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Simple Summary: MicroRNAs are small, non-coding RNA molecules that can regulate the expres-
sion of various cancer-related genes and thereby contribute to tumorigenesis and progression of
many cancer types. The biological functions and therapeutic potential of miR-21 have been compre-
hensively investigated. In the current study, we provide an inclusive review of the potential targets,
and the current applications as a diagnostic and prognostic cancer biomarker of miR-21. We also
summarize the scientific evidence that has highlighted miR-21 as a therapeutic agent as well as the
challenges for its use as a therapeutic tool in different cancer types in the digestive system.

Abstract: MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression
of their target genes, and thus, their dysregulation significantly contributes to the development
of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an
oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic
applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated
via its different molecular networks. Then, a comprehensive review on the potential targets and the
current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of
miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the
challenges for the use of miR-21 as a therapeutic tool for these cancers is added.

Keywords: miR-21; cancer; pancreas; liver; gastrointestinal tract; digestive system

1. Introduction

MicroRNAs (miRNAs) are a group of small, non-coding RNAs (ncRNAs) of 18–24 nu-
cleotides in length [1]. They can bind to the 3′-untranslated region (3′-UTR) of a target
mRNA molecule to exert degradation and/or translation inhibition, thereby regulating the
expression of the target genes [2]. MiRNAs, therefore, play essential roles in many physio-
logical and cellular processes, including differentiation, proliferation, and apoptosis [3].
They may function either as oncogenic miRNAs (oncomiRs [4]) or tumor suppression
agents [5,6]. Among them, microRNA-21 (miR-21), one of the first identified mammalian
miRNAs, has been recognized as an oncomiR that is overexpressed in various human
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cancer types, including breast, gastric, lung, esophageal, colorectal, biliary tract, nasopha-
ryngeal, and liver cancers, as well as osteosarcoma, glioma, leukemia, retinoblastoma, and
lymphoma [7,8]. The conditional over-expression of miR-21 in miR-21 “knock-in” mouse
caused malignant B-cell lymphoma has strengthened its function as an oncomiR [9].

MiR-21 is encoded by a genomic sequence that is transcribed by RNA polymerase
II to form a primary miRNA (pri-miRNA) of ~3433 nucleotides (nt). Pri-miR-21 is then
processed by Drosha and DiGeorge Syndrome critical region 8 (DGCR8) to form a stem-loop
precursor (pre-miR-21) of ~72 nt [10]. The pre-miR-21 is then transported into cytoplasm by
Epotin-5 and Ran-GTP where it is further trimmed by Dicer to generate two mature forms
of 22 nt [11–13], namely, miR-21-5p (UAGCUUAUCAGACUGAUGUUGA) and miR-21-3p
(CAACACCAGUCGAUGGGCUGU). In human genome, miR-21 encoded gene is localized
on the host gene VMP1 (https://rnacentral.org/rna/URS000009262D/9606, accessed on 10
July 2020) on chromosome 17 (chr17:59,838,822-59,842,255 (GRCh38/hg38)) of the human
genome [14].

Like other miRNAs, miR-21 directly binds to the 3′-UTR of its target genes, and
negatively alters their expression. To date, a total of 3078 human genes have been identified
as potential targets of miR-21 (https://www.mirnet.ca/; accessed on 20 July 2020), and
many of them are involved in regulating different aspects of cancer, such as proliferation,
survival, migration, and invasion. Additionally, miR-21 also plays essential roles in the
ncRNA interaction network. Specifically, miR-21 modulates the expression of 23 lncRNAs
(Figure 1a), including suppressing the expression of growth arrest-specific 5 (GAS5) in the
breast tumor specimens, promoting the expression of small nucleolar RNA host gene 1,
and activating Akt (protein kinase B) pathway in hepatocellular carcinoma (HCC) cells [15].
Moreover, miR-21 is found to be regulated by 696 circular RNAs (circRNAs) (according to
the miRNet database; https://www.mirnet.ca/; accessed on 20 July 2020). For instance,
circRNA C3P1 (circC3P1) regulates the miR-21/phosphatase and tensin homolog (PTEN)
axis to restrain kidney cancer cell activity [16]; circRNA HIAT1 (circHIAT1) regulates miR-
21 to inhibit epithelial–mesenchymal transition (EMT) of gastric cancer (GC) cell lines [17].
Furthermore, epigenetic studies revealed that miR-21 could interact with 42 transcription
factors (TFs) (Figure 1b). Ferraro and colleagues, for example, demonstrated that Activator
protein 1 (AP-1) and ETS Proto-Oncogene 1 (ETS1) TFs negatively regulate the expression
of miR-21 gene by occupying its promoter in a sequence-specific manner [18].
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visualization is based on miR-21 targets of the miRNet platform (https://www.mirnet.ca/). Each dot represents a long non-
coding RNA or a transcription factor. 
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To date, several investigations have focused on the biological functions of miR-21
across human cancers [19–31]. However, few reviews have been published in the interim,
failing to provide a broad view of the topic. In fact, the results obtained from the Cancer
Genome Atlas Data (http://ualcan.path.uab.edu/analysis-mir.html, accessed date on 20
April 2020) indicated that miR-21 significantly increased in many cancers types compared
to normal tissues including several cancer types of digestive system (Figure 2). Diges-
tive/gastrointestinal cancer refers to malignant tumors that affect both the gastrointestinal
tract (GIT) and its accessory glands and are among the most encountered tumors in clinical
practice with a high mortality rate [32]. These tumors behave aggressively by locally
invading nearby tissues and metastasizing distantly. Among them, colorectal cancer (CRC)
is the fourth leading cause of mortality (9.2% of all cases) followed by stomach (8.2%) and
liver cancers (8.2%) [33]. In comparison, pancreatic cancer (PC) has the lowest survival
rate of all solid tumors with 5-year survival rate of less than 5% [34]. The prognosis for
most of the GIT neoplasms is good when the tumor is detected at an early stage. However,
these tumors are often diagnosed late due to the expansive nature of the abdomen and
lack of less-invasive screening tests or negligence of the patients. Therefore, finding new
biomarkers for early diagnosis or screening is of paramount importance for these tumors.
In fact, miR-21 significantly increases from stage 1 of cancers (Figure 2), which makes it an
interesting candidate for early diagnosis and treatments of cancers.
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In this current review, we aimed to provide a comprehensive overview of the roles of
miR-21 across cancers of the digestive system, with specific details around its potential use
as a biomarker and therapeutic agent in cancer treatments. Additionally, the underlying
mechanisms of action of miR-21 in cancers are also discussed.
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2. Biological Pathways of miR-21 in Cancers of the Digestive System

Being a multiple-gene targeted miRNA, miR-21 is expected to be involved in different
cellular biological pathways. According to miRPath v.2.0 [35], there are 19 different Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly enriched
for the target genes of miR-21 (Figure 3). Among those, gap junction, cytokine-receptor
interaction, and the transforming growth factor beta (TGF-β) signaling pathway were the
three most significantly enriched pathways for miR-21, which have been noted to play
roles in cancer progression. Below, we review the major cancer-related pathways induced
by miR-21.
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2.1. Cell Survival and Proliferation

MiR-21 was one of the first reported miRNAs in mammals. Its universal over-
expression patterns and its function in human cancers have been well-elucidated. It has
been widely established that miR-21 promotes survival and proliferation of cancer cells
by directly inhibiting its targets, including PTEN, Programmed Cell Death 4 (PDCD4),
reversion-inducing-cysteine-rich protein with kazal motifs (RECK), and sprouty RTK signal-
ing antagonist 2 (SPRY2). Accordingly, over-expression of miR-21 in human cancers results
in a decreased level of the tumor-suppressor proteins PTEN, PDCD4, SPRY2, and/or RECK,
thereby promoting cell proliferation [36–47]. This effect is achieved via multiple molec-
ular pathways (Figure 3). Particularly, by targeting and downregulating PTEN, miR-21
stimulates the nuclear factor kappa B (NF-κB) [48] or AKT/extracellular signal-regulated
kinase (ERK) pathways [42,43], thus inducing cell proliferation and tumorigenesis. In
HCC, increased levels of miR-21 downregulate interleukin (IL)-12, its direct target, thus
inhibiting apoptosis and promoting cell proliferation [49]. Moreover, induced expres-
sion of miR-21 high-mobility group box 1 (HMGB1) causes downregulation of its targets,
TIMP metallopeptidase inhibitor 3 (TIMP3) and RECK that, in turn, increase the levels of
matrix metallopeptidase (MMP) proteins, thereby mediating HCC progression and metas-
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tases [50]. This study indicated that the signal transducer and activator of transcription 3
(IL-6/STAT3)–miR-21 axis is a novel mechanism through which HMGB1 promotes HCC
progression [50]. In PC, it was also demonstrated that miR-21 enhances endothelial growth
factor (EGF)-induced proliferation via targeting of SPRY2 and activating the MAPK/ERK
and phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathways [41], revealing a novel
potential therapeutic target for patients with PC. Similarly, downregulation of miR-21
consequently inhibits the proliferation, invasion, and migration of esophageal squamous
cell carcinoma (ESCC) cells by negatively regulating the expression of PDCD4 [51] or
PTEN [45] via the PTEN/PI3K/AKT signaling pathway [46]. In human salivary adenoid
cystic carcinoma (SACC), higher expression of miR-21 is linked with higher metastatic
potential (SACC-LM cells). This phenotype can be abolished by transfecting SACC-LM
cells with a miR-21 inhibitor, to reverse its effects on the expression of PDCD4, PTEN,
and Bcl-2 [52].

MiR-21 contributes to cell survival by upregulating the expression of different anti-
apoptotic proteins. The stabilization of MCL-1 (myeloid cell leukemia 1), a pro-survival
protein, is promoted by the hyper-activation of the PI3K/AKT pathway as a result of PTEN
downregulation in miR-21-overexpressed cancer cells [53]. Moreover, the expression of
Survivin, another well-known apoptotic inhibitor that is usually upregulated in malignant
tissues, was also found to be negatively correlated with the expression of PTEN [38].
Thus, by inhibiting the expression of PTEN, miR-21 upregulates the expression of the
anti-apoptotic proteins MCL-1 and/or Survivin, and consequently promotes cancer cell
survival. Additionally, the induced expression of Bcl-2 via direct interaction with miR-21
and its association with anti-apoptosis and chemoresistance to gemcitabine of PC cells has
also been reported [54]. However, the underlying mechanism of how Bcl-2 is induced by
miR-21 remains unclear [55].

2.2. Migration and Invasion

MiR-21 has also been linked to human tumor invasion and metastasis by negatively
regulating targets that are adversely associated with metastatic capacity, such as PTEN,
PDCD4, von Hippel-Lindau (VHL), TIMP3, Tropomyosin 1 (TPM1), and Serpin Family B
Member 1 (SEPINB1) [40,47,56–60]. In PC, miR-21 contributes to tumor growth, invasion,
and chemoresistance by positively regulating the expression of invasion-related genes
including MMP-2/9 and vascular endothelial growth factor (VEGF) [60], and negatively
regulating the expression of the tumor-suppressor gene, VHL [59]. Inhibition of miR-21
causes upregulation of VHL [59], which inhibits the expression of MMP-2/9 and hypoxia-
inducible factor (HIF)-1α/the VEGF pathway, which consequently inhibits the progression
and invasion of PC cells [59]. This study demonstrated the oncogenic roles of miR-21 and
suggested the miR-21–VHL axis as a potential target for PC therapy. In HCC, on the other
hand, downregulation of PTEN due to over-expression of miR-21 causes phosphorylation
of FAK (focal adhesion kinase) and over-expression of MMP-2/9, thereby contributing to
tumorigenesis [61]. Additionally, downregulation of PTEN and human sulfatase-1 (hSulf-1)
as a result of increased miR-21 expression triggers the activation of the AKT/ERK pathways
and facilitates tumor growth and metastasis in HCC [43]. In CRC, miR-21 promotes tumor
invasion and metastasis via modulating the expression of multiple cancer-related genes,
including Transforming Growth Factor Beta Receptor 2 (TGFβR2) [56], PDCD4 [57,58],
and PTEN [40] (Figure 4). Additionally, miR-21 controls the expression of the integrin β4
subunit (ITGβ4) that plays a role in regulating the EMT, thereby affecting the migration
properties of cancer cells [18]. Moreover, by negatively regulating a tumor suppressor
gene, Ras Homolog Family Member B (RhoB), miR-21 promotes cell proliferation, invasion,
and apoptosis [62]. Additionally, downregulation of miR-21 in SACC indirectly leads to
downregulation of the p-STAT3 protein by upregulating its inhibitor, PDCD4 [44]. STAT3
is involved in multiple fundamental events of cancer pathogenesis, including survival,
proliferation, invasion, and angiogenesis, via its target genes, such as Bcl2, c-myc, cyclinD1,
Survivin, and MMP-2/9 [63]. Thus, downregulation of STAT3 directly or indirectly via
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controlling the expression of miR-21 and/or PDCD4 in SACC may eventually inhibit
tumor growth and invasion [63]. Furthermore, the reduction of PTEN expression in
SACC cells and its negative association with migratory and invasive capacities in vitro and
tumor size in vivo have also been reported [64]. Taken together, these results indicate the
significance of miR-21 across human gastrointestinal cancers, and its potential as a target
for cancer therapy.
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2.3. Immune Response, Inflammation, and Angiogenesis

MiR-21 is found to be abundantly expressed in multiple cell types including macrophages [65]
and T lymphocytes [66]. By inhibiting the expression of its multiple target effectors, miR-21
contributes to the carcinogenesis [67] as well as other cancer-related biological pathways,
including immune responses and inflammation. The upregulation of miR-21 upon in-
flammatory response of macrophages has been reported in both hematopoietic and im-
mune cells [68]. Additionally, a recent study showed the over-expression of miR-21 in
macrophages led to a shift towards a pro-inflammatory phenotype, and exosomes’ delivery
of miRNAs to naive macrophages also caused an induction of pro-inflammatory markers
tumor necrosis factor α (TNFα), IL-1β, inducible nitric oxide synthase (iNOS), and IL-6
and repression of anti-inflammatory cytokine IL-4 [69]. Inhibition of miR-21 expression
in tumor-associated macrophages, on the other hand, induced an anti-tumoral immune
response by improving cytotoxic T-cell responses via the stimulation of cytokines IL-12
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and chemokine 10. This, in turn, promoted tumor cell death and inhibited tumor neovas-
cularization, thereby decreasing tumor growth [60]). The anti-inflammatory function of
miR-21 has also been achieved in macrophages in response to bacterial lipopolysaccharide
via negative regulation of PDCD4, an inhibitor of IL-10 [70].

By mediating the proliferation and migration of vascular cells including smooth
muscle cells and endothelial cells, miR-21 is involved in regulating angiogenesis [71,72].
Over-expression of miR-21 in DU145 cells resulted in elevated expression of HIF-1α and
VEGF via PTEN/PI3K/AKT and MAPK signaling pathways, which ultimately promoted
angiogenesis [73]. A direct interaction between miR-21 and the 3′-UTR of RhoB, a tumor
suppressor gene that may be engaged in angiogenesis regulation of HCC lines, was iden-
tified [74]. Accordingly, suppression of miR-21 is associated with an elevation of RhoB
that leads to the restricted proliferation, migration, and invasion of HCC and metastatic
breast cancer cell lines [74]. In contrast, the study of Sabatel and colleagues (2011) in
endothelial cells reported miR-21 as a negative modulator of angiogenesis. Specifically,
over-expression of miR-21 caused a reduction of RhoB that disturbs endothelial cell mi-
gration and tubulogenesis, thereby suppressing angiogenesis [75]. These contradictory
results could be due to the nature of two different models that need to be clarified in
future studies. Additionally, several studies have demonstrated that reduced expression
of FASLG, another direct target of miR-21, could affect cell apoptosis and proliferation in
various types of cancers, including breast, CRC, and HCC [76,77] (Figure 5).
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3. Role of mir-21 as a Diagnostic, Predictive, and Therapeutic Biomarker across
Cancers in Digestive System
3.1. Gastric Cancer
3.1.1. MiR-21 as a Diagnostic Biomarker in Gastric Cancer

The role of miR-21 as a diagnostic biomarker of GC has been widely investigated,
and inconsistent outcomes have been reported [78–80]. Different studies have reported a
significantly high concentration of miR-21 in the tumor tissue and plasma of GC patients
compared to normal individuals [80–84]. Li et al. measured the level of miR-21 in 10 GC
patients and 10 healthy control participants using the quantitative real-time polymerase
chain reaction (qRT-PCR) method and found a significantly increased plasma level of
miR-21 in patients with stage I GC compared to healthy controls [78]. This finding was in
accordance with a previous study that suggested high expression levels of miR-21 in GC
plasma and primary GC tissue [81]. In that study, the authors analyzed the possibility of
detecting miR-21 in plasma samples, then compared plasma miRNA levels between pre-
and post-operative paired samples from 10 GC patients. Their results showed the possibility
of detection of plasma miR-21 in GC, and its significant reduction post-operatively [81].
Similarly, a significantly increased level of miR-21 was observed in the plasma [80] and
peripheral blood mononuclear cells of GC patients compared to healthy individuals [82].

A meta-analysis of five studies with a total of 251 GC patients and 184 controls yielded
a moderate pooled sensitivity (66.5%) and specificity (83.1%), suggesting the potential
diagnostic value of miR-21 in GC [79]. More recently, a systematic review of the expression
profile reported the dysregulation of 97 miRNAs in either the blood or tissue samples of
GC patients. Among these, miR-21 and 12 other miRNAs were consistently upregulated in
these patients [82]. These findings strongly indicate that miR-21 is an excellent diagnostic
biomarker candidate of GC. Further studies are required to validate and strengthen the
evidence of its diagnostic value since (i) most of the current evidence comes from studies
on Chinese and Japanese populations [79], and (ii) there is limited number of studies and
small sample sizes.

3.1.2. MiR-21 as a Prognostic and Predictive Biomarker in Gastric Cancer

Despite advances in cancer management, GC is still one of the most aggressive cancers.
Due to the expansive nature of the stomach, most of the time GC is detected at an advanced
stage. Different studies have suggested miR-21 as a prognostic factor for patients with GC.
Specifically, a higher miR-21 level was reported to be related to a lower overall survival
(OS) rate of GC patients [85]. In contrast, the OS rates were significantly improved in
GC patients with a lower expression level of miR-21 [86,87]. A meta-analysis study that
combined the data of eight independent studies showed a pooled hazard ratio of a higher
miR-21 level in tissue samples of 2.00 (95% CI: 1.39–2.88, p < 0.01), indicating a significant
predictive value of miR-21 for the poorer OS of these patients [88]. Additionally, higher
miR-21 levels were associated with worse tumor differentiation and positively associated
with lymph node metastasis and tumor-node-metastasis stage [88]. Similarly, Song et al.
demonstrated that high levels of miR-21 were associated with an increased tumor size and
an advanced T stage, suggesting its role as a biomarker for patients with GC [89].

The role of miR-21 as a potential predictive biomarker in GC has also been investi-
gated. Park et al., for example, reported that miR-21-5p was more highly expressed in
the recurrence than in the non-recurrence GC patients among validation samples, with
86.7% sensitivity and 65.5% specificity [90]. Two other studies investigated the role of
miR-21 in predicting peritoneal recurrence, which frequently occurs and is associated with
poor prognosis, and confirmed a significant association between high miR-21 expression
level and peritoneal recurrence in patients with GC [91,92]. The results suggested that
(exosomal) miR-21 may serve as a predictive biomarker of peritoneal recurrence in GC.

Besides complete surgical resection, which can efficiently cure patients with early
GC, intraperitoneal chemotherapy (IC) is widely used for the treatment of patients with
unresectable or recurrent GC. However, there is insufficient evidence on the efficacy of this
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regimen due to difficulty reporting and predicting the response of the peritoneal recurrence.
To investigate the predictive value of miR-21 on tumor response to IC in patients with GC,
Ohzawa et al. determined the expression level of exosomal miR-21-5p in peritoneal lavage
fluid of 74 patients with advanced GC [93]. The study revealed a significant upregulation
of miR-21-5p in patients with peritoneal metastases, which is associated with worse OS
than those with lower expression, suggesting its role in modifying chemosensitivity against
IC [93]. Kim et al., on the other hand, performed a validation study of circulating miRNA
biomarkers, including miR-21, for the prediction of lymph node metastasis in GC, and
concluded that miR-21 obtained from different samples could be biomarker candidates to
predict recurrence and the presence of lymph nodes and peritoneal metastasis of GC [94].

3.1.3. MiR-21 as a Therapeutic Target in Gastric Cancer

According to the last updated European Society for Medical Oncology (ESMO) clinical
practice guidelines for the treatment of cancer, 5-fluorouracil (5-FU), along with other
agents, is the first line perioperative chemotherapy regimen for patients with stage I.B
resectable GC [95]. Several studies have shown that miRNAs, including miR-21, might
be involved in the tumor resistance mechanisms of 5-FU by decreasing the expression
levels of their target genes, suggesting anti-miRNA-21 (AMO-21) therapies may play a
pivotal role in cancer treatment [96,97]. Indeed, downregulation of miR-21 increases the
sensitivity of human epidermal growth factor receptor 2 (HER2)-positive GC in response
to both 5-FU and trastuzumab by upregulating target genes of miR-21, SPRY2, and PTEN,
respectively [98]. Cisplatin is another first-line chemotherapy agent that has been frequently
studied. Zheng and colleagues have noted that exosomal miR-21 that is directly transferred
from tumor-associated macrophages to the GC cells may confer cisplatin-resistance in GC
by suppressing cell apoptosis and activating the PI3K/AKT signaling pathway, which in
turn is achieved by downregulation of PTEN expression [96,97]. Additionally, the role of
miR-21-5p in doxorubicin (DOX) and trastuzumab (a HER2-targeting monoclonal antibody)
resistant GC has also been studied. In both cases, targeting miR-21 was reported to be an
effective therapy to reverse resistance in GC cells [99].

3.2. Colorectal Cancer
3.2.1. MiR-21 as a Potential Prognostic and Predictive Biomarker in Colorectal Cancer

Scientific evidence has suggested the role of miR-21 as a biomarker in CRC. Toiyama
and colleagues showed that serum miR-21 levels robustly distinguished adenoma and
CRC, suggesting its potential role in early colon cancer detection [100]. Moreover, it
has been indicated that the miR-21-5p level is strongly associated with stage II colon
cancer mortality [101]. The authors suggested using miR-21-5p and a high inflammatory
risk score (IRS) in combination for predicting unfavorable outcomes of colon cancers,
especially for stage II. Similarly, a retrospective study dissecting the association of seven
miRNAs with stage II CRC outcomes in a Chinese population also advised using miR-
21-5p in combination with other indicators to enhance the prognostic accuracy for stage
II CRC [102]. In another study, Nielsen et al. reported that miR-21-5p could predict the
outcome of patients with colon cancer, but not for those with rectal cancer [103]. Another
group conducted a meta-analysis of the prognostic roles of miR-21 in CRC cancers based on
seven selected studies [104] and reported a significant correlation of miR-21 level and stage
III/IV patients’ survival, indicating the potential role of miR-21 as a predictive biomarker
in CRC. Nevertheless, it is generally agreed that a set of several miRNAs including miR-21
offers better prediction of CRC outcome than miR-21 alone.

3.2.2. Roles of miR-21 in Chemoresistance in Colorectal Cancer

Growing evidence suggests the use of miR-21 alone or in combination with other miR-
NAs in predicting response to chemoradiotherapy (CRT) in CRC [105–107]. A significant
association between miR-21 in pre-neoadjuvant CRT tumor tissue and response, with a
3.67 odds ratio (OR) of incomplete response in patients with higher miR-21 levels (p = 0.04),
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has been reported, suggesting the role of miR-21 in predicting an incomplete response
to CRT in rectal adenocarcinoma [106]. Over-expression of miR-21 has been noted to be
associated with 5-FU resistance by targeting and inhibiting the expression of its direct target
gene, PDCD4 [108], and miR-21 has been proposed to be used as an important indicator for
5-FU therapeutic efficacy in CRC [109]. The study by Liang et al. [110] using a combination
of 5-FU and miR-21 inhibitor oligonucleotide (miR-21i) to explore the roles of miR-21 in
inducing chemoresistance in CRC cells showed that the combination has not only reversed
chemotherapy resistance but also enhanced cytotoxicity of 5-FU on these cells. On the other
hand, Chen et al. [111], investigated the possible role of miR-21 in topoisomerase-inhibitors
resistance and found that over-expression of miR-21 induced resistance to topoisomerase
inhibitors without an alteration in topoisomerase activity.

3.2.3. MiR-21 as a Potential Therapeutic Biomarker in Colorectal Cancer

Despite advances in cancer research and emergence of targeted and immunotherapies,
the mortality rate of patients with CRC remains high, especially for those with later
stages. Surgical resection of the tumor is a common approach to treat local forms while
chemotherapy or other adjuvant therapies are generally applied when the tumor already
invades surrounding tissue and/or metastasizes. Nonetheless, the mortality rate of patients
at these stages remains high due to the risk of resistance to the therapies. In the network
of miRNAs and pathological pathways, targeting miR-21 seems promising in term of
reversing chemotherapy resistance. Currently, an interventional clinical trial is being
conducted to test the use of an miRNA tool, including six miRNAs (miR-21, miR-20a-5p,
miR-103a-3p, miR-106b-5p, miR-143-5p, and miR-215), to determine whether a patient
with stage II colon cancer should not receive adjuvant chemotherapy (ClinicalTrials.gov:
NCT02466113) according to OS and disease-free survival (DFS) [112].

3.3. Pancreatic Cancer
3.3.1. MiR-21 as a Potential Diagnostic Biomarker in Pancreatic Cancer

Szafranska et al. [113] characterized the miRNome in normal and pancreatic ductal
carcinoma (PDC) tissues, and found that various miRNAs, including miR-21 were over-
expressed in PC cells. This finding revealed miR-21 as a critical potential diagnostic
biomarker and therapeutic target in PC. Recent studies have established abnormal miRNA
expression in precursor lesions of PC, which reinforces the observations of miRNAs in
different stages of the carcinogenic process [114,115]. Additionally, the serum levels of
various miRNAs can distinguish cancer patients from healthy individuals, positioning
them as potential novel biomarkers for the early detection of PC [116,117].

3.3.2. Roles of miR-21 in Chemoresistance and Regulation of Apoptosis

It has been concretely demonstrated that multiple miRNAs modify cellular responses
to anticancer drugs by altering the cell cycle and apoptotic response [118]. Over-expression
of anti-apoptotic proteins that allow cancer cells to avoid the apoptotic process is consid-
ered to be one of the main causes of chemotherapeutic resistance. By direct upregulation
of Bcl-2, miR-21 leads to apoptosis-associated chemoresistance to gemcitabine and conse-
quently, proliferation of PC cells [54]. The PI3K/Akt pathway, on the other hand, plays
a role in balancing pro-apoptotic and anti-apoptotic signals, which determines a cell’s
survival. Increased miR-21 expression has been reported to be associated with the activa-
tion of this pathway. A combination of anti-miR-21 treatment with drugs that target the
PI3K/AKT/mechanistic target of the rapamycin (mTOR) pathway, such as gemcitabine,
reduces the level of pAKT and intensifies apoptosis by increasing the apoptosis induc-
tion of this chemotherapy drug [119,120] (Figure 5). The anti-apoptotic role of miR-21
might be specific to certain cancers, such as pancreatic and bile duct cancers, which re-
inforces the focus on miR-21 as a target for PC. Meng et al. alternatively reported that
gemcitabine-induced apoptosis is inhibited by miR-21 via targeting PTEN [121]. Never-
theless, Moriyama et al. [60] did not observe differences in the PTEN expression levels
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in PC compared to normal cells. These findings indicate the need for further studies to
identify the specific target genes of miR-21, and the molecular pathways associated with
chemoresistance in PC.

3.4. Liver Cancer
3.4.1. MiR-21 as a Prognostic and Diagnostic Biomarker in Liver Cancer

There is a strong association between miR-21 expression and the prognosis of HCC [122].
Particularly, miR-21 is an established survival factor in HCC, and increased expression of
miR-21 is significantly associated with tumor progression. However, the use of miR-21
as a diagnostic and therapeutic target in liver cancer is controversial and requires further
study [123]. Wang et al. observed a poor prognosis of HCC patients with high expression
of miR-21, proposing the potential use of miR-21 as a prognostic biomarker in patients
with HCC [124].

3.4.2. MiR-21 as a Therapeutic Target in Liver Cancer

Downregulation of RECK, PTEN, and PDCD4 due to the over-expression of miR-21 in
HCC results in high levels of MMPs, which facilitate tumor progression and metastases.
Therefore, pharmaceutical approaches targeting miR-21 alone or in combination with other
chemotherapy agents could possibly be a therapeutic option for HCC [125]. The Kruppel-
like factor 5 (KLF5) gene has been reported to function as a tumor suppressor, which
inhibits cell invasion and migration in numerous types of cancers [126]. MiR-21 inhibits
KLF5 gene expression by binding to its 3′-UTR, thereby promoting HCC cell migration and
invasion. The miR-21/KLF5 axis approach, therefore, could also be a useful therapeutic
target for HCC treatment [127].

In HCC, miR-21 contributes to sorafenib resistance via the PTEN/Akt pathway. By
overcoming sorafenib resistance, miR-21 could serve as a therapeutic target in the treat-
ment of HCC [128]. In fact, anti-miR-21, a specific and potent single-stranded oligonu-
cleotide, and miR-21 inhibitors, are being used as promising therapeutic targets for the
treatment of liver cancer [129]. HCC cells transfected with anti-miR-21 combined with
5-FU and interferon-α administration have been shown to significantly increase sensitivity
to chemotherapy [130]. Wagenaar et al. conducted an in vivo study using a broad panel of
HCC cell lines and evaluated the effect of specific single-strand oligonucleotide inhibitors
of miR-21 on Dimethylarginine Dimethylaminohydrolase 1 (DDAH1), Ankyrin Repeat
Domain 46 (ANKRD46), and RECK gene expression, and found that inhibition of miR-21
hinders the growth and proliferation of HCC cells. The results indicate that miR-21 can be
used as a potential target for HCC therapy [129].

3.5. Salivary Gland Cancer
3.5.1. MiR-21 as a Prognostic and Diagnostic Biomarker in Salivary Gland Cancer

Due to the presence of multiple potential cancer biomarkers, analysis of saliva has
been demonstrated as an effective diagnostic approach for various distant cancers [131].
Salivary miR-21 has also emerged as a promising biomarker for the detection of different
types of cancer [132]. An increased level of miR-21 has been reported in human SACC in
several studies [44,52], indicating its role in the growth and metastasis of these cells and its
potential to be used as a diagnostic biomarker for this type of cancer [44,52]. However, the
role of miR-21 as a prognostic and diagnostic biomarker for salivary gland cancer remains
to be clarified.

3.5.2. MiR-21 as a Therapeutic Target in Salivary Gland Cancer

The treatment of salivary gland cancer (SGC) patients involves radiotherapy and/or
an operation, due to the limitations of drugs [133]. Frequent changes of the HER2 gene and
its positive response toward HER2-driven therapy have revealed bridges between salivary
duct carcinomas (SDC) and breast intraductal carcinomas. Such a resemblance indicates the
potential use of HER2-related breast cancer treatments for SDC patients [134]). Additionally,
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positive outcomes in treating SGC patients with trastuzumab emtansine (T-DM1), neratinib,
vemurafenib, entrectinib, and larotrectinib have also been noted [135,136]. The function
of miR-21 in the SACC was indicated by effective inhibition of SACC progression by
combination of simvastatin and miR-21 inhibitors [137].

3.6. Esophageal Cancer
3.6.1. MiR-21 as a Diagnostic Biomarker in Esophageal Cancer

Due to its atypical symptomatology, the majority of patients with esophageal cancer
(EC) are diagnosed at advanced stages, leading to worse outcomes and high mortality [138].
Therefore, the discovery of tumor biomarkers to aid with early detection and better prog-
nosis for this cancer is urgently needed. Several miRNAs, including miR-21, appear to
be a great tool for this application. In this context, a meta-analysis of 33 miRNAs, includ-
ing miR-21, yielded a pooled sensitivity and specificity of 0.79 (95% confidence interval,
0.76–0.82 for both). Accordingly, plasma miR-21, miR-223, and miR-375 may be potential
non-invasive diagnostic biomarkers in patients with early-stage ESCC [139]. Similarly,
Ye et al. compared the expression and early diagnostic value of salivary and plasma miR-21
in EC and revealed that both salivary and plasma miR-21 are over-expressed in EC tissues
compared to control groups, and both can be sensitive biomarkers in EC [140].

3.6.2. MiR-21 as a Prognostic and Predictive Biomarker in Esophageal Cancer

EC is a type of cancer characterized by its high mortality rate and poor prognosis at
the time of diagnosis. In this context, several studies have highlighted the potential role of
miR-21 as a prognostic biomarker in digestive cancers, including EC. These studies were
recently summarized in a systematic review and meta-analysis, highlighting the prognostic
significance of circulating miR-21 in esophageal, pancreatic, and CRC. The meta-analysis of
two studies reporting patients with ESCC showed that upregulation of miR-21 was linked
to worse OS, with a pooled hazard ratio HR of 3.49 (95% CI 2.58–4.71, p-value < 0.01).
Although the meta-analysis is limited by the small number of studies included, the present
evidence shows that miR-21 could be one of the best prognostic biomarker candidates [141].

On the other hand, only a few studies have investigated the role of miR-21 as a
predictive biomarker for chemoresistance in ESCC. For this purpose, Komatsu et al. tested
whether circulating miR-21 can predict and promote chemoresistance in patients with
ESCC [142]. The study showed high pre-treatment plasma concentrations of miR-21 in
ESCC patients treated with cisplatin and 5-FU, with a common histopathological response
compared to those with a high histopathological treatment response (p = 0.0416) [142].
Further studies are required to elaborate the potential role of miR-21 as a predictive
biomarker in EC.

3.6.3. MiR-21 as a Therapeutic Target in Esophageal Cancer

The treatment of EC requires multidisciplinary team management, and the optimal
treatment option is still controversial. To date, multimodal treatment, including chemother-
apy and radiation therapy with or without surgery, is the main treatment option for EC
patients [143]. However, treatment resistance remains a big concern in EC. Hence, deter-
mining resistance-associated factors in patients with EC is crucial. Incidentally, miR-21 has
been found to play a major role in both chemotherapy and radiotherapy resistance of ESCC.
Yang et al. reported that the over-expression of miR-21 significantly decreased the sensi-
tivity of ESCC cells to cisplatin by negatively controlling the expression of PDCD4 [144].
Over-expression of miR-21 was noted to be positively correlated with advanced clinical
stage [145] and increased radiation-resistance by increasing cell proliferation and invasion
and inhibiting apoptosis of ESCC cells [146]. Together, these studies suggest that miR-21
might be a promising novel target for developing personalized treatments for EC patients
in the near future.
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4. Perspectives of miR-21 in Digestive Tract Cancers

The potential use of miRNAs as biomarkers in cancers has been intensively re-
viewed [147–149]. Thanks to their high specificity to tissues and cell types, some miRNAs
have been successfully used to discriminate disease stages and monitor responsiveness to
therapies [150,151]. Since miRNAs are more stable than other nucleic acids under a wide
range of conditions, they can be extracted from a variety of liquid biospecimens and tissue
samples, making them ideal biomarker candidates. Although miR-21 has been proposed
as a plausible diagnostic and predictive biomarker and a therapeutic target for several
types of cancer, some limitations still exist, for example, its dysregulation has been linked
to more than one type of cancer [152]; and a similar expression level of miR-21 has been
noted between benign injury and malign tumor. As a result, although miR-21 levels in
plasma significantly increased in CRC patients, this candidate biomarker could not be used
to distinguish the carcinoma and benign polyps [153]. This finding strongly suggests that a
strict process of screening is required before the translation of any miRNAs from bench
to bedside.

The pathology behind cancers of the digestive tract is known to be associated with the
microorganisms that colonize it [154,155]. The significant correlation between the specific
groups of bacteria or taxa in the tumor microenvironment and the number of differentially
expressed genes in CRC suggests that miRNAs may stimulate host–microbe interactions.
The host–microbiome interaction mechanisms are important to explain the connection
of dysbiosis with chronic inflammation and processes that influence carcinogenesis and
tumor progression in colon cancer [156]. In the stomach, Helicobacter pylori is a well-
known contributor to carcinogenesis [157]. Additionally, miRNA–microbiota interaction is
essential for gut homeostasis and CRC [158]. MiR-21 has been reported to play essential
roles in some microbiota in GIT-related diseases and cancers [159–161]. Commensal bac-
teria increase the miR-21-5p expression level and promote the permeability of intestinal
epithelial cells [162].

The gut–brain axis has recently emerged as a new paradigm in both oncology and
neuroscience, particularly for its crucial role in tumorigenesis and the development of
cancers [163]. The gut can communicate with the brain hormonally, with gut peptides
released from enteroendocrine cells, modulating appetite, while the microbiota modulates
neurodevelopment by recruiting different miRNAs. The gut–brain axis represents a com-
munication system that may lead to cancer formation when disrupted. Due to their roles
in many biological processes, it is not surprising that miRNAs, including miR-21, may
impact the gut–brain axis functions [164]. Further studies assessing the interaction between
miR-21 and the microbiota in general, and the gut–brain axis in particular, are required
to develop more efficient diagnostic tools and treatment methods against cancers in the
digestive tract.

5. Conclusions

It has been well-established that miR-21 plays a role in the pathogenesis of digestive
tract cancers. Accumulated evidence shows that miR-21 mostly acts as a tumor suppres-
sor that inhibits cell proliferation, invasion, metastasis, and tumor growth in different
types of cancer. Various target genes and pathways have been associated with miR-21
functions. The possible interactions of miRNAs with other non-coding RNAs are being
established. Further investigations into the sensitivity and specificity of miR-21 as a diag-
nostic biomarker, adverse off-target effects of using anti-miR-21 as a therapeutic approach,
and so forth are required. A deeper understanding of miR-21, its target genes, and the
molecular mechanisms of action will allow a successful translation of the current research
into clinical applications.
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