literature to quantify
the measurement error of automatic speech onset detec-
tion (Jansen & Watter, 2008). This measure has clear
theoretical value, but is also limited in that it may be
confounded in some cases by the measurement bias of
human raters, as demonstrated in our own comparisons
of interrater reliability. This variability in the thresholds
at which human raters visually detect the onset of
speech in audio waveforms can distort the error attrib-
uted to algorithm performance. For instance, if a human
rater systematically rates the true speech onset with an
offset of 10 ms, the mean deviation of the algorithm
from human ratings might be shifted by 10 ms incor-
rectly, which can work either for or against the algo-
rithm, depending on that algorithm’s own potential
biases.

To circumvent this problem, in the present study we
utilized regression residuals as a second measure to
benchmark the performance of Chronset against other
algorithms. Regression residuals measure the difference
between automatic scores and the regression line, which
represents the unobserved relationship between the au-
tomatic scores and the onset of speech. The regression
line itself is fitted by minimizing the differences be-
tween the regression line and the manual and automatic
scores (here using maximum likelihood estimation),
thereby automatically minimizing the contribution of
systematic bias in each variable (Cohen, Cohen, West,
& Aiken, 2003). Thus, any consistent bias that was due
to the rater or the algorithm would be minimized by the
regression residuals, and only those values that did not
lie on the regression line would generate a large nonze-
ro value. Regression residuals can therefore be
interpreted as a bias-free estimate of measurement error
that is due to either the algorithm or the human rater,
which is an important advantage over the classic mea-
sure based on AD scores.

Regression estimates, however, have their own limitations,
in that they are more sensitive to extreme values than they are
to small deviations from the regression line. They also lack the
simple transparency offered by difference-score measures.
Thus, we view the present research as a novel gold standard
for evaluating algorithms of speech onset detection by includ-
ing both difference scores and regression residuals. These
measures clearly offer complementary insights into how each
algorithm’s responses align with manual responses, and to-
gether they can provide more targeted guidance for refining
model development.
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Simulation of the effects of measurement error
on statistical power

The present analyses show that automatic onsets are
approaching the performance of human raters. One im-
portant question, however, is how important are the re-
maining differences in onset estimation for drawing con-
clusions from an experiment? To estimate how fluctua-
tions in the accuracy of Chronset could potentially im-
pact the outcome of an experiment, we conducted a
follow-up Monte Carlo simulation of the effects of mea-
surement error on statistical power. On the basis of pre-
vious empirical work, we simulated a within-participants
design with 100 observations per participant in which
the onset latencies in two conditions differed by a
small, but detectable and meaningful, effect size of ei-
ther 15 or 30 ms (Grainger, 1990; Kello & Plaut, 2000;
Sadat et al., 2012). We also simulated different amounts
of within-condition variability (SD range: 50-125 ms),
as well as differences in the sample size (range: 5—60
participants). To simulate variability in the precision of
the automatic measurements, we chose the SD of the
regression residuals from the cross-validation, which
corresponded to 87 ms. For each combination of param-
eters, we simulated 204 experiments and measured the
resulting effect size by comparing the means of both
conditions for the simulated manual and automatic la-
tencies using Student’s ¢ test for dependent samples (al-
pha = .05, two-tailed). We then computed an index d
that quantified how different levels of measurement er-
ror in our algorithm could reduce statistical power as
compared to manual ratings. This index was computed
as

di = (ntl —nt2)/ntl

where ntl is the number of significant ¢ values obtained
from simulated manual ratings, nt2 is the number of ¢
values that yielded a significant effect size based on
simulated automatic scores, and i indexes the three
levels of measurement error used in the present simula-
tion. The index d thus reflects the reduction in statistical
power caused by an SD of measurement errors corre-
sponding to 87 ms.

The results of the Monte Carlo simulation showed
that the effects of measurement error on the statistical
power of an experiment depend on both the magnitude
of the measurement error and the sample size (Fig. 8).
For simulated measurement errors with an SD of 87 ms,
the reduction in statistical power remained below 10 %
for all samples sizes with n > 22, and rapidly
approached 0 as the sample sizes increased beyond that
point.
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Combining Chronset and SayWhen
in a “mixture-of-experts” model

Taken together, the prior set of results highlight that our
fully automated voice onset detection algorithm is able
to provide sufficiently precise estimates as to have a
negligible impact on the analyses of the results of a
standard experiment. However, it is clear that in some
settings (e.g., experiments involving extremely small
numbers of trials or participants), an even more precise
estimate of speech onset is important. One clue to how
such an improved algorithm can be achieved emerges
from a comparison of the R* and raw difference score
results. These data highlight that in many ways,
Chronset and SayWhen—the next best algorithm in
terms of R* and the superior algorithm in terms of
AD, particularly in the 10 ms window nearest the hu-
man ratings—exhibit complementary patterns of perfor-
mance. Chronset sacrifices extremely high precision for
individual latencies to ensure the robust estimation of
relatively precise onsets in the absence of many outlier
misestimations—the avoidance of which is especially
important for a fully automatic onset detection proce-
dure. In contrast, SayWhen achieves extremely precise
estimates at the expense of many outliers, which may
be an appropriate compromise in the context of a semi-
automatic procedure in which outlier trials can be man-
ually reinspected.

It is possible, however, that an even better fully au-
tomatic solution could be achieved by combining these
two approaches. This would allow SayWhen to generate
extremely precise estimates with a certain probability of
a large misestimation, and then have Chronset
“reestimate” any potential outliers (for related methods,
see Armstrong et al., 2015). To develop such a model,
we examined the point on the cumulative distribution of
AD scores at which Chronset provides more precise
estimates of onset latency than does SayWhen. This
was found to occur at approximately 55 ms. We then
developed a mixture-of-experts algorithm in which we
took the difference between the SayWhen and Chronset
latencies, using the SayWhen latencies when the differ-
ence between the two algorithms was <55 ms and the
Chronset latencies when the difference was > 55 ms. The re-
sults are plotted in Fig. 9, and show that the resulting mixture-
of-experts algorithm capitalizes on the strengths of each
individual algorithm while avoiding each algorithm’s weak-
nesses, thereby achieving better estimates than either model
alone. This also helps highlight the particular areas of
improvement necessary for each individual algorithm, and
provides a practical means of achieving unprecedentedly
precise fully automatic onset detection in cases in which such
precision is essential.
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Related approaches in automatic voice onset time
detection and voice activity detection

Voice onset time (VOT) reflects the delay between the begin-
ning of a speech sound and the onset of vocal cord vibration
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Fig. 9 Automatic onset detection based on the mixture-of-experts model.
(a) Linear regression fit of manual onset scores for automatic onset
latencies estimated on the basis of the mixed-expert model. x-axis =
automatic scores (in milliseconds); y-axis = manual scores (in
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and has been applied to study phonetic perception (Clayards,
Tanenhaus, Aslin, & Jacobs, 2008), whereas voice activity
detection (VAD) is a technique used in speech processing in
which the presence or absence of human speech is detected
(Ramirez, Gorriz, & Segura, 2007) and has been applied in
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milliseconds). (b) Histogram of absolute-difference scores. (c)
Cumulative distribution function (CDF) of raw difference scores. Color
legend: black solid line = mixed experts, blue solid line = Chronset, red
solid line = SayWhen
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telecommunication. Recent work in automatic VOT detection
has achieved accuracy levels that are similar to human preci-
sion levels by combining multidimensional feature extraction
from speech signals and machine learning (Lin & Wang,
2011; Sonderegger & Keshet, 2012). Similarly, feature extrac-
tion and machine learning techniques have been applied to
improve the performance of VAD in several fields (Kim,
Chin, & Chang, 2013; Park et al. 2014). These studies there-
fore support the present approach toward the automatic extrac-
tion of onset latencies from human speech in the context of
behavioral experiments. Moreover, the Chronset algorithm
may help inform algorithms designed for automatic VOT de-
tection, given that VOT measurements depend on the accurate
detection of speech onset latencies (Das & Hansen, 2004).

Conclusion and outlook for Chronset

Our data show that multiple features can enhance the accuracy
of automatic speech onset detection as compared to several
previously reported approaches, particularly with respect to
extreme misestimations. These findings are robust against at
least some language- and speaker-specific influences in stan-
dard laboratory settings, as demonstrated by our tests of per-
formance on two distinct datasets and languages. Of course,
additional work remains to establish the breadth to which the
present features generalize. This is a critical and fundamental-
ly empirical question—which is also typically not even asked
in studies of automatic speech onset detection.

To facilitate answering this question, we have provided an
easy-to-use Web platform, as well as the full source code for
Chronset, for use by other researchers. These tools should also
enable the rapid reoptimization of Chronset’s parameters if other
data sources are discovered in which performance is suboptimal,
as may be the case with some specialized populations (e.g., onset
detection in children or patient populations).

As we highlighted by our “mixture-of-experts” algorithm,
the availability of our source code and an automated platform
for onset estimation may also be useful for combining the
unique strengths and overcoming the weaknesses of multiple
estimation algorithms, to improve performance above the
levels of Chronset (or any other algorithm’s) performance in
isolation. Such comparisons may also be especially fruitful in
identifying the areas of a particular algorithm that may benefit
from targeted improvement. Indeed, the detailed comparisons
that we conducted between Chronset and of the current stan-
dard models in the field have helped point us toward improv-
ing Chronset’s onset sensitivity within the <50 ms range.
Future work will evaluate whether improvements in this win-
dow can be achieved through a more extensive and computa-
tionally intense optimization of the parameters governing the
temporal smoothing that helps Chronset achieve robust over-
all patterns of performance, and through the incorporation of
additional features into the current feature set.
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Using Chronset

Chronset is available for public use under the GNU General
Public License through the Chronset website (www.bcbl.
eu/databases/chronset), either through a Web interface or by
downloading and running the source code. To estimate speech
onset latencies automatically via the Chronset website, speech
recordings are required to be uploaded to the website in.wav
format. Once the files are uploaded, they will be processed
using Chronset (average processing time per.wav file of ~1—
15 s, depending on the server load). The resulting onset
latencies will be sent via email message once Chronset has
terminated processing each file. Using the source version of
Chronset, it is also possible to use parallel computing to
process multiple files simultaneously.
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