1,4-Rhodium(III) Migration

All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C–H Functionalization and 1,4-Migration**

David J. Burns, Daniel Best, Martin D. Wieczysty, and Hon Wai Lam*

Abstract: 1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration.

Transition metal-catalyzed oxidative annulations of alkynes^[1] that proceed by directing group-promoted $C(sp^2)$ –H functionalization^[1,2] are versatile methods for heterocycle^[3] and carbocycle^[4] synthesis. Alkynes, including 1,3-enynes,^[5] serve as two-carbon components in these reactions (Scheme 1 a). However, analogous reactions that result in three-carbon annulation are currently underdeveloped,^[6] and addressing this shortcoming would expand the range of products accessible using C–H functionalization/oxidative annulation chemistry.

Using rhodium(III) catalysis, we recently discovered a new mode of oxidative annulation of 1,3-enynes that contain allylic hydrogens *cis* to the alkyne, in which they act as one-carbon components (Scheme 1 b).^[7] The proposed mechanism^[7] involves the 1,4-rhodium(III) migration^[8,9] of alkenylrhodium species **A** to give σ -allylrhodium(III) species **C** via rhodacycle **B**. Following isomerization of **C** into the electrophilic π -allylrhodium(III) species **D**, nucleophilic trapping by the directing group gives the product of [*n*+1] annulation. Given the isomerization of **C** into **D**, there exists the possibility for cyclization to occur at a different position of the extended π -system to give **E**, a product of [*n*+3] annulation (Scheme 1 b).^[6]

Herein, we describe the realization of this possibility in rhodium(III)-catalyzed reactions of 2-aryl cyclic 1,3-dicar-

[*] Dr. D. J. Burns, Dr. D. Best, Prof. H. W. Lam School of Chemistry, University of Nottingham University Park, Nottingham, NG7 2RD (UK) E-mail: hon.lam@nottingham.ac.uk
Dr. M. D. Wieczysty
EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings

David Brewster Road, Edinburgh EH9 3FJ (UK)

- [**] We thank the ERC (Starting Grant No. 258580), the EPSRC (Leadership Fellowship to H.W.L.), and the School of Chemistry, University of Edinburgh, for financial support. We thank Dr. William Lewis (University of Nottingham) for X-ray crystallography.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201503978.

a) Two-carbon oxidative annulations with alkynes

b) One-carbon annulations of 1,3-enynes (Ref. [7]) and possible three-carbon annulation

c) This work: three-carbon annulation of 1,3-enynes

Scheme 1. Catalytic oxidative annulations of alkynes and 1,3-enynes.

bonyls **1** with 1,3-enynes **2** to give spirodialins **3** (Scheme 1 c). The majority of the products obtained are spirocyclic barbiturates, which are of interest given the well-established medicinal importance of the barbiturate motif, and the biological activity of structurally related spirocycles (Figure 1).^[10]

During our studies of metal-catalyzed oxidative annulations of alkynes,^[4a,b,e,7] the reaction of 5-arylbarbituric acid 1awith 1,3-enyne 2a was performed using [{Cp*RhCl₂}₂] (2.5 mol%) and Cu(OAc)₂·H₂O (2.1 equiv) in dioxane/H₂O

Figure 1. Biologically active spirocyclic barbiturates.

Angew. Chem. Int. Ed. 2015, 54, 9958-9962

^{© 2015} The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

(5:1) at 60 °C [Eq. (1)]. As well as providing the spiroindene **4a** through a standard two-carbon annulation,^[4a,b,e] a [3+3] annulation occurred to give spirodialin **3a** as the major product. No one-carbon annulation product $5^{[7]}$ was detected. Chromatographic purification gave a 72:28 mixture of **3a** and **4a** in 92% yield. Without H₂O, more side products were formed and the ratio of **3a**:4a decreased to ca. 50:50. No reaction occurred without Cu(OAc)₂·H₂O.^[11]

Further studies revealed the benzyloxy-containing 1,3enyne **2b** to be superior to **2a**; the reaction of **2b** with **1a** gave spirodialin **3b** only, in 88 % yield as the *E*-isomer (Scheme 2). Reaction of **2b** with various 5-arylbarbituric acids^[12] demonstrated compatibility with nitro (**3c**), acetoxy (**3d**), and halogen substituents (**3f–3h**) on the aryl group.^[13] Spirodialin **3e** was not formed under the standard conditions,^[14] but replacing dioxane/H₂O with undried DMF enabled produc-

Scheme 2. [a] Conducted with 0.50 mmol of **1a–1j**. [b] Yield of isolated products. [b] Conducted with 0.5 mol% of [{Cp*RhCl₂}₂]. [c] Conducted in undried DMF. Side products were also obtained; see Ref. [14]. [d] Conducted at 120°C. [e] Conducted with 5 mol% of [{Cp*RhCl₂}₂].

tive [3+3] annulation and isolation of 3e in 37% yield, along with several side products.^[14] Free N–H groups on the barbituric acids were also tolerated (3i and 3j). In the latter case, 3j was formed as a 1:1 inseparable mixture of diastereomers. The reaction of 2-phenyl Meldrum's acid also gave [3+3] annulation, but the yield of 6 was only 32% due to decomposition of the starting material and product under the acidic conditions.^[15] Decreasing the loading of [{Cp*RhCl₂}₂] to 0.5 mol% in the reaction of 1a with 2b was well-tolerated and provided 3b in 77% yield.

Interestingly, Cu(OAc)₂·H₂O rapidly decomposed cyclic hydrazide **7**, precluding its use as the oxidant in the reaction with 1,3-enyne **2b** [Eq. (2)]. However, reaction of **7** (2.0 equiv) with **2b** without Cu(OAc)₂·H₂O but with inclusion of NaOAc·3H₂O (3.0 equiv) gave spirodialin **8** in 47 % yield, along with **2b** (30 % recovery). We speculate that the N–N bond of **7** could be serving as an oxidant to regenerate the catalyst,^[16] but we were unable to isolate the reduced form of **7** to confirm this hypothesis.

Table 1 presents the results of oxidative annulations of 5arylbarbituric acids with various 1,3-envnes. No spiroindenes or benzopyrans from two- or one-carbon annulations, respectively, were detected. 1,3-Enynes 2c and 2d, containing protected or unprotected 2-hydroxyethyl groups on the alkyne were tolerated (entries 1 and 2). Use of a methoxy group in the 1,3-envne in place of a benzyloxy group was also possible (entry 3). With a 5-(4-nitrophenyl)-substituted barbituric acid, oxidative annulations with 1,3-envnes 2a, 2f, and 2g containing various groups *trans* to the alkyne proceeded efficiently to give spirodialins 3n-3p in 72-95% vield (entries 4-6). As with the corresponding one-carbon annulations,^[7] the 4-nitrophenyl group favors 1,4-rhodium(III) migration over the formation of spiroindenes [compare with Eq. (1)]. 1,3-Enynes 2h and 2i containing cyclic groups were also competent substrates (entries 7 and 8), and spirodialin 3r was isolated in 57% yield, despite containing a potentially acid-sensitive enol acetal.

Notably, the formation of a highly sterically hindered spirodialin 3s containing contiguous all-carbon sp³ quaternary centers from 1,3-enyne 2j occurred efficiently [Eq. (3)]. The reaction of 1b with 1,3-enyne 9, which does not contain any *cis*-allylic hydrogens, led only to the formation of spiroindene 4b in 82% yield, thus highlighting the importance of this structural feature for [3+3] annulation [Eq. (4)].

Scheme 3 depicts a possible catalytic cycle for these reactions, using representative substrates **1a** and **2a**. This cycle is similar to that proposed for the one-carbon annulations we described previously.^[7] Cyclorhodation of **1a** with rhodium diacetate **10** would give rhodacycle **11**. Migratory

[a] Conducted with 0.50 mmol of 1. [b] Yield of isolated products.

insertion of 1,3-enyne **2a** then provides rhodacycle **12**, which upon reductive elimination would give spiroindene **4a**. However, reversible protonolysis of **12** forms alkenyrhodium species **13**, which can then undergo 1,4-rhodium(III) migra-

Scheme 3. Possible catalytic cycle.

tion to form σ -allylrhodium(III) species **14**. This intermediate can lead to π -allylrhodium(III) species **15** by a series of σ - π - σ interconversions and E/Z isomerization. Outer sphere nucleophilic attack of the π -allylrhodium(III) moiety^[17,18] of **15** by C5 of the barbituric acid then gives spirodialin **3a** and rhodium(I) species **16**, which undergoes Cu(OAc)₂-promoted oxidation to regenerate **10**. The preference of 5-monosubstituted barbituric acids for *C*-allylation over *O*-allylation has been observed previously in Pd-catalyzed asymmetric allylic alkylations.^[19] However, an alternative pathway involving an inner-sphere reductive elimination cannot be excluded.

The reaction of **1a** with 1,3-enyne **2k** gave spiroindene **4c** only (Scheme 4), a result that differs from the formation of spirodialins **3b** (Scheme 2) and **3m** (Table 1, entry 3) from 1,3-enynes **2b** and **2e**, respectively. A possible explanation for

Scheme 4. Formation of spiroindene 4c from 1,3-enyne 2k.

this contrasting behavior might be coordination of the acetoxy group to rhodium, resulting in stabilization of 18electron intermediates such as rhodacycles 17 and 18 (analogous to 12 in Scheme 3, but the σ -haptomers) or alkenylrhodium species 19. This stabilization likely disfavors 1,4rhodium(III) migration and leads instead to reductive elimination from 18 to give 4c.

The reaction of **1b** with the hexadeuterated 1,3-envne $[D]_{6}$ -2a gave traces of a spiroindene $[D]_{6}$ -4d (<5%), and spirodialin $[D]_6$ -3n in 88% yield (Scheme 5a), in which incomplete deuterium transfer (91% D) from the cis-allylic position of $[D]_6$ -2a to the alkenyl position of the dialin ring of $[D]_6$ -3n was observed. Furthermore, the reaction of 1b with **2a** in 5:1 dioxane/ D_2O led to 10% deuteration at the same position of $[D]_n$ -3n, with no spiroindene detected (Scheme 5b). These results are similar to the corresponding

Scheme 5. Oxidative annulation with a hexadeuterated 1.3-envne.

experiments with [D]₆-2a in the one-carbon annulations reported previously,^[7] and are consistent with 1,4-rhodium-(III) migration occurring by a concerted metalation-deprotonation/reprotonation sequence (similar to A to C in Scheme 1b).^[7]

Although the spirocyclic barbiturates prepared in this study are themselves of interest, they can be transformed into other compounds. For example, treatment of **30** with aqueous NaOH in THF gave the highly functionalized naphthalene 20 in 90% yield [Eq. (5)].

In conclusion, we have reported rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations of 5-arylbarbituric acids and related compounds with 1,3-enynes containing allylic hydrogens cis to the alkyne. This new mode of oxidative annulation further demonstrates the power of alkenyl-to-allyl 1,4-rhodium(III) migration in generating electrophilic allylrhodium species for the construction of polycyclic systems. Other applications of this method of allylmetal generation will be reported in due course.

Keywords: allylation · C-H activation · enynes · homogeneous catalysis · rhodium

How to cite: Angew. Chem. Int. Ed. 2015, 54, 9958-9962 Angew. Chem. 2015, 127, 10096-10100

- [1] a) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212-11222; b) L. Ackermann, Acc. Chem. Res. 2014, 47, 281-295.
- [2] For selected reviews, see: a) G. Shi, Y. Zhang, Adv. Synth. Catal. 2014, 356, 1419-1442; b) N. Kuhl, N. Schröder, F. Glorius, Adv. Synth. Catal. 2014, 356, 1443-1460; c) S. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-1479; d) K. M. Engle, J.-Q. Yu, J. Org. Chem. 2013, 78, 8927-8955; e) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788-802; f) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292; g) J. Wencel-Delord, T. Droege, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761; h) L. Ackermann, Chem. Rev. 2011, 111, 1315-1345.
- [3] For recent, selected examples of metal-catalyzed oxidative annulations of alkynes that result in heterocycles, see: a) A. Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas, M. Gulías, J. Am. Chem. Soc. 2014, 136, 834-837; b) C. Kornhaaß, C. Kuper, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1619-1624; c) X. Peng, W. Wang, C. Jiang, D. Sun, Z. Xu, C.-H. Tung, Org. Lett. 2014, 16, 5354-5357; d) J. Jayakumar, K. Parthasarathy, Y.-H. Chen, T.-H. Lee, S.-C. Chuang, C.-H. Cheng, Angew. Chem. Int. Ed. 2014, 53, 9889-9892; Angew. Chem. 2014, 126, 10047-10050; e) X. Zhang, W. Si, M. Bao, N. Asao, Y. Yamamoto, T. Jin, Org. Lett. 2014, 16, 4830-4833; f) X. Peng, W. Wang, C. Jiang, D. Sun, Z. Xu, C.-H. Tung, Org. Lett. 2014, 16, 5354-5357; g) J. Li, M. John, L. Ackermann, Chem. Eur. J. 2014, 20, 5403-5408; h) J. Jayakumar, K. Parthasarathy, Y.-H. Chen, T.-H. Lee, S.-C.

© 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 9961 www.angewandte.org

Chuang, C.-H. Cheng, Angew. Chem. Int. Ed. 2014, 53, 9889–9892; Angew. Chem. 2014, 126, 10047–10050.

- [4] For recent, selected examples of metal-catalyzed oxidative annulations of alkynes that result in carbocycles, see: a) S. Reddy Chidipudi, I. Khan, H. W. Lam, Angew. Chem. Int. Ed. 2012, 51, 12115-12119; Angew. Chem. 2012, 124, 12281-12285; b) J. D. Dooley, S. Reddy Chidipudi, H. W. Lam, J. Am. Chem. Soc. 2013, 135, 10829-10836; c) J. Nan, Z. Zuo, L. Luo, L. Bai, H. Zheng, Y. Yuan, J. Liu, X. Luan, Y. Wang, J. Am. Chem. Soc. 2013, 135, 17306-17309; d) M. V. Pham, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 3484-3487; Angew. Chem. 2014, 126, 3552-3555; e) S. Kujawa, D. Best, D. J. Burns, H. W. Lam, Chem. Eur. J. 2014, 20, 8599-8602; f) A. Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas, M. Gulías, J. Am. Chem. Soc. 2014, 136, 7607-7610; g) M.-B. Zhou, R. Pi, M. Hu, Y. Yang, R.-J. Song, Y. Xia, J.-H. Li, Angew. Chem. Int. Ed. 2014, 53, 11338-11341; Angew. Chem. 2014, 126, 11520-11523; h) J. Jia, J. Shi, J. Zhou, X. Liu, Y. Song, H. E. Xu, W. Yi, Chem. Commun. 2015, 51, 2925-2928; i) J. Zheng, S.-B. Wang, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2015, 137, 4880-4883.
- [5] a) M. P. Huestis, L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. Int. Ed. 2011, 50, 1338–1341; Angew. Chem. 2011, 123, 1374–1377; b) L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. Int. Ed. 2011, 50, 6379–6382; Angew. Chem. 2011, 123, 6503–6506.
- [6] For three-carbon annulations in catalytic C-H functionalizations, see: a) Z. Shi, C. Grohmann, F. Glorius, *Angew. Chem. Int. Ed.* 2013, *52*, 5393-5397; *Angew. Chem.* 2013, *125*, 5503-5507; b) S. Cui, Y. Zhang, Q. Wu, *Chem. Sci.* 2013, *4*, 3421-3426; c) S. Cui, Y. Zhang, D. Wang, Q. Wu, *Chem. Sci.* 2013, *4*, 3912-3916.
- [7] D. J. Burns, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 9931– 9935; Angew. Chem. 2014, 126, 10089–10093.
- [8] For stoichiometric 1,4-rhodium(III) migration, see: a) Y. Ikeda, K. Takano, S. Kodama, Y. Ishii, *Chem. Commun.* 2013, 49, 11104–11106; b) Y. Ikeda, K. Takano, M. Waragai, S. Kodama, N. Tsuchida, K. Takano, Y. Ishii, *Organometallics* 2014, 33, 2142–2145.
- [9] For reviews of 1,4-metal migration, see: a) S. Ma, Z. Gu, Angew. Chem. Int. Ed. 2005, 44, 7512–7517; Angew. Chem. 2005, 117, 7680–7685; b) F. Shi, R. C. Larock, Top. Curr. Chem. 2010, 292, 123–164.
- [10] a) S. B. King, E. S. Stratford, C. R. Craig, E. K. Fifer, *Pharm. Res.* 1995, *12*, 1240–1243; b) A. A. Miller, G. L. Bundy, J. E. Mott, J. E. Skepner, T. P. Boyle, D. W. Harris, A. E. Hromockyj, K. R. Marotti, G. E. Zurenko, J. B. Munzner, M. T. Sweeney, G. F. Bammert, J. C. Hamel, C. W. Ford, W.-Z. Zhong, D. R. Graber, G. E. Martin, F. Han, L. A. Dolak, E. P. Seest, J. C. Ruble, G. M. Kamilar, J. R. Palmer, L. S. Banitt, A. R. Hurd, M. R. Barbachyn, *Antimicrob. Agents Chemother.* 2008, *52*, 2806–2812; c) G. S. Basarab, P. Brassil, P. Doig, V. Galullo, H. B. Haimes, G. Kern, A. Kutschke, J. McNulty, V. J. A. Schuck, G. Stone, M. Gowravaram, *J. Med. Chem.* 2014, *57*, 9078–9095.

- [11] Reactions conducted in the absence of Cu(OAc)₂·H₂O under an oxygen atmosphere in the presence of sodium carboxylates were unsuccessful. See: a) Y. Lu, H.-W. Wang, J. E. Spangler, K. Chen, P.-P. Cui, Y. Zhao, W.-Y. Sun, J.-Q. Yu, *Chem. Sci.* 2015, *6*, 1923–1927; b) S. Warratz, C. Kornhaaß, A. Cajaraville, B. Niepötter, D. Stalke, L. Ackermann, *Angew. Chem. Int. Ed.* 2015, *54*, 5513–5517; *Angew. Chem.* 2015, *127*, 5604–5608.
- [12] Many of the 5-arylbarbituric acids were prepared by the rhodium(II)-catalyzed direct arylation of 5-diazobarbituric acids, see: D. Best, D. J. Burns, H. W. Lam, Angew. Chem. Int. Ed. 2015, 127, 7518-7521; Angew. Chem. 2015, 54, 7410-7413.
- [13] The structure of **3h** was confirmed by X-ray crystallography. CCDC 1057433 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [14] Under the standard conditions, an oxidative dimer of 5-(4methoxyphenyl)-1,3-dimethylbarbituric acid was the sole product. In 5:1 DMF/H₂O, spirodialin 3e was accompanied by this oxidative dimer and the spiroindene resulting from two-carbon annulation. See the Supporting Information for further details.
- [15] Basic additives such as K_2CO_3 (see Ref. [4a]) were detrimental.
- [16] For examples of N–N-containing groups as internal oxidants in C–H functionalizations, see: a) D. Zhao, Z. Shi, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 12426–12429; Angew. Chem.
 2013, 125, 12652–12656; b) C. Wang, Y. Huang, Org. Lett. 2013, 15, 5294–5297; c) B. Liu, C. Song, C. Sun, S. Zhou, J. Zhu, J. Am. Chem. Soc. 2013, 135, 16625–16631; d) S. Cui, Y. Zhang, D. Wang, Q. Wu, Chem. Sci. 2013, 4, 3912–3916.
- [17] For reviews covering rhodium-catalyzed allylic substitutions, see: a) M. Lautens, K. Fagnou, S. Hiebert, Acc. Chem. Res. 2002, 36, 48–58; b) P. A. Evans, Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005.
- [18] For recent examples of rhodium-catalyzed allylic substitutions, see: a) G. C. Tsui, M. Lautens, Angew. Chem. Int. Ed. 2012, 51, 5400-5404; Angew. Chem. 2012, 124, 5496-5500; b) J. Zhu, G. C. Tsui, M. Lautens, Angew. Chem. Int. Ed. 2012, 51, 12353-12356; Angew. Chem. 2012, 124, 12519-12522; c) J. S. Arnold, H. M. Nguyen, J. Am. Chem. Soc. 2012, 134, 8380-8383; d) P. A. Evans, E. A. Clizbe, M. J. Lawler, S. Oliver, Chem. Sci. 2012, 3, 1835-1838; e) P. A. Evans, S. Oliver, J. Chae, J. Am. Chem. Soc. 2012, 134, 19314-19317; f) P. A. Evans, S. Oliver, Org. Lett. 2013, 15, 5626-5629; g) J. S. Arnold, E. T. Mwenda, H. M. Nguyen, Angew. Chem. Int. Ed. 2014, 53, 3688-3692; Angew. Chem. 2014, 126, 3762-3766.
- [19] B. M. Trost, G. M. Schroeder, J. Org. Chem. 2000, 65, 1569– 1573.

Received: April 30, 2015 Published online: July 14, 2015