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ABSTRACT

Motivation: Recent developments in experimental methods facilitate

increasingly larger signal transduction datasets. Two main approaches

can be taken to derive a mathematical model from these data: training

a network (obtained, e.g., from literature) to the data, or inferring the

network from the data alone. Purely data-driven methods scale up

poorly and have limited interpretability, whereas literature-constrained

methods cannot deal with incomplete networks.

Results: We present an efficient approach, implemented in the R

package CNORfeeder, to integrate literature-constrained and data-

driven methods to infer signalling networks from perturbation experi-

ments. Our method extends a given network with links derived from

the data via various inference methods, and uses information on phys-

ical interactions of proteins to guide and validate the integration of

links. We apply CNORfeeder to a network of growth and inflammatory

signalling. We obtain a model with superior data fit in the human liver

cancer HepG2 and propose potential missing pathways.

Availability: CNORfeeder is in the process of being submitted to

Bioconductor and in the meantime available at www.cellnopt.org.

Contact: saezrodriguez@ebi.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Information about signalling networks is increasingly abundant.

Thanks to novel high-throughput methods, large amounts of

data about the interactions among proteins is available, which

is encompassed in (unsigned and undirected) protein–protein

interaction networks (PINs) (Pieroni et al. 2008). More precise

(but with less coverage) information is derived from literature

and is often described by means of signed and directed causal

interactions among proteins. These give rise to what we will call

here prior knowledge networks (PKNs). PKNs are partially col-

lected in different databases [e.g. KEGG (Ogata et al. 1999),

Reactome (Joshi-Tope et al. 2005), WikiPathways (Pico et al.

2008) and several are accessible via the portal Pathway

Commons (Cerami et al. 2011)]. These databases typically con-

tain literature-derived interactions curated with different degrees

of stringency, and based on experimental publications under dif-

ferent experimental conditions using different cell types.
PKNs are, for example, very useful to study topological prop-

erties of networks (Ma’ayan et al., 2005) or to map data (Ideker

and Sharan 2008, Terfve and Saez-Rodriguez 2012). However,

they are not functional in the sense that they cannot be used for

simulation of a signalling process and therefore prediction of the

outcome of a certain experiment, which is fundamental to under-

stand signal transduction and its alterations.
The most common way to model a signalling network is to

write down its biochemistry and subsequently translate it to a

mathematical form, typically a system of differential equations

(Aldridge et al., 2006). However, information in PKNs often

lacks the required mechanistic detail. In these cases, logic formal-

isms are a useful approach since all they need is to add logic gates

to the existing (signed and directed) interactions.
One can generate logic gates by manual curation based on

literature, for example (Calzone et al., 2010, Saadatpour et al.,

2011, Samaga et al., 2009), reviewed in (Morris et al., 2010,

Watterson et al., 2008). An alternative to manual curation con-

sists of generating a logic model from the PKN that is subse-

quently trained to experimental data (Saez-Rodriguez et al.,

2009). This method, implemented in the Bioconductor package

CellNOptR (http://www.ebi.ac.uk/saezrodriguez/software.html),

provides context-specific models with predictive power. It is ef-

ficient at handling large amounts of data as the space of possible

models is limited by the prior knowledge. This key feature of the

approach, however, is also its main limitation: there might be

missing links as databases are not complete, and the effect of

cross talk between pathways is often not taken into account in

the canonical linear representation of the pathways. Hence,

adding links to the PKN based on the dedicated data can lead

to an improved goodness of fit (Saez-Rodriguez et al., 2009).
With a different and complementary perspective, different ‘re-

verse engineering’ methods have been used to infer networks

from perturbation experiments using data-driven methods that

do not rely on prior knowledge of the network (Bansal et al.,

2007, Markowetz, 2010). Most of these methods were first de-

veloped for transcriptional data but can be applied also to sig-

nalling data. For example, in (Ciaccio et al., 2010) Bayesian

networks (Pe’er, 2005) were used to infer the connections be-

tween 67 proteins with high-throughput data collected using

a micro-western array. Two mutual information-based*To whom correspondence should be addressed.
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approaches, the ‘algorithm for the reconstruction of accurate

cellular networks’ (ARACNe) (Margolin et al., 2006) and the

‘context likelihood of relatedness’ (CLR) (Faith et al., 2007),

were also applied to the same dataset to corroborate the results.

Different methods were also applied in the context of the

DREAM initiative (www.the-dream-project.org) for the

DREAM4 Predictive Signalling Network Challenge (Prill et al.,

2011). Twelve research groups inferred signalling networks from

perturbation experiments data and were evaluated based on the

accuracy of their predictions of the outcome of the network

under different experimental conditions. One of the methods

that performed best in this task was a simple approach, strictly

data-driven, that encodes significant effects of stimuli and inhibi-

tors on measured proteins in a cause–effect network (Eduati

et al., 2010).
These purely data-driven methods need to consider all possible

topologies, and thus in general, need more data and scale-up

worse than methods that rely on a given topology such as

CellNOptR. Furthermore, the resulting data-driven networks

(that we will call here DDNs) are limited to interactions between

perturbed and measured nodes that are only a subset of the

nodes involved in the pathways. Thus, DDNs are not as bio-

logically interpretable as the PKNs and mapping DDNs to

PKNs is not simple as one link in the inferred network can gen-

erally correspond to multiple links in the PKN. Hence, it is not

trivial how to correctly map this relationship.
In this article we attempt to combine the strengths of

literature-based and data-driven inference methods. We describe

a procedure (implemented in the R package CNORfeeder), to

integrate prior knowledge encoded in the PKN with data-driven

information obtained using reverse-engineering approaches.

PINs are used to prioritize links and to provide experimental

support for them, and thus help to discriminate among options

and add information on integrated links. The resulting network

is then trained against experimental data to obtain a final refined

model that has a better fit to data with respect to the PKN,

highlighting plausible links that were missing in the PKN. We

illustrate its application with a signalling network encompassing

multiple pathways and readouts trained with data from the liver

cancer cell HepG2. We show how CNORfeeder provides a sig-

nificantly improved fit based on links supported by known inter-

actions among proteins.

2 METHODS

We implemented CNORfeeder, an R package designed to be integrated

with methods based on prior knowledge such as CellNOptR as shown in

Figure 1. The integrated pipeline can be summarized in the following

steps:

(A) Inference (CNORfeeder). A strictly DDN is inferred from avail-

able data using different reverse-engineering methods (so far

FEED, Bayesian networks, ARACNe and CLR). This network

is specific for the experiments under study, thus it only includes

perturbed and measured nodes and does not exploit information

available in literature.

(B) Compression (CellNOptR). The PKN is compressed according to

the procedure detailed in (Saez-Rodriguez et al., 2009). First, if a

node has no readout downstream of it (such as D in Fig. 1), its

state cannot be inferred (it is non-observable) and is not

considered. Similarly, if a node has no perturbation upstream, it

is not included as it will not be affected. Then, nodes that are

neither perturbed nor measured are bypassed so that their com-

pression does not change the logic of the remaining nodes (e.g. B

which is between A and C in Fig. 1).

(C) Integration (CNORfeeder). The compressed network is expanded

using the DDN in order to include links that are missing in the a

priori information but that seem to be supported by data.

(D) Weighting (CNORfeeder). PINs are used to support and prioritize

the integrated links.

(E) Training (CellNOptR). The integrated network is finally converted

into a superstructure containing all possible logic gates compatible

with the network. If a node (such as G) is affected by multiple

nodes (A and F), then both an OR and an AND gate are created.

Then a genetic algorithm is used to search for the model contained

in the superstructure which best describes the data [as determined

by a score based on the mean squared error (MSE)] with the min-

imum number of links. The objective function is modified with

respect to that introduced in (Saez-Rodriguez et al., 2009) to in-

clude additional penalization for the integrated links using weights

derived from PINs [Equation (2)].

Steps performed by CNORfeeder will be detailed in the following

sections.

2.1 Inference using reverse-engineering methods

CNORfeeder can in principle leverage any network inference method. So

far, we have integrated the following:

FEED inference is the R implementation of an improved version of the

algorithm described in (Eduati et al., 2010). The inference of the network

can be divided in two steps. Fist, perturbation experiments are used to

infer a Boolean table for each measured protein, codifying if a particular

stimulus inhibitor combination affects the protein. A stimulus or an in-

hibitor significantly affects an output protein if it is able to modify its

activity level by a quantity that exceeds the uncertainty associated with its

measurement. These Boolean tables are than translated into links among

stimulated, inhibited and measured nodes, giving rise to the inferred net-

work (see Supplementary Material for more details).

Bayesian Network inference There are different approaches to derive

causal influences between measured proteins using Bayesian networks.

We have used the ‘catnet’ R package (available from http://cran.r-project.

org/web/packages/catnet/index.html) to derive categorical Bayesian net-

works from static data (see Supplementary Material for more details).

Mutual information networks This class of methods computes the

mutual information matrix between the measurements associated with

different proteins and, based on that, infers an undirected network. In

particular, ARACNe and CLR algorithms as implemented in the ‘minet’

R package (Meyer et al., 2008) (see Supplementary Material for more

details), are included in CNORfeeder.

In silico data were generated using a ‘Gold Standard’ or true network,

depicted in Figure 2E, to compare the four algorithms. The ‘Gold

Standard’ was randomly generated and interpreted as a logic Boolean

model to simulate perturbation experiments using CellNOptR. This was

performed by stimulating (nodes in dark grey), inhibiting (nodes in

middle grey) and measuring (nodes in light grey) the specified proteins.

These in silico data were then given as input to the inference methods;

resulting networks (DDNs) are shown in Figure 2A–D. The advantage of

this approach, with respect to the use of real data, is that the Gold

Standard can be used to compare the performances of the different

methods.

In Figure 2A–D dark grey links are those that are perfectly recon-

structed being present both in the Gold Standard and in the inferred

network. Some of the links in the Gold Standard are not inferred by
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the algorithm (dashed ones), for example, tgfa!ras or ras!mek12 for

FEED. However in some cases the algorithm is still able to infer at least

an indirect link (light grey ones), for example, tgfa!mek12 for FEED.

Dotted links are those that are inferred by the algorithm but do not

correspond to links in the Gold Standard even as indirect links. In this

example, FEED is able to infer all links in the Gold standard, at least as

indirect ones, without including any false positive links. It is important to

notice that mutual information approaches do not allow for determining

the directionality of the links; for light and dark grey links the direction-

ality was assessed based on comparison with the Gold Standard to sim-

plify the figure. A similar approach can be used in real cases by

comparison with the PKN, but there is no way to assess the directionality

of missing links. In Figure 2F, links are represented with different grad-

ations of grey according to the consistency between the analyzed infer-

ence methods: black links are reconstructed by all methods. As expected,

links involving proteins that are neither perturbed nor measured (white

nodes) cannot be reconstructed by any inference algorithm. However,

those nodes can be important for the signalling network and often

there is available literature-derived information about their role. This is

one of the reasons why it is fundamental to integrate the information

derived from data-driven inference methods with the prior knowledge

obtained from other resources.

2.2 Integration with the PKN

Some of the links included in the DDNmight be missing in the PKN, and

are thus candidates to be integrated with it. However, the PKN generally

includes more nodes with respect to the DDN and a link in the DDN

could, in some cases, correspond to more than one link in the PKN. As

shown in Figure 1C, if there is a connection between a cue (i.e. a stimu-

lated or an inhibited protein) and a measured protein in the DDN (e.g.

from A to H), we have to connect all nodes in the different paths corres-

ponding to that link. This means adding a link not only from the cue to

the measured protein, but also from all nodes downstream of the cue,

until the following cue is reached, to all nodes upstream of the measured

proteins, until the previous measured protein is reached.

2.3 Protein–protein interaction network

The human PIN was built using a unified PPI dataset obtained as APID

(Prieto and De Las Rivas, 2006), by the combination of interactions

coming from six source databases. The starting whole dataset was com-

posed of 68 488 human physical PINs validated by at least one experi-

mental method and reported in one article published in PubMed. From

this dataset we obtained two PPI subsets with increasing confidence: a set

of 28 971 interactions validated by at least one ‘binary’ experimental

method [binary as defined in (De Las Rivas and Fontanillo, 2010)]; a

set 6033 interactions validated by at least two experimental methods, one

of them binary.

2.4 Weighting and training of integrated network

The integrated network is then optimized using CellNOptR to find the

model which best describes the data using information from PINs to

differently prioritize integrated links. As described in (Saez-Rodriguez

et al., 2009), a bipartite objective function is used to balance fit and

size, that is, to find models with good fit to the data but with the min-

imum number of links. Defining P as a Boolean vector encoding the

candidate solution model (value 1 or 0 is assigned depending if the link

is included or not in the model), the function that is minimized during the

optimization process is the following:

� Pð Þ ¼ �f Pð Þ þ � � �s Pð Þ ð1Þ

where �f Pð Þ ¼
1
N

PN
n¼1 datan � predn
� �2

is the MSE deviation between the

normalized experimental data (continuous values between 0 and 1), and

the model prediction (binary values 0 or 1), for all N measured data

points. �s Pð Þ ¼
PM

m¼1 �mPm is a term to penalize increasing model size

according to a tunable parameter �. The size penalty �s Pð Þ is computed as

the weighted sum of theM links, which are mathematically hyperedges in

the hypergraph that defines the model; see (Saez-Rodriguez et al., 2009)

for details. The weight (�) is given by the number of starting nodes, for

example, hyperedge A AND B!C is weighted twice compared with

A!C. In Equation (1) it is possible to include a tunable parameter �

to allow a stronger penalization of links integrated to the PKN leading to

�s Pð Þ ¼ �pkn Pð Þ þ � � �add Pð Þ ð2Þ

where the size penalty �s Pð Þ is the sum of two terms: one for the links in

the PKN (�pkn Pð Þ) and one for integrated links (�add Pð Þ). This is moti-

vated by the fact that, being supported by literature, links in the PKN are

more reliable with respect to links integrated using data-driven

approaches and they should be prioritized in the training.

Fig. 1. Integrated pipeline of CNORfeeder (light boxes) and CellNOptR (dark boxes). (A) Data are used to infer, using reverse-engineering methods, a

strictly DDN; (B) the PKN is compressed according to the data (dark, middle and light grey nodes are, respectively, stimulated, inhibited and measured),

removing non-identifiable nodes (dashed); (C) the compressed network is integrated with the DDN (dotted links are obtained from the DDN and

continuous links from the PKN); (D) information derived from PINs are used to support and prioritize integrated links; (E) The integrated network is

used as input for the training: in the trained model, thick black lines denote interactions (and gates) in the trained model, and light-grey links denote

presence in the integrated network but not in the trained model

2313

Integrating literature-constrained and data-driven inference of signalling networks



Additionally, integrated links can be differently prioritized based on

information derived from PINs: the basic idea is that if, for a directed link

A!B integrated in the PKN, there is a corresponding path in the PIN, it

is more plausible that there is a molecular pathway A!B. Because

shorter paths are more feasible, as a first approximation the shortest

path length between A and B in the PIN can be used as a reliability

score for the integrated link. Since the optimization is performed on a

compressed version of the PKN, one link integrated in the compressed

network generally corresponds to multiple possible links integrated in the

PKN (Fig. 1E). Thus, the reliability score for each integrated link i is

given by !i ¼
PJi

ji¼1
1=dji , where ji¼ 1, . . . ,Ji are the links in the PKN

corresponding to the integrated link i in the compressed network. The

shortest path d is computed using the Dijkstra’s algorithm implemented

in the igraph R package (Csardi and Nepusz, 2006) considering the PIN

as a graph where the weight of the edges is the inverse of the number of

experiments (experimental evidences) that validate it.

Thus, the penalty for all A integrated links into the compressed net-

work P, can be defined as

�add Pð Þ ¼
XA
i¼1

�i
1

!i
þ 1

� �
Pi ð3Þ

The training step, to find the P that minimizes � Pð Þ in Equation (1), is

performed with CellNOptR using a genetic algorithm that explores the

P-space. The genetic algorithm is run multiple times, and in each run the

values for the explored models is recorded, so that at the end a family of

models is reported.

3 RESULTS

The method was applied to a dataset of a human liver cell line

(HepG2) from the DREAM 4 challenge (Prill et al., 2011), where

the phosphorylation of seven proteins (akt, erk12, ikb, jnk12,

p38, hsp27, mek12) is measured 30min after combinatorial

stimulation with four ligands (tnfa, il1a, igf1, tgfa) and four in-

hibitors (pi3k, ikk, p38, mek12). The level of phosphorylation of

proteins is measured using the Luminex xMAP assay and pro-

vides a value of the phosphorylation in arbitrary units, that can

be used to compare values at two conditions. In our case we

compare the values between 0 and 30, and this change is a

proxy of the induced activation of the corresponding protein.

The normalization of this data to a value between 0 and 1 is

achieved using a method based on a set of thresholds as

described in (Saez-Rodriguez et al., 2009). According to the

CellNOptR pipeline, the PKN was first compressed removing

all non-observable and non-controllable nodes and then ex-

panded as described in (Saez-Rodriguez et al., 2009) to include

all possible combinations of AND and OR gates compatible with

the network obtaining a total of 62 hyperedges. Additionally, 18

links inferred using FEED were integrated in the network ac-

cording to the procedure previously described and the integrated

network was used for optimization using CellNOptR.

Fig. 2. Reverse engineering of a Gold Standard network (E) using four different inference methods (A–D). Dark, middle and light grey nodes

are, respectively, stimulated, inhibited and measured. Link styles represent the comparison of the inferred networks (DDNs) with the Gold

Standard: dark thick continuous for links in both networks, dark thin continuous for links in the DDN that correspond to a path in the Gold

Standard, dashed for links in the Gold Standard not present in the DDN and dotted for links in the DDN that are not in the Gold Standard, light

grey for links that are not in the network under examination but are in one of the other networks. In panel (F) the gradation of grey represent the

consistency between DDNs in panels (A–D)
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Fixing �¼ 0.001, the influence of the integration penalty (�)
on the number of integrated links selected by the optimization

process on the fit of the optimal model to the data (in terms of

MSE) was tested as shown in Figure 3. As expected, a low value

of � obtains the best fit but at the price of a high number of

integrated links included in the optimal model (9 with �¼ 1). An

increase of the value of � decreases the number of selected inte-

grated links but worsens the fit to the data. With �¼ 1000 only

the integrated link tnfa!ikk is included in the optimal model:

the presence of this link is well supported by the data since it

lowers the MSE from 0.064 (the optimal fit obtained with

CellNOptR using as input the non-integrated network) to

0.040. The integrated links can be ranked as shown in

Figure 3B according to the highest value of � allowing their

selection and thus according to their effect on the improvement

of the fit. A lower number of links is selected when using the PIN

to additionally penalize unsupported links (highlighted in dark

grey in Fig. 3B). Those links, combined with the information

from the PIN, suggest possible missing connections in the

PKN. For example, in the PIN there is an interaction between
the adaptor irs1 and the kinase pdk that would justify the link

igf1!akt in the compressed network since, in the PKN (Fig. S2
in Supplementary Material), igf1 binds to its receptor and pdk

regulates akt (links igf1!igfr and pdk1!akt in Supplementary
Fig. S2; note that in Fig. 4 the compressed networks are shown

and thus intermediates igfr, irs1s and pdk1 are not present).

Therefore the path igf1!igfr !irs1s!pdk1!akt is supported
by a combination of literature and interaction data. Similarly, to

support the link tnfa!ikk there is a validated interaction be-
tween the tnfa receptor and cot, a protein that activate ikk,

leading to the combined pathway tnf!tnfr!cot!ikk.
In Figure 4A and B the results of CellNOptR optimization

(with �¼ 700) are shown using as input the compressed network
and the integrated network, respectively. In the upper panels,

optimal models are shown: links selected by the optimization
algorithm are represented with continuous line if derived from

the PKN and dotted line if integrated using FEED. In the lower
panel the improvement in the fit is shown (from 0.064 to 0.022),

which is particularly large for proteins ikb, mek12 and akt. In

this case study, using the same parameter setting (�¼ 0.001,
�¼ 700), networks integrated using ARACNe and CLR do

not provide an improvement of the fit, whereas Bayesian net-
works obtain an MSE of 0.040 (see Supplementary Material). As

for the computational times, FEED, CLR and ARACNe
inferred the network in �1 second whereas Bayesian inference

took �1h on a cluster.
To evaluate the scalability of our method, we applied

CNORfeeder to a larger dataset obtained also in the cell lines
HepG2, comprising 7 stimuli, 7 inhibitors and 15 readouts

(Saez-Rodriguez et al., 2009). We obtained comparably good

results (see Supplementary Material).
Furthermore, we investigated the ability of our method to

capture feedback loops, which are fundamental in the regulation

Fig. 4. Results of the training of the compressed model (A) and of the integrated network (B) against data using CellNOptR. Dark, middle and light

grey nodes are, Respectively, stimulated, inhibited and measured. Selected links are represented with continuous line if derived from the PKN and dotted

line if integrated, links not selected are in light grey. In the tables the fit (in terms of MSE) is reported for each measured protein along with the sum for

all proteins

Fig. 3. (A) Effect of tuning parameter � on the number of integrated links

(continuous line) and on the fit (MSE, dashed line). (B) Links integrated

for different values of � (1, 100, 500); a reduced number of links is

selected when using PIN to prioritize links (dark grey)
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of signal transduction. We constructed a toy model containing a

negative feedback loops and simulated data at two different time

points (10 and 30min). We used FEED as a reverse-engineering

method to retrieve, from the data, a link of the feedback that was

missing in the PKN and then applied a recently implemented

package of CellNOptR (www.cellnopt.org) that, looking also

at the second time point, was able to select all links of the feed-

back loop (see Supplementary Material for further details).

4 DISCUSSION

In this article, we present an approach that integrates literature-

constrained and data-driven methods to efficiently infer

signalling networks from experimental data collected under per-
turbation experiments with different stimuli and inhibitors. The
procedure is implemented in the R package CNORfeeder and

consists of (i) inference of a data-derived network (DDN) using
strictly data-driven reverse-engineering methods (so far FEED,
Bayesian networks and mutual information approaches); (ii) in-

tegration of the DDN with a literature-derived PKN, using PINs
to prioritize and validate integrated links; and (iii) training of the
integrated network against data using CellNOptR to obtain a

logic model that best describe the data with the minimum
number of links.
Links that improve the fit to data with respect to the PKN

alone may be missing due to the difficulty assembling all avail-

able pathway information or because of incomplete knowledge
of the biology. PINs are used as a complementary source of
information to tackle this problem. PINs contain physical inter-

actions between proteins, including those that potentially lead to
protein activations, and they typically include more nodes and
many more links than those based on literature-derived path-

ways. For this reason they have been proposed to extend path-
ways (Glaab et al., 2010) but they have the main limitation of a
lack of directionality. PINs are also known to have high false

positive and false negative rates, and we, therefore, used a highly
curated PIN that integrates different sources and experimental
techniques. This PIN seems to be quite complete for the path-

ways we studied (canonical pro-growth and inflammatory path-
ways) since we verified that for links in the PKN there is,
generally, also a direct connection in the PIN (Fig. 5).

Interestingly, when mapping to the PIN the links integrated in
the PKN, we found a corresponding short path that does not
pass through other nodes of the PKN. To limit the effect of false

positive links in the PIN when searching for the shortest path, we
weighted the edges according to the number of experimental
evidences that support them. The length of the shortest path is

then used to differently prioritize the integrated links in the train-
ing of the network, but other metrics could be used to discrim-
inate between links. PINs were previously shown to be

potentially useful to find previously unknown modulators of
signalling pathways in (Vinayagam et al., 2011), where a
Bayesian learning strategy was applied to assign directionality

to a comprehensive PIN exploiting information on the shortest
path from membrane receptors to transcription factors. In our
method, we can take advantage of the directed links inferred via

reverse engineering to limit the paths present in the PIN we in-
tegrate, and limiting the search space for the optimization
algorithm.

We have used different data-driven inference methods, and
applied them to both in silico (to reverse engineer a benchmark
network with known topology) and real data (to integrate links

missing in the PKN that improve the fit of the model to the data
in the liver cancer cell line HepG2). Each reverse-engineering
method has specific features and can be suitable for different

needs: for example, Bayesian networks can provide statistically
rigorous results but at the price of high computational costs,
whereas mutual information approaches are computationally

fast but are limited mostly by the lack of directionality of the
inferred links. FEED seems to be particularly suitable to infer
causal networks from single-stimulus/single-inhibitor experi-

ments with low computational costs but, as for now, does not

Fig. 5. Mapping of the PKN to the PIN. (A) Represents the subgraph of

the PIN that include only nodes belonging to the PKN (dark grey) and

nodes used in the mapping of integrated links (light grey); the network

was plotted with R package igraph. The same colour code is used for the

edges: as expected, shortest paths between nodes in the PKN (dark grey)

are generally shorter than paths used to map integrated links (light grey).

This is highlighted also in (B) where the density of the shortest path

length (in terms of number of edges) is plotted for integrated links, for

links in the PKN and for random links
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exploit data from all multiple combinatorial perturbation

experiments.
It is not the purpose of this study to compare reverse-

engineering methods (which would require a larger set of bench-

mark networks with known topology and a more realistic simu-

lation of experimental data). The spirit of the article is more in

line with the lesson derived from the DREAM challenges

(Marbach et al., 2010; Prill, 2011) that different approaches

can provide complementary insights into the same problem.

We have thus employed various approaches and we plan to

extend it to others in the future. Furthermore, some reverse-

engineering methods can use prior knowledge, in particular

Bayesian inference methods (Bender et al., 2011, Mukherjee

and Speed, 2008), so that we could use the PKN or results

from the training with CellNOptR to guide a further search

for novel links.
To conclude, the integration of literature-constrained and

data-driven inference methods overcomes the limitations of

both: for purely data-driven inference methods, the poor scal-

ability (as the search space increases exponentially) and limited

biological interpretability (since they are limited to measured and

perturbed proteins excluding intermediate ones), and for meth-

ods constrained to prior knowledge their inability to overcome

incompleteness in the networks. We propose here an approach

(and software package) to combine them that is effective and

extendable to include other methods.
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