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ABSTRACT

A number of interaction energy types are employed in the vibrations studies, especially in the spectroscopic
analysis, such as the harmonic oscillator and Morse oscillator. In this research, a derivation of an analytical
formula of equation of state of Morse oscillator is considered by employing the approximations used in the simple
fluids theory. The compressibility formula of the pressure and the virial expansion formula of the pressure using
the solutions of the main equation of the simple fluids theory with one of the approximations of the theory are
employed for the purpose of the derivation. The virial coefficients of the total Morse oscillator pressure (the
first order one, and the second order one) are found for Morse oscillator with respect to the fractional volume
of the components, where we conclude that the first order term is proportional to the absolute temperature
directly and depends on the diameter of the particles, while we concluded that the second order coefficient
term is more complicated than the first order one with temperature, and also, depends on the three Morse
oscillator parameters and the diameter of the particles. Besides, we conclude that the total pressure of Morse
oscillator, generally, depends on the minimum energy of the well of Morse oscillator, the width parameter of
Morse oscillator, and the equilibrium bond distance of the oscillator, in addition to their dependence on the
absolute temperature of the components, and the diameter of the particles. The formula of the Morse oscillator
equation of state which is found in this research can be applied to multiple materials described using Morse
oscillator such as lots of dimers in the vibrations spectroscopy.

1. Introduction

For the study of vibrations in the quantum mechanics and their
relations to the spectroscopic results, there are multiple types of the
potentials, such as the harmonic oscillator potential an Morse oscillator
potential which we focus on in this research. There are multiple used
formulas of Morse oscillator, based on the zeros of the energy, such as
the formula represented in the following equation (Abebe et al., 2021;
Algannas and Abdel-Khalek, 2019; Ikot et al., 2021; Morse, 1929; Okoia
et al., 2020; Rong, 2003):

VMo - Eoe—Z(r—rO)q[l _ Ze(ro—r)q+2(r—ro)q] (1)

From equation (1), we note that the formula of Morse oscillator has
three different parameters: E, which is the minimum energy of the
well, ¢ which represents the width parameter of Morse oscillator, and r
which represents the equilibrium bond of the oscillator (Pingak et al.,
2021; Al-Raeei, 2021). In the following, we are going to show a method
for deriving an equation of state of Morse oscillator (EOSMO) based
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on the integral equations theory using the mean spherical approxima-
tion. The integral equations theory is a significant theory for discussing
thermodynamics of multiple spectrum of materials such as soft mate-
rials and simple fluids. For instance, Zhou et al. (2004) applied the
integral equations theory for finding the depletion potential for the col-
loidal particle, Aguirre-Manzo and Gonzélez-Mozuelos (2021) discuss
the charged colloids with high charges with the salt in suspensions us-
ing the theory of the integral equations, Pérez-Molina et al. (2021) used
the chaotic data with the theory of the integral equations for the es-
timation of the virial coefficients of the equation of state, Kalyuzhnyi
et al. (2021) applied the theory of the integral equations with the nu-
merical analysis techniques for the study of the mixtures of colloids,
Hashimoto et al. (2019) use the theory of the integral equations with
the atomic force microscope data for the determination of the number
density distribution of colloidal particles on a substrate, Filippov et al.
(2019) used the theory of the integral equations for the dusty plasma
mixtures, Munao and Saija (2019) studied the hertzian spheres in case
of the low temperatures using the theory of the integral equations in
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addition to the Monte-Carlo simulation, Herrera (2018) found some
structural and thermodynamic properties of fluids described by hard
sphere and Yukawa potential using the theory of the integral equations,
Arauz-Lara showed some application of the integral equations theory to
the colloidal fluids, Pizio et al. (2011) discussed a model for the simple
fluids using the second order of the integral equations theory, LukSi¢ et
al. (2011) applied the integral equations theory for the mixtures of the
electrolytes and non-charged hard spheres for purpose of the determina-
tion of the structural properties and thermodynamics of these mixtures,
Fukudome et al. (2014) showed a new formula for the direct correlation
function for the hard sphere fluids, Wu et al. (2014) calculated the static
structure factor for the charged spheres using the integral equations the-
ory, Lomba et al. (2015) used the three dimensional integral equations
approximation for discussing of fluids with confinement and applied in
the case of the argon in zeolites, Miyata and Miyazaki (2016) discussed
the one component fluids interacting via Lennard-Jones interaction for
the study of the temperature derivative of the radial distribution func-
tion using the integral equations theory, Melnyk et al. (2016) found the
structure factor of the fluids of the hard core type interacting via short
range Yukawa potential using the integral equations theory and the sim-
ulation methods, Al-Raeei (2022a) derived a state equation for London
interaction. Also, Al-Raeei (2021) applied the theory for the study of
some soft materials, Zhou (2010) discussed the fluids with the hon-
eycomb interaction with the integral equations theory. In the second
section of this work, theoretical method of the derivation of the equa-
tion of state is illustrated, and in the third section, some discussions of
the derived formula are illustrated, and in the last one, conclusions of
the work are illustrated.

2. The method

The main equation in the study of the simple fluids using the in-
tegral equation theory is Ornstein-Zernike equation (OZE) which has
two different terms: the first term is resulted from the direct correlation
and the other is resulted from the indirect one, the OZE is worded via
following formula (Al-Raeei, 2022b,c):
h'=c%+ T/d?’coq?’ - ?|)h|T7,| 2
Where the distance of the particles is r, the particle density number
is 7, ¢© and h? are correlation functions. From the formula of the
equation (2), it is clear that the finding of solutions of this equation
needs another equation which is resulted from multiple types of the ap-
proximations used in the simple fluids theory where some have linear
form, some have exponential form, and others have natural logarithmic
form. In this work, we employ the approximation namely MSA (mean
spherical approximation) where this approximation is the basic approx-
imation of this study for finding the solutions and from these solutions,
we derive our equation of state for Morse oscillator. The starting point
of deriving the equation of state of Morse oscillator is from the general
form of the pressure which has two terms as in the equation (3):

1
Ptot(T’T) = g(ZPVir + PCom) (3)

where the first term returns to the virial case, and the other returns to
the compressibility one. Firstly, the treating of the virial terms is done,
where this term is illustrated in the equation (4):

[s+]
2
Pyi(t,T)= P+ Py=kptT — ?12 / V), g dr 4@
0
where Boltzmann constant is kg, the temperature is 7', the radial dis-

tribution function is g”, and ¥}, is the Morse potential derivation with
respect to the distance which can be found in the following equation:

V/

o = quoe%q(r*ro)[eq(rr)*’HZq(r*Vo) -1] 5)
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and by using the solutions of the equation (2) in the virial pressure
equation, we find:

d ©
Py (2, T)=kgtT - %27r1'2/der(hg;r3 - %2;”2[”/ Vio8or (6)
0 d
PVir(T’T)

[oe)
ke — ngEO 2 e~4(r=ro) _ ﬁDee—q(r—ro) + zﬂDEe—Zfl(f—ro)
B 3 —e72010) _ 28D e300 4 g 4003 g

@
and by other form:
[s+]
27gE,
Py (t.T) = kytT — %12[(1 — PEy) / Pear=r0) g
d
[S9) (S
+(@2PEy- 1) / re 20 =r0)dr — 2pE, / Pe =gy (8)
d d
[se]
+ fE, / re=40=r0) gy
d

Here, the using of the dimensionless form of the parameters of the
Morse oscillator those are given in the following equation:

Pt =qr” 9
5= —(ry—1) (10)
p*** qu‘** (11)

gives the virial term of the pressure as:

2zqEy ,
Py (v, T)=kptT — —= [(1 = PEg)uy + (2PEy — Duz — 2fEyu, + fEguy

12)
where:
(S
uy =K1(¢]J0)//’*Se_4ﬂ*dﬂ* 13
d
uy = K5(q,7¢) / pRe dp* 14
d
uy = K3(q,ro) / P dp* (15)
d
[se]
uy = Ky(q, ro)/p*3e’”*dp* ae)
d

The integrating of the previous four equations can be done using the
power-n with the exponential function integral which gives the follow-
ing four results:

3 2 «©
uy = eMro-map - _ 3 6or 6 a7
49  16g% 6443 256¢* |,
2 o0
— Aro-ng_r” _rm _2r 2
uy = e 07| 34 332 9 7ig |, 18)
3 2 ©
uy= e 2eo-nap_ - 3 3r 3 (19)
2q 4% 4¢3 8¢* |y
3 2 ©
uy = eromnap - 3 _6r_ 6 (20
a @& ¢ ¢y

which gives the virial term of the pressure equation after returning to
the dimensionless parameters as follows:
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2zE 3d2  6d 6. _g
Py (z, = kBTT_T [(l_ﬂEo)(_+T+q— —-) o
3 *
FOpEy - (L 4 3 3 3
2 4q  4q 1)
3 d® 2 2
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g 0( 3¢ 9¢2 2743
3d> | 3d 3 s
+ BEy(— + + =+
b 0( 16 " 3g T s
where:
5* — (d)p*** (22)

Then, the treating of the compressibility pressure is done, where this
term is given in the following equation: is given as follows:

Pcom(T,T)E/édT 23)
0

with helping of the static structure factor as:

1
xrlkptT)=Sc,(k; = 0) = (kptTyr)= TM 24)
With k, is the amplitude of the wave vector, and the previous formula
becomes:
5]
(prkptT)™' = —47rr/r2c0dr +1 (25)
0

using the solutions of the equation (2) in the compressibility equation,
we find

[

d
-1 =47r1/drr2+8ﬂﬂrE0/drrze_"(’_rﬂ)
d

(xrkptT)

(26)

—4np7E, / drrte™240-70) 4
d

and if we use the Morse oscillator dimensionless parameters, the equa-
tion (26) is worded as:

(rrkgeT) ™' = 4”;’ L+ 8cxPEyug — 4rrfEgus + 1 27)
where:

us = Ks(q,ro) / e dpt (28)
ug = Kg(g,r9) / P dp (29)

The integrating of the previous two equations can be done using the
power-n with the exponential function integral which gives the follow-
ing two results:

2 (o]
= Qrgmngp_ 1= _ 1 30
Us = €
5 [ 29 242 443] d e
2 [so]
ug = o= 2 _ 2 €3))
a ¢ ¢y

By substituting the integrals in the equation (27), we find the compress-
ibility in the following equation:

2
GrrkpeT) ™ =1+ 4 edd - SﬂﬁrEOe_(d"O)q(d_ i l)
3 q ¢ P
(32)
+ 477 pE, e*zﬁf*'o)q(d_z I
0 2 242 4q3
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And we find that the compressibility term of the pressure is given in the
following equation:

2
[+ 22 dred’ _ 8rapEye e 4 2—; + %
PCom(T’T) = TkB / ) d2 d ql q q (33a)
+empEye 1T + =+ —)ldT
2¢2 443
By using the power-n integrals, we find:
2xd3k g T _ 2w 2
PC(T»T)szTT‘F[f—“ Egye 5(—+ +—3)
(33b)
+27E e-za*(d_z + 4y —)]r2
0 29 2¢* 4¢3

By substituting the equation (21) and the equation (33b) in the general
formula of pressure, we find that:

3d?  6d "

P = Elker - 2000 - pgp e+ 204 64 8
q

d®  3d%?  3d g
+ QB - (= + 21—+ =+
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and in simpler form:
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3. Results and discussion

The equation (35) is the basic equation of this study where that
equation can be reworded using the fractional volume of the compo-
nents, which is illustrated in the following equation:

=3z 36
v=dirg (36)

and the equation (35) becomes:

P,(v.T)=T* +Tv (37)
where:

-3
r =k, (38)
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It is noted from the equation (35), and the equation (37) that the to-
tal pressure of Morse oscillator is function to the fractional volume via
square function. Also, we see from the two equations ((35), and (37))
that the total pressure of Morse oscillator depends on the absolute tem-
perature, the fractional volume of the components, the depth of Morse
potential, the bond distance of Morse potential, the components’ di-
ameter, and the well width parameter. Besides, it can be seen that the
pressure is proportional to the square of the Morse potential well depth.
In addition to that it is seen from the equation (38) that the first ordered
virial expansion coefficient of the Morse potential does not depend on
the three Morse oscillator parameters, and this first order coefficient
is function to the inverse of the cube of the diameter of the compo-
nents and to the linear function of the temperature. While the second
order virial coefficient of Morse oscillator (from the equation (39)), de-
pends on the Morse bond distance, the well depth of Morse potential,
and the width parameter of Morse potential, and also to the diameter
of the components, and temperature. Besides, it can be seen from the
equation (39) that the second order virial coefficient is function to an
exponential function with the width of the Morse potential and the bond
distance of Morse oscillator, while this coefficient is a square function
to the depth of the Morse potential. Further applications of the equation
of the total pressure derived from this work can be applied to significant
molecules and dimers, for instance: the dimer of phosphorus (Jia et al.,
2018; Peng et al., 2018), the nitrogen gaseous, hydrogen chloride, car-
bon monoxide, hydrogen sulphide, and Bohr fluoride (Jia et al., 2019;
Jiang et al., 2019; Wang et al., 2019, and Jia et al., 2020), and for water
(Wang et al., 2021), where we can use the fittings parameters resulted
from the previous studies for simulating our equation of state of Morse
oscillator for further numerical results.

4. Conclusions

In this research, an analytical formula of the Morse oscillator equa-
tion of state for systems described by Morse potential in the vibrational
case was derived. The mean spherical approximation for low density
simple fluid for deriving the Morse oscillator equation of state. The gen-
eral formula of pressure which includes the virial expansion term and
the compressibility term was applied.

Based on the Morse oscillator equation of state derived in this re-
search, it is shown that the Morse oscillator pressure depends on the
absolute temperature of the components, the depth of the Morse oscil-
lator potential well, the bond distance of Morse potential, the diameter
of particle of the described system, and the compact factor. We found
that the pressure of the Morse oscillator depends on the fractional vol-
ume via square function. In addition and based on the Morse oscillator
equation of state derived in this research. The first two order terms of
the virial Morse oscillator pressure were found, where, it was shown
that the first order virial coefficient does not depend on the three Morse
oscillator parameters, while only the second order virial coefficient is
dependent on the three Morse oscillator parameters in addition to its
dependence on the absolute temperature of the components and the di-
ameter of the components.
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We believe that the Morse oscillator equation of state which was
derived in this research can be applied generally for the study for lots
of systems described by the Morse oscillator interaction such as the di-
atomic molecules, for instance: the hydrogen chloride and the hydrogen
fluoride, where this equation can be applied for the numerical calcula-
tions, however, in this work we focus on the finding of the equation
of state of Morse oscillator rather than the calculating of the numerical
values.
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