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Abstract

Background

Traumatic brain injury remains a global health problem. Understanding the relative impor-

tance of outcome predictors helps optimize our treatment strategies by informing assess-

ment protocols, clinical decisions and trial designs. In this study we establish importance

ranking for outcome predictors based on receiver operating indices to identify key predic-

tors of outcome and create simple predictive models. We then explore the associations

between key outcome predictors using Bayesian networks to gain further insight into pre-

dictor importance.

Methods

We analyzed the corticosteroid randomization after significant head injury (CRASH) trial

database of 10008 patients and included patients for whom demographics, injury character-

istics, computer tomography (CT) findings and Glasgow Outcome Scale (GCS) were

recorded (total of 13 predictors, which would be available to clinicians within a few hours fol-

lowing the injury in 6945 patients). Predictions of clinical outcome (death or severe disability

at 6 months) were performed using logistic regression models with 5-fold cross validation.

Predictive performance was measured using standardized partial area (pAUC) under

the receiver operating curve (ROC) and we used Delong test for comparisons. Variable

importance ranking was based on pAUC targeted at specificity (pAUCSP) and sensitivity

(pAUCSE) intervals of 90–100%. Probabilistic associations were depicted using Bayesian

networks.

Results

Complete AUC analysis showed very good predictive power (AUC = 0.8237, 95% CI:

0.8138–0.8336) for the complete model. Specificity focused importance ranking highlighted

age, pupillary, motor responses, obliteration of basal cisterns/3rd ventricle and midline shift.
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Interestingly when targeting model sensitivity, the highest-ranking variables were age,

severe extracranial injury, verbal response, hematoma on CT and motor response. Simpli-

fied models, which included only these key predictors, had similar performance (pAUCSP =

0.6523, 95% CI: 0.6402–0.6641 and pAUCSE = 0.6332, 95% CI: 0.62–0.6477) compared to

the complete models (pAUCSP = 0.6664, 95% CI: 0.6543–0.679, pAUCSE = 0.6436, 95%

CI: 0.6289–0.6585, de Long p value 0.1165 and 0.3448 respectively). Bayesian networks

showed the predictors that did not feature in the simplified models were associated with

those that did.

Conclusion

We demonstrate that importance based variable selection allows simplified predictive mod-

els to be created while maintaining prediction accuracy. Variable selection targeting speci-

ficity confirmed key components of clinical assessment in TBI whereas sensitivity based

ranking suggested extracranial injury as one of the important predictors. These results help

refine our approach to head injury assessment, decision-making and outcome prediction

targeted at model sensitivity and specificity. Bayesian networks proved to be a comprehen-

sive tool for depicting probabilistic associations for key predictors giving insight into why the

simplified model has maintained accuracy.

Introduction
Traumatic brain injury remains a global health problem with an approximate incidence of 0.2–
0.5% each year [1]. There has been increasing interest in model-based predictions for clinical
outcome to improve management strategies, inform patient/relative expectations and also
facilitate future clinical trial design [2, 3, 4]. Studies using the International Mission on Progno-
sis and Analysis of Clinical Trials in TBI (IMPACT) datasets has yielded importance ranking
of admission variables. Results highlighted patient age, Glasgow Coma Scale motor score, pupil
response and computer tomography (CT) characteristics (Marshall grading) as some of the
most influential predictors of clinical outcome [3]. Combination of the datasets from clinical
trials in traumatic brain injury has led to score based prediction models [4]. However, statistical
techniques in biomedical sciences allow further insight into data prediction. In this study we
analyze a series of predictive models using logistic regression and receiver operating curve
characteristics to identify influential (“key”) outcome predictors. We then apply Bayesian net-
works to assess associations of these key predictors with the remaining variables for further
insight.

The receiver operating curve (ROC) is a widely used summary indicator assessing predic-
tion accuracy of a binary classification model. It plots sensitivity (true positive fraction) against
1-specificity (true negative fraction), and the area under the curve (AUC) gives a measure of
prediction accuracy. AUC, however, considers the entire curve, which is not relevant in every
case as regions of interest are often the areas of high sensitivity or specificity. Analysis of stan-
dardized partial area under the curve (pAUC) addresses this limitation and allows comparison
of predictive performance within a pre-specified region [5,6, 7]. The contribution of distinct
variables to prediction accuracy has been assessed based on the increments in pAUC values
[6]. In the current study we adopt this approach to establish variable importance ranking based
on the decrease in pAUC when the variable of interest is dropped from the predictive model.
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We then tested if a simplified model can be created using the highest-ranking predictors whilst
maintaining equally accurate predictions as the more complex models.

Bayesian networks allow the full depiction of probabilistic relationships between variables
[8, 9]. In the biomedical field they have been mainly applied based on their predictive abilities
to estimate clinical outcomes for lung [8] and heptocellular cancer [9]. Furthermore automated
search algorithms can be applied to build Bayesian networks and with this determine the prob-
abilistic associations between variables. In the second part of the study we used this approach
to gain further insight into the data structure and assess how the remaining variables associate
with the highest-ranking predictors.

Methods

Patient database
We used the open database of the CRASH trial (corticosteroid randomization after significant
head injury). This international randomized controlled research collaborative [10, 11] tested
the benefit of intravenous corticosteroid infusion following traumatic brain injury. The study
included 10008 patients who suffered head injury within 8 hours of initial clinical assessment
from 239 hospitals in 49 countries. The CRASH trial database and the full list of variables
included in the trial are available online: https://ctu-app.lshtm.ac.uk/freebird/index.php/
available-trials/ [12]. We defined admission variables such that they paralleled previous studies
by the IMPACT and CRASH Collaborators [2, 3, 4]. The consideration for selecting these vari-
ables were that: 1) they reflect the clinical information available to clinicians within a few hours
following the injury 2) the clinical relevance of these predictors verified by previously published
Nagelkerke R2 ranking [3] and 3) these admission variables were available for a substantial
number of patients. The variables used in our analysis were: 1) “patient and injury characteris-
tics” which included age, gender, injury cause and severe extracranial injury, the latter defined
as an injury which requires hospital admission in its own right [13], 2) “Assessment variables”
which consisted of pupillary response, and components of the Glasgow Coma Scale (GCS), the
latter being the most widely used universal clinical scale for assessing conscious level (consist-
ing of eye opening, verbal and motor response) [14]. As per trial protocol [11] clinical assess-
ment was carried out within 8 hours of injury. For patients where GCS was not assessable due
to intubation the most recent GCS score was recorded. 3) “Imaging findings” which consisted
of 1 or more petechial bleed, obliteration of the third ventricle or basal cisterns, subarachnoid
bleed, midline shift over 5 mm and intracranial hematoma on computer tomographic scan of
the brain. In terms of defining clinical outcome we paralleled previous studies [2, 3, 4] and con-
sidered poor outcome as death or severe disability and favorable outcome as moderate disability
or good recovery at 6 months post TBI. Patients for whom all these variables were not recorded
were excluded, leaving 6945 patients. Majority of patient excluded using this approach was due
to lack of complete brain CT findings for 2191 of the 10008 patients (21,9%) of which 2063
(20,6%) was recorded to not have had a CT brain scan performed at all and only 128 (1,3%)
had one or more imaging findings truly missing in the dataset. Full list of 12 predictors, details
on variable frequency and missing data are summarized in Table 1. Multiple imputations of
missing data were not performed in this study due to the potential technical difficulty of apply-
ing our subsequent statistical analysis including Bayesian networks to the imputed data. Fur-
thermore previous analysis of prediction models using the CRASH trial database found similar
results for imputed and complete datasets [4]. Past studies on the CRASH datasets also note
better outcome at 14 days post injury for high-income countries, compared low-middle income
regions, possibly attributable to better infrastructure in the high-income region. However out-
comes at 6 months did not show significant difference between the different regions of income
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[2]. Furthermore the prediction model built on the dataset including data from all levels of
incomes were successfully validated with external datasets [4]. Therefore in our study we did
not differentiate between data from high and low-middle income regions. The final results of
the MRC CRASH trial showed increased morbidity and mortality with administration of
methylprednisolonie [15]. However we did not include treatment allocation in our analysis
because it would have had no influence on the outcome predictors due the randomization pro-
cess. This approach is in agreement with the previously published prognostic model based on
the CRASH trial database where treatment allocations were also not considered [2]. Further-
more this predictive model was verified using several external databases such as IMPACT or
TARN [4, 16] and also single center datasets [17].

Predictive variable ranking based on model fit
We applied logistic regression models to predict death or severe disability at 6 months as
described above, to parallel the methodology of previous studies [3, 4]. Predictions were done
with 5-fold cross validation to avoid over fitting. During this process data were sampled ran-
domly over 6 cycles with each cycle including a 5:1 split of data into training and test datasets.
Training datasets were used to fit the prediction model (to “train” the algorithm). This model
was then used to predict the variable of interest from the test dataset. To allow comparison to
previous studies [3] and a ranking based on “goodness of fit” we used Nagelkerke R2 scoring
[18]. This technique has been previously used in logistic regression models [3] and it numeri-
cally expresses the percentage of variability attributed to a predictor. To allow comparison with
these results we first derived importance ranking from the drop in the Nagelkerke R2 value for
the model produced by excluding the variable of interest as described in previous studies [3].

Importance ranking based on ROC characteristics
In the first instance we tested a well-established methods of model selection by applying the
Akaike Information Criterion (AIC) [19] to backward elimination. This model selection tech-
nique penalizes for model complexity against goodness of fit. It starts with the most complex
model and after dropping a single variable and reassesses the quality of the model by comput-
ing its AIC score at each step. The best model is the one with the lowest AIC score, which rep-
resents the best model fit balanced against the complexity of the model. We adopted another
approach to model selection where the predictive power of each model was assessed by partial
and complete area under the receiver operating curves (pAUC and AUC respectively) and
compared using the DeLong’s test [20]. Majority of our analysis focused on areas of high sensi-
tivity and specificity (90–100%) given these are the areas of clinical interest. The entire AUC
was also established for comparison. As a new approach to the Nagelkerke R2 based ranking,
we derived the importance of each predictor from the decrease in standardized pAUC and
AUC when the particular predictor was dropped from the model. A greater decrease in these
parameters indicated higher importance for the dropped variable.

Modeling Probabilistic relationships using Bayesian networks
Bayesian networks depict probabilistic relationships between variables using directed acyclic
graphs (DAG). The DAG comprises nodes, which in our study represent clinical variables; and
edges, which connect nodes indicating the conditional dependence between them. The network
can be interrogated for marginal probabilities of a variable, which is the likelihood of the possi-
ble categories the variable may take on given the status of the parent node. To establish which
network structure best describes the probabilistic relationships between the variables we used
the hill-climbing algorithm [21] to search the possible networks. This search process starts

Predictors of Outcome in Traumatic Brain Injury
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with an empirical network structure, then over several iterative steps alters the edges within the
network arrive at a structure which best describes the data.

Model building and predictions
All statistical analysis and model building was carried out in “R” [22], a free software environ-
ment for statistical programing and graphics (https://www.r-project.org/). The “bnlearn” [23]
package was used for Bayesian Networks analysis. Receiver operating curve analysis was carried
using the “pROC” package [7]. Areas under the receiver operating curves were compared using
De Long’s test part of the “pROC” package.

Results

Variable importance ranking
We categorized admission variables into patient and injury characteristics, assessment or imag-
ing characteristics summarized frequencies in Table 1. Nagelkerke R2 ranking confirmed age,
GCS motor score, pupillary response, and abnormal CT findings (obliteration of the third ven-
tricle/basal cisterns) as the most influential predictors of poor outcome (severe disability or
death) (Fig 1) in keeping with previously published results from the IMPACT dataset [3]. We
also ranked admission variables based on their contribution to model predictive power assessed
by three different ROC properties (Fig 1):1) the entire ROC curve (AUC based ranking) 2) 90–
100% specificity (pAUCSP based ranking) 3) and 90–100% sensitivity range (pAUCSE based
ranking). Based on the percent drop in AUC, pAUCSP and pAUCSE values in response to the
exclusion the variable of interest we were able to assign an importance ranking, with greater
drop translating into a highest rank (also see methods). While the values of percent decrease in
pAUC/AUC were small and possibly not meaningful on an absolute scale, it did allow us to
make a comparative assessment between the variables and inform subsequent variable selec-
tion. The AUC based ranking has confirmed age and motor response as influential predictors
of poor outcome (death or severe disability at 6 months post injury) in concordance with the
Nagelkerke R2 based ranking. Severe extracranial injury also ranked highly followed by pupil-
lary, verbal response and abnormal CT findings. A similar pattern was seen when targeting
specificity of 90–100% within the ROC (pAUCSP), although extracranial injury was interest-
ingly the lowest ranking variable. However when considering the region of 90–100% sensitivity
(pAUCSE), age was followed by severe extracranial injury, verbal response, hematoma on CT
and motor response. We observed negative values in all AUC based approaches for low ranking
variables suggesting that excluding these from the model may improve model accuracy. On
potential explanation to this may be an element of overfitting, which occurs in the model
including all variables.

Sensitivity and specificity based model selection
We first applied the backward elimination as an established method of model selection to the
regression model with all 12 variables included (complete model) to predict severe disability or
death at 6 months post TBI. This technique yielded limited simplification of the complete
model by suggesting “injury cause” only as a potentially excludable variable (model AIC score
7266.79). We next tested the alternative approach of using area under (AUC) the receiver oper-
ating curve (ROC) indices for model selection to create more simplistic models predicting
severe disability or death at 6 months. As detailed in the methods with this technique we con-
sidered the high specificity (SP) and sensitivity (SE) region of the ROC and incorporates the
pAUC ranking described above. For both groups, the lowes ranking variables were excluded in
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a stepwise fashion until the drop in pAUC compared to the complete model reached signifi-
cance based on DeLong’s test (Tables 2 and 3). This approach yielded two simplified models
(one for specificity and one for sensitivity driven approach) that had the least number of vari-
ables but maintained their prediction accuracy compared to the complete model (Tables 2 and
3 and Fig 2). For the specificity driven models the simplified variants pAUCSP was 0.6523 (95%
CI: 0.6402–0.6641) only slightly less than the pAUCSP of the complete model: 0.6664 (95% CI:
0.6543–0.679), and this difference was not significant with De Longs test (p = 0.1165). Simi-
larly, with sensitivity driven approach pAUCSE was 0.6332 (95% CI: 0.62–0.6477) compared to
the complete models performance of 0.6436 (95% CI: 0.6289–0.6585), which was again not sig-
nificant with De longs test (p = 0.3448). Comparative analysis of ROC curves are summarized
in Fig 2. The variables that were included in these simplified models were labeled as “key pre-
dictors” (Tables 2 and 3).

Fig 1. Variable importance ranking. Importance ranking of variables using partial Nagelkerke R2 scores (A), ROC characteristics considering the entire
AUC (B), pAUC at 90–100% specificity (C) and 90–100% sensitivity (D). See Table 1 for abbreviations.

doi:10.1371/journal.pone.0158762.g001
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Table 2. Summary of model selection using specificity based variable ranking.

Rank Variable Model

Complete 1 2 3 4 5 6 7 8 9 10 11 12

1 age + + + + + + + + + + + + +

2 pupils + + + + + + + + + + + +

3 motor + + + + + + + + + + +

4 oblt + + + + + + + + + +

5 mdls + + + + + + + + +

6 phm + + + + + + + +

7 verbal + + + + + + +

8 eye + + + + + +

9 hmt + + + + +

10 sah + + + +

11 sex + + +

12 cause + +

13 ec +

pAUC 0.6664 0.6673 0.6678 0.6672 0.6668 0.6635 0.6623 0.6539 0.6523 0.6484 0.63 0.613 0.5401

CI 95% 0.6543–
0.679

0.6544–
0.6793

0.6555–
0.6802

0.6551–
0.6801

0.6552–
0.6794

0.6512–
0.6758

0.6505–
0.6755

0.6416–
0.6665

0.6402–
0.6641

0.6364–
0.6604

0.6181–
0.6422

0.6033–
0.624

0.5314–
0.5491

DeLong
p

NA 0.9191 0.8707 0.9289 0.964 0.7535 0.6474 0.1612 0.1165 0.0439 4.33E-
05

1.15E-
10

2.20E-
16

Stepwise model selection by excluding the least important variable at each step (models 1–12). Variables included in the model are indicated by “+”. Model 1

to 8 maintain their accuracy compared to the complete model (DeLong p values >0.05) with model 8 being the most simplistic. Key variables are (highlighted

in bold) are defined as the predictors constituting the most simplistic model. See Table 1 for variable abbreviations.

doi:10.1371/journal.pone.0158762.t002

Table 3. Summary of model selection using sensitivity based variable ranking.

Rank Variable Model

Complete 1 2 3 4 5 6 7 8 9 10 11 12

1 age + + + + + + + + + + + + +

2 ec + + + + + + + + + + + +

3 verbal + + + + + + + + + + +

4 hmt + + + + + + + + + +

5 motor + + + + + + + + +

6 eye + + + + + + + +

7 oblt + + + + + + +

8 mdls + + + + + +

9 sah + + + + +

10 cause + + + +

11 pupils + + +

12 sex + +

13 phm +

pAUC 0.6436 0.6444 0.6442 0.6433 0.6445 0.6408 0.6385 0.635 0.6332 0.6241 0.6138 0.5241 0.5177

CI 95% 0.6289–
0.6585

0.6297–
0.6594

0.6304–
0.6594

0.6286–
0.6587

0.6297–
0.66

0.6256–
0.6556

0.6241–
0.6537

0.6212–
0.6495

0.62–
0.6477

0.6102–
0.6388

0.5999–
0.6277

0.5167–
0.5323

0.511–
0.5242

DeLong
p

NA 0.9382 0.9556 0.9805 0.9323 0.8043 0.6408 0.4234 0.3448 0.07603 0.006258 2.20E-
16

2.20E-
16

The same principal of model selection was used as for the specificity-based models in Table 2. Key variables are highlighted in bold. See Table 1 for variable

abbreviations.

doi:10.1371/journal.pone.0158762.t003
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Probabilistic associations of key predictors with the remaining variables
We built Bayesian networks in a partly constrained fashion to analyze the associations of the
“key predictors” with other variables (Fig 3). Edges between outcome and the key predictor
nodes were pre-fixed and the probabilistic relationships for the remaining variables were
explored using the hill-climbing search.

Key predictors of the specificity driven model. Age had direct associations with cause of
injury and indirectly the presence of extracranial injury. There was a steady increase in the
probability of falls with increasing age with 9,4% below age of 20 years compared to 21,7% for
age over 55. The likelihood of extracranial injury was 27,2% and 22,2% for RTA and falls
respectively compared to 10,4% for other mechanisms (assault, gunshot wound, fall from
less than 2 m ect). The probabilistic associations for the remaining variables were mostly

Fig 2. Model selection and comparison of predictive performance.Graph depicting pAUC values for specificity (A) and sensitivity (B) based model
selection. See Tables 2 and 3 for model descriptions. Note the progressive decrease in model performance with increasingly simplistic models only
becomes significant for model 9 in the specificity based ranking and borderline significance in sensitivity targeted approach. ROC curves of the difference
models for the specificity (C) and sensitivity (D) based approach.

doi:10.1371/journal.pone.0158762.g002
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multifactorial yielding complex marginal probabilities. Motor response was associated with the
remaining components of GCS. Pupillary response was associated with motor response and
obliterated third ventricles or basal cisterns on CT. Other interesting observations were that
pupillary response was associated with hematoma and midline-shift (both of these are features
of mass effect on imaging). On the other hand verbal response was associated with traumatic
subarachnoid hemorrhage and petechial bleeds mostly suggesting focal non-mass lesions.
Obliteration of the third ventricle/basal cisterns, which can be a consequence of global or focal
mass-effect was associated with both verbal and pupillary response.

Key predictors of the sensitivity driven model. The associations for age, extracranial
injury and verbal response were similar to the specificity driven model. Hematoma on CT was
associated with pupil response,midline shift and petechial bleed.

Discussion
Our study establishes importance measures for outcome predictors in traumatic brain injury
using ROC characteristics. We demonstrate the feasibility of this new approach to variable
importance ranking based on specificity and sensitivity-based indices. With model selection
based on these importance measures we demonstrate that a limited number of the most

Fig 3. Bayesian network analysis of key predictors. DAG’s depicting probabilistic relationships between “key predictors” (highlighted in red) and the
remaining variables. Description in text, see Table 1 for variable abbreviations.

doi:10.1371/journal.pone.0158762.g003
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influential predictors are sufficient to achieve equal predictive performance compared to more
complex models. Sensitivity driven analysis highlights the importance of extracranial injury in
predicting outcome, which is interestingly not borne out by specificity-based approach. Finally
our study is the first to provide insight into the probabilistic associations of these key variables
using Bayesian networks.

Variable importance measures and model selection
Variable importance is relevant in that it helps focus clinical assessment protocols, informs pre-
dictive model building and clinical trial design. Conventionally the relevance of outcome pre-
dictors was interpreted based on effect sizes and significance levels in uni- or multivariable
models [24]. In more recent studies these model outputs were used to inform the weights
assigned to variables in predictor score charts [4]. Formal ranking of outcome predictors in
traumatic brain injury were first presented by Murray et al [3] which was based on the drop in
Nagelkerke R2 value, a measure of goodness of model fit applied to the IMPACT database. Our
analysis of the CRASH database confirms their findings: age, GCS motor score, pupil response,
and abnormal CT findings were the highest-ranking predictors based using the same methodo-
logical principals. Subsequent studies assessed increments in AUC values in response to the
inclusion of a variable. Important examples are the relevance of considering extracranial inju-
ries [4, 25], CT imaging findings, secondary insults or laboratory parameters in the predictive
model [25]. Our analysis of the entire range of AUC showed similar ranking to the Nagelkerke
R2 based approach except for extracranial injury, which was amongst the more influential vari-
ables with entire AUC but not with Nagelkerke R2. The conceptual advantage of AUC based
ranking used in our study over the Nagelkerke R2 is that it reflects the predictive power attrib-
uted to each variable rather than “goodness of fit”. On the other hand the drawback of the
AUC based ranking is that it considers prediction through the entire curve whereas clinical sce-
narios are mostly relevant in ranges of high sensitivity and/or specificity. Addressing this short-
coming was the concept of partial AUC introduced by McClish [5]. In their study example the
authors demonstrate that including clinical information with cranial CT imaging significantly
improves diagnostic accuracy of radiological reporting when considering a single point on the
ROC curve. However this benefit is not born out when targeting a range of high specificity of
ROC between 90–100%. There were subsequent studies applying this concept of pAUC to
demonstrate added predictive power for biomarkers in aneurysmal subarachnoid hemorrhage
[6, 7]. We adopted the concept of ranking variables based on the drop in the pAUC values in
response to their exclusion from the model, which allowed a sensitivity and specificity driven
ranking. The specificity driven ranking was similar mostly to Nagelkerke R2 and AUC based
ranking, interestingly the sensitivity based ranking showed extracranial injury as an influential
predictor. We then “skeletonized” the complete model in a stepwise fashion by excluding the
lowest ranking variable. We reassessed changes in predictive power with pAUC values after
each exclusion, until it reached significance compared to the complete model containing all the
variables. This technique resulted in two simplified models driven by specificity and sensitivity
yielding a collection of predictors essential to maintain model accuracy (termed “key predic-
tors” in our study). During this model building process sensitivity or specificity was anchored
between 90–100% for sensitivity and specificity based approaches respectively. In practical
terms this constraint dictated that at least 9 times out of 10 both models correctly identify
patients with favorable outcome (moderate disability or good recovery 6 months after TBI) in
the specificity-based approach and poor outcome (death or severe disability 6 months after
TBI) for sensitivity driven models. In terms of clinical translational value, model optimized
with the specificity-based approach would be useful where the consequences of misclassifying
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patients into poor outcome where the actual outcome is favorable (false positive) would have
serious consequences. Such scenario is a decision to proceed to a life saving neurosurgical inter-
vention. The trade-off with this approach compared to the sensitivity-based model is that a
greater number of patients will be misclassified into favorable outcome when their actual out-
come is poor. On the other hand the model optimized for sensitivitymay be helpful at inform-
ing patients patient/relatives expectation regarding poor outcome. Again the trade off for this
approach compared to sensitivity-based model selection is that a greater portion of patients
who achieve favorable outcome will be predicted severe disability or death. Further transla-
tional value of the two models is that the “key variables” provide a focus for our clinical assess-
ment during clinical decisions process in the above scenarios.

Key predictors and their probabilistic associations
We categorized admission variables as patient and injury characteristics, assessment or imag-
ing findings (Fig 3). Our results show that at least one or more variables from each of these cat-
egories were amongst the key predictors for sensitivity or specificity driven models. These key
predictors were associated with the remaining variables either directly or indirectly in the
Bayesian networks. We interpret that through these associations the probabilistic effect of all
other variables are carried on to the key predictors supporting their importance. Analysis of
these associations revealed some intuitive findings, which mostly overlapped in sensitivity and
specificity driven models.

Patient and injury characteristics. This section of the network suggests that the demo-
graphics of traumatic brain injury appear to be age driven, a key predictor included in both
sensitivity and specificity based models. The injury mechanism shifted with older age from
road traffic accidents to falls and other mechanisms. Further associations demonstrate the
increased likelihood of severe extracranial injury with RTA and falls. Paralleling these findings
previous studies showed clinical outcomes worsen with increasing age [26, 27, 28] with low
energy falls being four times as common mechanism over the age of 65 [28]. There is emerging
relevance of TBI in the elderly population due to its increasing incidence, which is one of the
key features of changing epidemiology in traumatic brain injury [1]. There are further sugges-
tions that the plateau observed in the improvement of TBI outcomes since 1990s is partly
explained by the worse clinical outcome in the increasing number of elderly patient [29]. Anal-
ysis of the Traumatic Coma Data Bank between 1984 and 1987 [30] showed a median age of 25
with 15% of patients over the age of 50. In comparison, another analysis from between 1997–
2007 [31] the median age climbed to 45 years for patients suffering TBI with 44% of patients
over the age of 50. The factors driving the increased incidence for TBI in the elderly are sug-
gested to be 1) the increasing life expectancy and greater mobility in the elderly [32] 2) preven-
tative measures such as motorcycle helmet laws [33] have successfully reduced the incidence of
TBI occurring in traffic accidents which mostly involve younger individuals. The underlying
cause for worse clinical outcome in the elderly are multi-factorial and include poor physiologi-
cal reserve, high incidence of comorbidities [34], use of anticoagulant and anti-platelet medica-
tion increasing the risk of intracranial bleeding [1, 28]. While age appears to be a primary
outcome prognosticator GCS has historically been used as a triage factor in clinical decision-
making. A recently demonstrated implication of age is that older patients appear to present
with higher GCS scores compared to the young. This finding prompts us to revisit how the
elderly are triaged [28] as higher GCS score is generally associated with better outcome in
the general population whereas increasing age dictates worse prognosis as discussed above.
Although our network analysis does not show direct association between age and GCS score
this is likely explained by the above study analyzing isolated TBI with exclusion of extracranial
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injuries. With Bayesian networks we were able to formalize the important associations between
age, injury characteristics and the remaining variables in a picturesque graph using providing a
comprehensive insight into epidemiological properties.

Assessment variables. The GCS motor score and pupillary response has been previously
highlighted as one of the most influential predictors of clinical outcome [3]. Our specificity
driven importance ranking and Bayesian network structure supports this finding. Eye opening
and verbal response (the remaining components of the GCS) are both independently associated
with motor response, which in turn associates with pupillary response. Motor response was
found to be a key predictor in both sensitivity and specificity-based models, whereas verbal
response was only deemed influential by the sensitivity driven model. The correlation between
the three components of the GCS is intuitive based on the “anatomical sites” of coma, which
can be broadly categorized into the supratentorial compartment, bilateral thalamus and brain
stem structures (discussed by Bateman [35]). Considering lesions in these locations assessment
features of eye opening, verbal and motor response may often be impaired simultaneously and
potentially translating into the correlation captured by the Bayesian network in our study. In
terms of clinic-radiological correlation components of the GCS may also reflects the character
of the intracranial injury. For example abnormal pupillary response can be interpreted as part
of compression in brain stem/third cranial nerve, which requires significant focal or global
mass effect causing raised intracranial pressure [36]. This is borne out in our network analysis,
as pupillary response was associated directly with hematoma, midline shift and obliterated
third ventricle on CT. On the other hand verbal response was associated with traumatic sub-
arachnoid hemorrhage and petechial bleeds, lesions that are either not necessarily cause mass
effect or more likely to be diffuse in nature respectively. The association between eye opening
and severe extracranial injury is not readily explained by clinical intuition and we may specu-
late it is more of an artifact from facial injuries or pain related discomfort.

Imaging features. The specificity driven model highlighted obliterated CSF spaces and
midline shift as most influential imaging predictors. Midline shift implies focal mass effect clas-
sically due to contusion, focal edema or subdural/extradural hematoma. Previous studies sug-
gested traumatic subarachnoid hemorrhage as an important outcome prognosticator in the
context where other imaging features were conveyed by Marshall CT grading [3]. Although we
did not find SAH as a high-ranking variable, the network analysis showed it was associated
with obliterated CSF spaces and indirectly midline shift and hematoma key predictors of in
specificity and sensitivity driven models respectively. Obliterated CSF spaces occur in relation
to substantial mass effect and its association with midline shift to supports this intuition. Sensi-
tivity driven model included hematoma as the only influential variable from imaging character-
istics. This variable was well connected with the remaining imaging features through midline
shift, one of the key indicators of surgical evacuation of hematoma [37]. A limitation of our
study is that the cause of the midline shift is not recorded although this feature has a well know
impact on clinical outcome.

Role of extracranial injury in predicting outcome
Prevalence of extracranial injury ranges from 23–41% [2,38] in TBI and the extent of its contri-
bution to clinical outcome has been disputed in the literature. Analysis of the IMPACT data-
base consisting of three observational studies and eight randomized controlled trials in head
injury [39] suggested there was some added value from incorporating extracranial injuries
when considering the entire patient population [25]. However the importance of extracranial
injuries became more pronounced in patients with less severe brain injuries such as high
admission GCS or subtle CT abnormalities. A study based on Trauma Research Audit Network
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(TARN), a prospectively gathered national trauma registry, showed extracranial injury as an
important predictor for all head injury severities [40] with greater prognostic effect in less
severe TBI. The study noted that exclusion of patients who died within 6 hours of admission
reduced the effect of extracranial injury on outcome to a level comparable to IMPACT and
CRASH trials. The subgroup of patients who do not survive early stages are unlikely to have
been recruited for clinical trials explaining the difference between results. This also highlights
the impact of the study population, in particular the recruitment bias of clinical trials making
them from this perspective less robust compared to prospective databases. Using the sensitiv-
ity-based approach our findings support the prognostic role of extracranial injuries for the
entire range of TBI in the CRASH database. One interpretation to this is that TBI severity has a
major influence on outcome and severe TBI co-occurs about twice as often with severe extra-
cranial injury than in mild/moderate TBI [40]. However patient with isolated severe head
injury (i.e GCS of 8 or below) are also likely to have poor outcome and as a result not always
correctly identified for poor prognosis by extracranial injury.

Study limitations
Our analysis was restricted to variables recorded in the CRASH trial with the simplistic
approach of excluding missing data. Previous comparison of prediction models using imputed
versus complete data from the CRASH trial showed similar results [4], therefore this may not
pose a significant problem from the perspective of this study. Furthermore applying each statis-
tical step of our study including the Bayesian network analysis to multiply imputed data would
be technically complex, reaching beyond the scope of this paper.

Majority of the patients were excluded from our analysis due to brain CT scan not being
performed. This poses an important limitation to our study and therefore our results should
not be generalized to the entire patient population suffering TBI. Another limitation is the ele-
ment of recruitment bias when using datasets from clinical trials. One example to this is the
likely exclusion of early/admission mortality from trial dataset, which as discussed above may
offset for example the role of extracranial injuries at influencing clinical outcome. Further limi-
tation is the advances in treatment strategies that have occurred since the trial data was col-
lected (enrollment between 1999 and 2004 for CRASH). External verification of our results
using prospectively updated databases such as the Trauma Research and Audit Network could
be one potential way to address these shortcomings [41].

Conclusion
Our study is the first to report sensitivity and specificity based ranking of outcome predictors
in traumatic brain injury focusing our clinical assessment on the high-ranking predictors. In a
sensitivity driven importance ranking we find extracranial injury as an influential predictor but
not with specificity driven models. Bayesian networks provided useful insight into the depen-
dencies between predictors formalizing clinical intuition such as the: 1) age driven aspects of
TBI epidemiology 2) radio-clinical correlations between motor, pupillary response with mass
effect on CT 3) verbal response and eye opening with non-mass lesions. The application of
these techniques to other datasets such as TARN or Collaborative European NeuroTrauma
Effectiveness Research in TBI (CENTER-TBI) [42] will provide us with a better understanding
of outcome predictors and also hypothesis generation for further studies.
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