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Aging is becoming a severe social phenomenon globally, and the improvements
in health care and increased health awareness among the elderly have led to a
dramatic increase in the number of surgical procedures. Because of the degenerative
changes in the brain structure and function in the elderly, the incidence of perioperative
neurocognitive disorders (PND) is much higher in elderly patients than in young people
following anesthesia/surgery. PND is attracting more and more attention, though
the exact mechanisms remain unknown. A growing body of evidence has shown
that the gut microbiota is likely involved. Recent studies have indicated that the
gut microbiota may affect postoperative cognitive function via the gut-brain axis.
Nonetheless, understanding of the mechanistic associations between the gut microbiota
and the brain during PND progression remains very limited. In this review, we begin by
providing an overview of the latest progress concerning the gut-brain axis and PND,
and then we summarize the influence of perioperative factors on the gut microbiota.
Next, we review the literature on the relationship between gut microbiota and PND and
discuss how gut microbiota affects cognitive function during the perioperative period.
Finally, we explore effective early interventions for PND to provide new ideas for related
clinical research.

Keywords: gut-brain axis, perioperative neurocognitive disorders, postoperative cognitive dysfunction, gut
microbiota, cognition

INTRODUCTION

Perioperative neurocognitive disorders (PND), mainly encompassing acute postoperative delirium
(POD) and longer-lasting postoperative cognitive dysfunction, are common postoperative
complications in elderly patients. They are characterized by decreased cognitive function, and they
can involve psychosis, anxiety, personality changes, and memory disorders (Evered et al., 2018).
PND can occur from days to months after surgery, and the duration varies. The incidence of PND
varies from 41–75% at 7 days to 18–45% at 3 months postoperatively (Austin et al., 2019). PND can
cause poor functional recovery, prolonged hospitalization, and increased postoperative morbidity
and mortality. These effects reduce patients’ quality of life and pose a heavy economic burden on the
patients, their families, and wilder society (Steinmetz et al., 2009). Therefore, it is urgent to develop
effective strategies for the prevention and treatment of PND.
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In recent years, mounting evidence has highlighted a
prominent role for the gut microbiota in the pathophysiology
of many symptoms and diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), type 2 diabetes, and obesity
(Acharya et al., 2013; Wu et al., 2020; Zhu S. et al., 2020). The
gut microbiota refers to the millions of microorganisms that
populate an individual’s intestines in a symbiotic relationship.
These microorganisms modulate human health by enhancing
nutrient metabolism and absorption, maintaining the intestinal
epithelial barrier, and promoting host defense and immune
homeostasis (Sekirov et al., 2010). Gut dysbiosis refers to an
imbalance of the microorganisms in the intestines, and it
increases susceptibility to many diseases (Weiss and Hennet,
2017). Infection, other diseases, and antibiotics can cause an
imbalance in the microorganisms (Cani et al., 2008; Ivanov and
Honda, 2012). The gut microbiota communicates with the central
nervous system (CNS) through neural, immune, endocrine, and
metabolic pathways, which comprise the gut-brain axis. This
axis can regulate gastrointestinal motility and affect emotional
and cognitive function. The gut microbiota can modulate brain
function and behavior through this axis (Diaz Heijtz et al., 2011;
Collins et al., 2012). In AD patients, gut dysbiosis can trigger
host systemic immune responses and aggravate inflammatory
responses in the brain, contributing to cognitive decline (Zhu F.
et al., 2020). Although several reviews have been published on the
role of gut microbiota in brain function (such as cognition), there
are few reviews on the relationship between gut microbiota and
PND. This review aimed to summarize the mechanistic linkage
between gut microbiota and PND progression and examine the
influence of perioperative factors on gut microbiota, and explore
potential interventions related to gut microbiota.

PERIOPERATIVE NEUROCOGNITIVE
DISORDERS

Origin and Nomenclature
Cognitive decline after anesthesia/surgery is a common clinical
phenomenon (Terrando et al., 2011). As early as 1887, Savage
first recorded a case of insanity after anesthesia/surgery (Savage,
1887). Bedford (1955) conducted a retrospective study of 251
patients aged >65 years and found that 7% (18/251) developed
extreme dementia after general anesthesia. To our knowledge,
this is the first official report of postoperative cognitive
dysfunction (POCD). Over the past 50 years, numerous studies
on POCD have been published. In the 1990s, the International
Study of Postoperative Cognitive Dysfunction (ISPOCD) group
was established, which conducted basic research and a series
of multicenter clinical epidemiological studies on POCD. The
ISPOCD reported that the incidence of POCD in elderly
individuals was 25.8% at 1 week and 9.9% at 3 months after
major non-cardiac surgery (Moller et al., 1998). A study in 2008
demonstrated that the 1-year mortality for patients with POCD
within 3 months after surgery was almost twice that of patients
without POCD (Fodale et al., 2010).

The severe symptoms and high incidence of POCD deserve
serious attention. The evaluation of POCD has mainly relied

on a neuropsychological test battery. The neuropsychological
tests for POCD used in clinical settings mainly include the
Mini-Mental State Examination (MMSE), Montreal Cognitive
Assessment (MOCA), Wechsler Adult Memory Scale (WMS),
and Wechsler Intelligence Scale (WIS). The absence of specific
criteria for the assessment and diagnosis of POCD has led to
significant heterogeneity in study results, which seriously limits
basic and clinical research on POCD (Evered and Silbert, 2018).
In addition, inconsistent with the existing clinical diagnostic
criteria for neurocognitive disorders (NCD) in the fifth edition
of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5), neuropsychological tests do not take into account the
patient’s cognitive functioning and preoperative activities of daily
living (ADLs) (Gauthier et al., 2006; Sachdev et al., 2015). This
creates serious obstacles to communication between members
of different disciplines. In 2018, recognizing the disadvantages
of the terminology, the International Perioperative Cognition
Nomenclature Working Group (composed of multidisciplinary
experts) standardized the nomenclature regarding the cognitive
function changes related to anesthesia/surgery. The term
“perioperative neurocognitive disorders” (PND) was proposed,
which is a comprehensive term to describe impaired cognitive
function in the perioperative period, replacing the previous
term “postoperative cognitive dysfunction” (POCD) (Evered
et al., 2018). PND is divided into the following four categories
by time period included: preoperative neurocognitive disorder,
POD, delayed neurocognitive recovery, and postoperative
neurocognitive disorder (pNCD or POCD). Details regarding
PND are summarized in Figure 1. Due to the variability in the
previous studies, the term POCD will be used interchangeably
with the updated nomenclature throughout this review.

Risk Factors of Postoperative Cognitive
Dysfunction
Several risk factors for POCD were identified, mainly associated
with the patient (such as age, preoperative cognitive function
level, level of education, and genetic factors), the surgery (such
as surgery type), intraoperative complications, and anesthesia
(such as anesthesia approaches and anesthetic types). The elderly
population is at high risk of POCD following anesthesia/surgery;
the proportion of elderly (>60 years of age) with cognitive decline
at 3 months after surgery was twice that of middle-aged and
young people (12.7% vs. 5.6% vs. 5.7%) (Monk et al., 2008; Silbert
et al., 2014). Both clinical and animal studies have indicated that
advanced age is an independent risk factor for POCD.

Additionally, cardiac surgery is usually accompanied by a high
incidence of POCD, with 50–70% of patients exhibiting cognitive
decline 1 week after cardiac surgery and 13% at 1 year (Newman
et al., 2006). It was thought that the high incidence of POCD after
cardiac surgery may be attributable to the generation of cerebral
microemboli during cardiopulmonary bypass (CPB). However,
Liu et al. (2009) discovered that the incidence of POCD did not
significantly decrease at either 1 week or 3 months after coronary
artery bypass grafting without CPB (Kozora et al., 2010; Lamy
et al., 2013). This indicates that CPB is not the only causative
factor for POCD.
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FIGURE 1 | Nomenclature of perioperative neurocognitive disorders (PND).

Many studies have attempted to determine the effect of
anesthesia or surgery on POCD. A randomized controlled trial
of 57 total knee arthroplasty patients showed that patients who
received regional anesthesia achieved better neurocognitive test
scores than those who received general anesthesia (Edipoglu and
Celik, 2019). Nevertheless, Zhang et al. (2015) found no effect of
general anesthesia on neuroinflammation and learning memory
deficits in aged rats after surgery. Meanwhile, a meta-analysis
reported no significant difference in the incidence of POCD
between general anesthesia and other anesthesia groups (Mason
et al., 2010). Therefore, the effect of the anesthesia method on
POCD requires further exploration. The occurrence of POCD is
also related to the types of anesthetics. The use of anticholinergic
drugs (e.g., atropine and phencyclidine hydrochloride) before
general anesthesia increases the incidence of POCD (Plaschke
et al., 2013; Rossi et al., 2014). In a mouse model of POCD,
pretreatment with an acetylcholinesterase inhibitor improved
anesthesia/surgery-induced impairment of working memory
(Zhang et al., 2018). Furthermore, the incidence of POCD was
higher in elderly patients treated with sevoflurane inhalation
anesthesia than those treated with propofol maintenance
anesthesia (Qiao et al., 2015; Sun H. et al., 2019). However, the
latest research conducted by Li et al. (2021) discovered that the
choice of anesthesia between propofol and sevoflurane did not
appear to affect the incidence of delayed neurocognitive recovery
at 5–7 days after laparoscopic abdominal surgery. Besides,
emerging evidence indicates that perioperative dexmedetomidine
may decrease the risk of POCD (Zhou et al., 2016; Deiner et al.,
2017). Su et al. (2016) demonstrated that low-dose intravenous
dexmedetomidine significantly decreased the incidence of POD
in elderly patients admitted to intensive care units (ICU) after
elective non-cardiac surgery. Conversely, Xu et al., hypothesized
that it is surgical trauma, but not anesthesia contributes to the
development of POCD and neuroinflammation. They performed
abdominal surgery on aged wild-type mice under local anesthesia
and found that surgery without general anesthesia could cause
cognitive impairment (Xu et al., 2014). The same conclusion
also appeared in the study of Lai et al. (2021a). The incidence
of POCD varies with different types of surgery, with high

incidences after orthopedic surgery such as joint replacement
(25–50%), and cardiac surgery (20–50%) (Galanakis et al., 2001).
In addition, intraoperative cerebral hypoxia, hypocapnia, cerebral
perfusion insufficiency, cerebral embolism, and perioperative
hyperglycemia have been reported to be related to the occurrence
of POCD (Djaiani et al., 2012; Papadopoulos et al., 2012).

Pathogenesis of Postoperative Cognitive
Dysfunction
The pathophysiological mechanism of POCD remains to be
elucidated. The hypotheses regarding POCD mainly include
the cholinergic dysfunction hypothesis, β-amyloid (Aβ) cascade
hypothesis, tau hyperphosphorylation hypothesis, oxidative
stress hypothesis, and inflammation hypothesis. Acetylcholine
in the cholinergic CNS is an essential neurotransmitter in
the brain. It plays a significant role in the formation and
maintenance of learning and memory (Blokland, 1995; Kihara
and Shimohama, 2004). This explains why anticholinergics
increase the risk of POCD. Cholinergic CNS neurons degenerate
with age, decreasing acetylcholine synthesis and release (Zhang
et al., 2018). Therefore, it makes elderly individuals prone
to POCD. Moreover, inhaled isoflurane may affect cognitive
function by inhibiting the transport of acetylcholine in the CNS
(Jansson et al., 2004).

It is widely acknowledged that excessive Aβ deposition and
tau protein phosphorylation are involved in the pathogenesis
of AD. Aβ and hyperphosphorylated tau deposits in the brain
can induce mitochondrial damage, synaptic dysfunction, and
neuron apoptosis, leading to progressive cognitive impairment
(Decker et al., 2010). In animal research, isoflurane exposure
increased the levels of Aβ and phosphorylated tau protein in
the brain and caused spatial memory impairment (Zuo et al.,
2018). Additionally, patients with low preoperative plasma levels
of Aβ42 and Aβ40 exhibited cognitive impairment at 3 months
after surgery (Evered et al., 2009). These findings suggest that
POCD and AD may share a common pathogenic mechanism.

The neuroinflammation theory of POCD has been the
focus of recent research. Excessive release of peripheral
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inflammatory cytokines caused by anesthesia/surgery activates
microglia, disturbs the blood–brain barrier (BBB), and allows
inflammatory cytokines [interleukin 6 (IL-6), interleukin 10 (IL-
10), and tumor necrosis factor α (TNF-α)] to be released into
the CNS, thereby inducing neuroinflammation and cognitive
impairment (Safavynia and Goldstein, 2018). Biochemical tests
of cerebrospinal fluid (CSF) can objectively demonstrate the
presence of intracerebral inflammation. Inflammatory cytokines
(IL-6, IL-10, and TNF-α) in CSF after anesthesia/surgery
are all higher than normal, indicating that postoperative
neuroinflammatory reactions do indeed occur in the brain
(Tang et al., 2011). There is evidence to suggest that volatile
anesthetic isoflurane induces cognitive dysfunction mediated by
neuroinflammation in rodents (Cao et al., 2012; Zhang et al.,
2014). Similarly, studies have found that neuroinflammation
occurs after anesthesia/surgery in humans (Tang et al., 2011).
In addition, blocking Kv1.3 potassium channels can prevent
postoperative neuroinflammation and cognitive decline in a
mouse model (Lai et al., 2020).

Oxidative stress is caused by excessive free radical production
and an impaired antioxidant defense system, which is related to
mitochondrial dysfunction, hyperphosphorylation of tau protein,
Aβ deposition, and neuroinflammation. The superoxide radicals
produced during oxidative stress harm neurons and hence
contribute to cognitive dysfunction (Ienco et al., 2011). In a
rodent model of POCD, malondialdehyde (which reflects the
degree and severity of cellular damage by reactive oxygen species)
was increased and superoxide dismutase (which reflects the
body’s ability to remove reactive oxygen species) was decreased
in the hippocampus, indicating that oxidative stress in the brain
may be involved in the pathogenesis of POCD (Liu et al., 2019).

Lastly, many recent studies have found that the gut-brain axis
may be involved in the mechanism of POCD. The gut microbiota
plays a vital role in the development of the CNS. Gut dysbiosis
can increase the risk of POCD by damaging the intestinal
mucosal barrier and BBB, which can trigger neuroinflammation
and oxidative stress in the brain and eventually alter cognitive
function (Yang et al., 2018; Zhan et al., 2019).

GUT MICROBIOTA

Human beings live in a microbial world, with the microbiota
affecting the development of most organ systems and regulating
metabolism. Microbes can colonize multiple sites in the body,
particularly the skin, eyes, mouth, respiratory tract, urogenital
tract, and gastrointestinal tract (Bäckhed et al., 2005; Artis, 2008;
Belkaid and Hand, 2014). Nevertheless, most microbes in humans
live in the gastrointestinal tract. The human gastrointestinal
tract harbors about 1013–1014 microorganisms, approximately 10
times the number of human cells in the body, and the combined
genetic material of the gut microbiota (i.e., the gut microbiome)
comprises more than 100 times the number of genes in the
human genome (Eckburg et al., 2005; Lozupone et al., 2012).
The gut microbiota which is composed of bacteria, viruses,
archaea, protists, and fungi (including yeasts), is a highly complex
and densely populated ecosystem. Trillions of gut microbes

participate in physiological and pathophysiological processes in
the body that affect host health throughout the lifespan (Lim
et al., 2016; Heiman and Greenway, 2016). Therefore, the gut
microbiota has been referred to as a “forgotten organ” (O’Hara
and Shanahan, 2006). The gut bacteria are characterized by a
wide diversity of species, divided into six main phyla: Firmicutes,
Bacteroidetes, Proteobacteria, Actinomycetes, Verrucomicrobia,
and Fusobacteria. Among them, Firmicutes (such as Clostridium,
Enterococcus, Lactobacillus, and Ruminococcus) account for 60%
of the gut microbiota, and Bacteroidetes (such as Bacteroides and
Prevotella) accounts for 15% (Eckburg et al., 2005; Lozupone
et al., 2012). The complexity and diversity of the gut microbiota
are established in infancy and are influenced by external
factors such as childbirth (vaginal or Cesarean), breastfeeding
or formula feeding, weaning, antibiotics, infection, diet, and
stress (Drell et al., 2017). The gut microbiota of the newborn
depends on the mode of delivery, with vaginal delivery leading
to a highly similar gut microbiota to the maternal vaginal
microbiota. In addition, breastfed infants have a more complex
Bifidobacterium microbiota community than formula-fed infants
(Rinne et al., 2005). With the addition of complementary food,
the gut microbiota stabilizes to produce a more adult-like
profile around the age of 2 years. The adult-like gut microbiota
is considered to be relatively stable throughout adulthood,
although it is vulnerable to the influences of antibiotics,
diet, stress, and lifestyle, and it changes somewhat with age
(Charbonneau et al., 2016). The gut microbiota of the elderly
compared to the young is characterized by decreased bacterial
diversity, changes in the dominant species, decreased beneficial
microorganisms, increased facultative anaerobic bacteria, and
decreased production of short-chain fatty acids (SCFAs). These
changes may be related to the diet and other lifestyle factors of
the elderly (Salazar et al., 2014).

GUT-BRAIN AXIS

The gastrointestinal tract is the largest digestive and immune
organ in the human body. It contains about 500 million nerve
endings, which form the enteric nervous system (ENS). About
20% of them are classified as endogenous primary afferent
neurons, which transmit subtle changes in the gastrointestinal
tract to the brain via the vagus nerve (Cani and Knauf, 2016).
When the host suffers from inflammation or infection, immune
cells release important cytokines, and neuroendocrine hormones
(such as cortisol) change the intestinal permeability, penetrate
the intestinal mucosal barrier and BBB, and communicate with
cytokines secreted by immune cells, thus affecting the function of
the intestinal tract and brain (Carabotti et al., 2015; Obrenovich,
2018). Based on the bidirectional communication between the
gut microbiota and the CNS, the concept of the gut-brain
axis was proposed. There are multiple communication routes
related to this axis, including the neuroanatomical pathway,
the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine
pathway, the immune system, the gut microbiota metabolism
pathway, and the intestinal mucosal barrier and BBB (Wang and
Wang, 2016). Achieving two-way communication between the
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brain and the gut requires the cooperation of multiple systems,
including the ENS [a subdivision of the autonomic nervous
system (ANS)], CNS, immune system, and endocrine system.
Numerous neurotransmitters, such as dopamine, γ-aminobutyric
acid (GABA), and serotonin [5-hydroxytryptamine (5-HT)], are
involved in the bidirectional communication between the gut
and the brain. Germ-free (GF) mice (without gut microbiota)
have abnormal brain function, which can manifest as learning
disabilities, anxiety-like behavior, and decreased social skills.
These behaviors may be related to changes in the amygdala and
hippocampus, as their volume and dendritic morphology were
significantly different between GF and normal mice, including
shorter neurites, a lower branching degree, and a thinner spinal
cord (Luczynski et al., 2016; Trzeciak and Herbet, 2021). In
addition, the gut microbiota affects myelination and neurogenesis
in the adult brain by regulating microglial activation, thus
affecting the inflammatory response in the brain (Erny et al.,
2015; Hoban et al., 2016). In turn, the brain regulates intestinal
movement, intestinal secretion, and immune function, with
neural circuits, neurotransmitters, and receptors being involved
in the physiological regulation of intestinal function (Jacobson
et al., 2021). When neurotransmission is abnormal, the HPA
response can change and intestinal neurons can be damaged,
potentially leading to an abnormal microbial community.
For example, PD patients often have a high incidence of
gastrointestinal dysfunction (Cersosimo and Benarroch, 2012).

GUT MICROBIOTA AND COGNITION

Cognition is the process by which the brain receives external
information, processes it, and converts it into internal mental
activities to acquire or apply knowledge. It includes aspects such
as memory, language, visuospatial skill, execution, calculation,
understanding, and judgment (Le Pelley et al., 2016). Cognitive
impairment refers to abnormal changes or functional decline in
these cognitive functions in the higher center of the brain. Many
factors have been shown to affect cognitive function, including
stress, diet, genetics, infection, and inflammation (Speisman et al.,
2013; Cai et al., 2014; Fan et al., 2017). In recent years, gut
microbiota has emerged as a significant factor in the development
and maintenance of cognitive function. Many studies have
explored the influence of the gut microbiota on host behavior
and cognitive function. Cattaneo et al. (2017) showed that gut
dysbiosis in patients with cognitive impairment is characterized
by a decreased abundance of anti-inflammatory bacteria
(Eubacterium rectale) and an increased abundance of pro-
inflammatory bacteria (Escherichia and Shigella). Additionally,
chronic Helicobacter pylori infection can trigger the release of
inflammatory factors and Aβ accumulation in AD patients and
aggravate the symptoms of cognitive dysfunction (Roubaud-
Baudron et al., 2012). Certain gut bacteria (e.g., Bacteroides
vulvae, Bifidobacterium bifidum, Lactobacillus salivarius, and
Clostridium clusters) may affect cognitive function in rodents
and humans by causing neuroinflammation. Fecal microbiota
transplantation (FMT) from transgenic mice with dementia
to cognitive healthy mice significantly decreased the cognitive

performance of the recipients. This indicates that the gut
microbiota plays a critical role in physiological and pathological
processes related to cognitive impairment (Zhan et al., 2019).

Intestinal Mucosal Barrier and
Blood–Brain Barrier
The BBB is a highly selective semipermeable membrane that
prevents circulating toxins and pathogens from accessing the
brain while allowing important nutrients and oxygen to enter.
The BBB is composed of endothelial cells that are closely
connected together, forming “tight junctions.” It plays a pivotal
role in homeostasis in the brain. When it is damaged, peripheral
toxic substances enter the brain via the bloodstream, which
poses serious threats to the brain (Obermeier et al., 2013).
BBB dysfunction has been shown to be associated with many
neurodegenerative diseases, such as AD, multiple sclerosis, and
neuromyelitis optica (Acharya et al., 2013). In AD patients,
cognitive impairment, which is mainly manifested in the
hippocampus, is related to BBB damage. The BBB leakage rate
was higher in patients with early AD than healthy controls, based
on dynamic contrast-enhanced magnetic resonance imaging.
This suggests that the breakdown of the BBB may be a key
mechanism in the early stage of AD (Zenaro et al., 2017; Sweeney
et al., 2018). In addition, traumatic brain injury can also lead to
severe BBB damage, increasing the risks of cognitive impairment
and dementia (Lye and Shores, 2000).

Research on specific-pathogen-free (SPF) mice has shown
that the BBB develops around the second week of embryo
development, with a sharp decrease in BBB permeability after
embryonic day 15. In contrast, the BBB permeability of GF
mice continued to increase after embryonic day 15 and into
adulthood. Thus, it can be seen that microorganisms influence
the development of the BBB in the embryonic stage (Sampson
and Mazmanian, 2015). In GF mice compared to pathogen-free
mice, BBB permeability was increased in various brain regions
(including the frontal cortex, hippocampus, and striatum).
Furthermore, transferring feces from pathogen-free mice to GF
mice or treating GF mice with bacteria that produce SCFA
reduced BBB permeability (Braniste et al., 2014). Recent studies
have shown that the gut microbiota can improve postoperative
cognitive function in aged mice by reducing the BBB permeability
(Wen et al., 2020).

The intestinal barrier is composed of a polarized monolayer
of epithelial columnar cells that are tightly bound together by
intercellular tight junctions. These junctions are composed of
four types of integral membrane proteins: occludin, claudins,
tricellulin, and junctional adhesion molecule, which regulate
paracellular permeability and ensure the intestinal epithelial
barrier integrity (Furuse et al., 1993; Tsukita et al., 2001). The
function of the intestinal barrier is to regulate the balance of
nutrients, water, and electrolytes and to prevent pathogens and
toxic substances from entering the systemic circulation from the
intestinal lumen. If the intestinal barrier is damaged and the
intestinal wall becomes permeable, pathogens (bacteria, viruses,
and fungi), toxins, and incompletely digested food molecules can
pass through the barrier into the bloodstream and reach the
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brain, causing astrocyte swelling and pro-inflammatory factor
release in the brain. The gut microbiota plays a key role in
intestinal barrier homeostasis (Farhadi et al., 2003). Antibiotics
cause Clostridium difficile reproduction and colonization of the
intestinal epithelium. C. difficile produces toxins that impair
actin filament aggregation, damage tight junctions and increase
intestinal permeability (Hecht et al., 1988). In contrast, healthy
and mature gut microbiota can maintain tight junction protein
structure and inhibit intestinal inflammation. Animal studies
showed that changes in the gut microbiota composition can lead
to the breakdown of the intestinal epithelial barrier and increased
mucosal permeability, with the translocation of gut bacteria to
the whole body, which contributes to Toll-like receptor 4 (TLR4)
activation and the initiation of inflammatory processes in the
brain (Alhasson et al., 2017). This process may be involved in the
development of progressive cognitive impairment and dementia.

Intestinal Immune System
Mounting evidence suggests that there are complex interactions
between the gut microbiota and the host immune system. The
gut microbiota can regulate the development and function
of innate and adaptive immune systems and maintain the
dynamic balance in the immune system. In turn, the innate
and adaptive immune systems can promote gut microbiota and
host homeostasis (Yoo et al., 2020). Additionally, the indirect
effects of gut microbiota on the innate immune system may
change the levels of circulating cytokines that directly affect
brain function (Rogers et al., 2016). The release of pro-and
anti-inflammatory cytokines is involved in the development of
brain diseases such as AD, depression, and autism. Microglia,
which are the innate immune cells of the CNS, regulate CNS
development and maintenance and play an immune surveillance
role in the brain, participating in information transmission
and clearing cell fragments (Legroux and Arbour, 2015). The
gut microbiota plays a crucial role in shaping the maturation
and homeostasis of microglia. The innate immune response of
microglia in GF mice is highly weakened, suggesting that the
existence of the gut microbiota promotes microglial maturation
and increases resistance to challenges by bacteria and viruses. The
microglial function can be partially restored by gut microbiota
transplantation (Erny et al., 2015).

Lipopolysaccharide (LPS), also known as endotoxin, is a major
component of the outer membrane of Gram-negative bacteria.
The gut microbiota is an important source of LPS and Aβ.
LPS can stimulate the host immune system to damage intestinal
epithelial cells and it can thereby access the blood circulation.
LPS can then activate microglia and promote neuroinflammation
in the brain, triggering cognitive decline (Banks et al., 2015;
Sorrenti et al., 2018). LPS has been observed in the hippocampus
and neocortex of patients with AD. Intraperitoneal LPS injection
in mice increased the hippocampal level of Aβ42 and impaired
cognitive function (Kahn et al., 2012; Zhao et al., 2017). LPS
promotes the expression of its receptors TLR4 and CD14, which
enhances inflammatory cytokine release and Aβ production in
the brain. Aβ can also activate TLR4, continuously increasing Aβ

levels in the brain and aggravating the progression of AD (Kapil
et al., 2016; Yang et al., 2020).

Hypothalamus-Pituitary-Adrenal Axis
The HPA axis is an important part of the gut-brain axis, and
it is involved in controlling stress responses and regulating
many physical activities, such as digestion, the immune system,
mood and emotion, sexual behavior, and energy storage
and consumption (Fumagalli et al., 2007). When a stress
response occurs, the paraventricular nucleus in the hypothalamus
synthesizes and releases corticotropin-releasing hormone (CRH),
which stimulates the release of adrenocorticotropic hormone
(ACTH) in the pituitary gland. ACTH stimulates the adrenal
cortex to release the end product cortisol (Dunn, 2000;
Charmandari et al., 2005). Cortisol receptors are distributed
in multiple regions of the CNS, including the hippocampus,
hypothalamus, and amygdala. When cortisol concentrations are
elevated, cortisol-mediated activation of cortisol receptors in
the hippocampus and hypothalamus exerts negative feedback
on HPA activity, thereby terminating the stress response (De
Kloet et al., 1998; Pruessner et al., 2003). High cortisol levels
associated with acute stress can cause neuronal amyloidosis
and tau phosphorylation, thereby affecting cognitive function
(de Kloet et al., 1999; Green et al., 2006). In addition, clinical
research has demonstrated that AD patients with cognitive
impairment have concomitant HPA axis dysfunction, mainly
characterized by elevated cortisol levels and abnormal cortisol
receptor expression (Aznar and Knudsen, 2011). There is a close
mutual relationship between the HPA axis and gut microbiota.
The stress response may cause gut dysbiosis and increased
intestinal permeability (Kelly et al., 2015). GF mice exhibit an
excessive increase in HPA axis activity in response to stress,
manifested as increased levels of cortisol and corticotropin.
Probiotic supplementation can ameliorate stress-induced HPA
axis dysfunction and improve cognitive impairment as well as
depressive- and anxiety-like symptoms (Sudo et al., 2004; Liang
et al., 2015).

Additionally, LPS activates the HPA axis, increasing the stress
hormone levels, including cortisol, which can affect cognition
(Grinevich et al., 2001). Patients with cognitive impairment have
higher levels of cortisol in the CSF than normal people (Comijs
et al., 2010; Ouanes and Popp, 2019). Moreover, the increase of
serum cortisol level can change the gut microbiota composition
and intestinal barrier permeability (Farzi et al., 2018). And gut
dysbiosis caused by antibiotics increased the serum corticosteroid
level and caused neuroinflammation and cognitive-behavioral
abnormalities in rats (Wang et al., 2015).

Gut Metabolism System
The major function of the gut microbiota for humans is
to digest food. The gut microbiota converts carbohydrates
into SCFAs. SCFAs can activate G protein-coupled receptors
to exert neuroprotective effects. SCFAs can also restore the
memory function of mice with AD by inhibiting histone
deacetylase. Moreover, SCFAs can prevent AD by interfering
with the assembly of Aβ peptides into neurotoxic polymer.
Furthermore, SCFAs can regulate microglia homeostasis,
suppress demyelination, and enhance remyelination in the
prefrontal cortex, which is responsible for complex cognitive
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tasks such as planning and decision-making (Ho et al., 2018;
Silva et al., 2020; Wenzel et al., 2020).

In addition to absorbing and producing metabolites, the
gut microbiota can synthesize intestinal toxins (such as LPS),
and also neurotransmitters (such as GABA, 5-HT, and DA),
and vitamins (such as vitamins K and B), which are essential
for brain function and behavior (Fung et al., 2017; Sherwin
et al., 2018). Lactobacillus and Bifidobacterium can participate
in the synthesis of endogenous GABA, which is an inhibitory
neurotransmitter in the CNS. About 20–30% of the CNS synapses
employ GABA as a neurotransmitter (Watanabe et al., 2002).
Anesthesia and surgery disrupted the GABAergic system and
contributed to hippocampus-dependent memory and cognitive
dysfunction, which may be related to the P38 MAPK signaling
pathway (Zhang et al., 2020). Additionally, recent studies
showed that the inverse agonist of the α5 subunit-containing
GABAA (α5GABAA) receptor, 5IA, attenuated the Aβ-induced
death of hippocampal neurons and enhanced cognitive function
(Vinnakota et al., 2020).

5-hydroxytryptamine, which is converted from tryptophan,
plays important roles in neuronal and glial development,
which are related to cell proliferation, differentiation, migration,
apoptosis, and synapse formation (Gaspar et al., 2003). Gut
microorganisms in mice synthesize up to 60% of the 5-HT
present in the colon and blood. The gut microbiota can
also induce pheochromocytes in the intestinal epithelium to
synthesize 5-HT, generate and release metabolites, stimulate
immune cells to secrete cytokines, regulate nerve cells to affect
brain activity, and ultimately affect human mood, learning,
memory, and behavior (Roth et al., 2021).

Vitamin K is a fat-soluble vitamin that is involved in
the synthesis of sphingolipids, which are an important
component of the CNS cell membrane and are associated
with the proliferation and differentiation of neurons. Changes
in sphingomyelin expression are related to neurodegeneration
and neuroinflammation (Denisova and Booth, 2005; Ferland,
2012). Vitamin K can also inhibit Aβ deposition by activating
growth arrest-specific gene 6 (Gas-6), which has a protective
effect on neurons. Low vitamin K intake or serum concentration
is directly related to cognitive impairment in the elderly aged
≥65 years (Yagami et al., 2002; Tamadon-Nejad et al., 2018).

The B vitamins are vital dietary components. An increased
level of homocysteine, which can be lowered by increased vitamin
B intake, is linked to cognitive dysfunction. The level of vitamin
B is decreased in AD patients. Vitamin B supplementation
improves memory and slows down the process of cognitive
decline (Seshadri et al., 2002; Clarke et al., 2014).

Vagus Nerve Pathway
The regulation of the gastrointestinal nervous system involves
the CNS and ENS (a subdivision of the ANS). The ENS is a
complex autonomic neural network composed of sensory, motor,
and intermediate neurons that can independently regulate the
basic functions of the gastrointestinal tract (movement, mucus
secretion, and blood circulation). The ENS can transmit the
information sensed by the intestinal tract directly to the brain
via its intestinal nerves (branches of the ANS) and vagal afferent

nerves (Obata and Pachnis, 2016). In fact, the vagus nerve is the
main neural communication route between the gut microbiota
and the brain. The ends of the vagal afferent nerves are located
in the intestinal mucosa where a large number of intestinal
regulatory peptides and receptors for intestinal metabolites are
distributed (Bonaz et al., 2018). Bacterial neurotransmitters and
neuropeptides can directly activate the intermuscular neurons
and transmit signals to the brain via the vagal afferent nerves.
Changes in the gut microbiota composition can directly alter
mood and cognition via the vagus nerve (Pellegrini et al.,
2018). Transplantation of Campylobacter jejuni into the gut
of mice induced anxiety-like behavior, while transplantation
of non-pathogenic bacteria (such as Lactobacillus rhamnosus)
into the duodenum had anti-anxiety and antidepressant effects,
but required an intact vagus nerve (vagotomy prevented the
effects of L. rhamnosus) (Bravo et al., 2011). Yun et al.
(2020) discovered that Lactobacillus gasseri NK109 alleviated
Escherichia coli-induced cognitive impairment by modulating
IL-1β expression, gut microbiota, and vagus nerve-mediated
gut-brain signaling. Nonetheless, the mechanism underlying the
interaction between intestinal microorganisms and the vagus
nerve remains to be elucidated.

GUT MICROBIOTA IN THE
PERIOPERATIVE PERIOD

Preoperative Period
The perioperative period usually includes the periods related
to hospitalization, anesthesia, surgery, and rehabilitation. The
number of elderly people needing surgery has increased, which
brings great challenges to every component of the perioperative
period. The diversity of gut microbiota changes with age. Elderly
people tend to have a reduced diversity of gut microbiota
compared to young people, characterized by lower levels of
Firmicutes and Actinobacteria and higher levels of Proteobacteria
(Hopkins and Macfarlane, 2002; Rondanelli et al., 2015).
Additionally, the serum level of SCFA, the main bacterial
metabolite in the colon, is lower in the elderly than in the young.
These changes may be related to the low dietary absorption
rate and decreased immune function in the elderly (Biagi et al.,
2010). Preoperative fasting and fluid limitation are routine in the
perioperative period. However, diet is a pivotal determinant in
the gut microbiota community structure and function, so fasting
may trigger gut microbiota changes that may in turn affect host
health and immunity (Jabbar et al., 2003; Carmody et al., 2015).
In animal models, the gut microbiota changed rapidly within 1–
3 days of fasting. With increased fasting duration, the structure
of the jejunal microbiota changed significantly, with decreases
in β-bacilli and Bacteroides. Surgical patients are often exposed
to preoperative psychological stress (such as anxiety and fear)
and/or physiological stress (such as insomnia and malnutrition)
(Wetsch et al., 2009; Kohl et al., 2014). These stress stimuli
can activate the sympathetic nervous system and HPA axis,
thus increasing intestinal permeability and inflammation, and
ultimately affecting the gut microbiota. Psychological stress has
been reported to alter the microorganism colonization of the
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mucosal surface and the host’s susceptibility to infection (Bailey
et al., 2011; Vanuytsel et al., 2014).

Intraoperative Period
A recent study showed that general anesthesia negatively alters
the diversity and composition of the gut microbiome. Ma et al.
found that 4-h exposure to a volatile anesthetic (isoflurane)
in mice significantly decreased the microbial diversity and the
levels of several commensal bacteria including Clostridiales. Thus,
volatile anesthetics are potential contributors to gut dysbiosis in
postoperative patients (Serbanescu et al., 2019). Opioid analgesics
are the most commonly used medication for the management of
postoperative pain, but they increase susceptibility to intestinal
infection by C. difficile, Vibrio cholerae, Salmonella enterica,
and Pseudomonas aeruginosa (Mora et al., 2012). Another study
revealed that morphine can damage the intestinal epithelial
barrier function and increase the translocation of gut microbiota
in mice (Meng et al., 2013).

Surgical interventions, especially gastrointestinal surgery,
threaten the balance of gut microbiota in patients.
Gastrointestinal surgery often involves intestinal short circuit and
anastomosis construction, which directly changes the habitat of
the gut microbiota (Aron-Wisnewsky and Clement, 2014; Wang
and Qin, 2020). The diversity and abundance of gut microbes in
patients with gastric cancer undergoing surgical treatment were
found to be increased. Additionally, gastrectomy increased the
abundance of aerobic bacteria, facultative anaerobic bacteria,
and oral microbes, which may be related to the digestive tract
reconstruction and/or postoperative complications (Erawijantari
et al., 2020). A meta-analysis of the relationship between the
gut microbiota and postoperative complications suggested
that surgery often increased potential pathogens such as
Pseudomonas, Staphylococcus, and Enterococcus, and decreased
Lactobacillus and Bifidobacterium (Lederer et al., 2017). To
prevent postoperative infection, perioperative antibiotic use is
key. However, many studies have shown that antibiotics can lead
to short- or long-term effects on the gut microbiota in humans
and animals, such as changes in the composition of the gut
microbiota, changes in diversity, and delays in colonization time
(Francino, 2015). In particular, broad-spectrum antibiotics can
seriously damage the gut microbiota and lead to diarrhea, which
may be related to excessive C. difficile growth or reduced SCFA
production. In addition, by interfering with the gut microbiota,
antibiotics can affect drug metabolism and decrease the body’s
resistance to external pathogens, thus increasing the risk of
infection (Kim, 2015; Abt et al., 2016).

Postoperative Period
Postoperative complications are closely related to the gut
microbiota, with the gut microbiota playing an important role
in preventing pathogens from crossing the intestinal barrier.
Additionally, the composition of the gut microbiota could
reflect the response efficiency of the immune system to invasive
pathogens (Schmitt et al., 2019). A systematic review conducted
by Lederer et al. (2017) demonstrated that changes in the gut
microbiota after gastrointestinal surgery may be associated with
the development of postoperative complications such as wound

infections or anastomotic leakage. In a pilot study involving
26 patients who underwent renal transplantation, the gut
microbiota in the fecal samples collected at 3 months after renal
transplantation surgery exhibited significant changes, which was
related to complications such as diarrhea, acute rejection, and
urinary tract infection (Lee et al., 2014). The most common
postoperative complication is pain, such as visceral pain after
gastrointestinal surgery. Gastrointestinal surgery induces gut
microbiota disruption, intestinal barrier damage, and intestinal
inflammation, which may contribute to visceral pain, with
sensitization of the peripheral and central pain pathways. Visceral
pain linked to changes in gut microbiota diversity and abundance
was improved after normalizing the gut microbiota (Chichlowski
and Rudolph, 2015; Pusceddu and Gareau, 2018). In summary,
the gut microbiota influences the patient throughout the
perioperative period.

GUT MICROBIOTA AND PERIOPERATIVE
NEUROCOGNITIVE DISORDERS

Possible Roles of Gut Microbiota in
Perioperative Neurocognitive Disorders
Development
There are several hypotheses about the mechanisms underlying
PND, including a hypothesis involving the gut microbiota.
Few studies are focusing on the relationship between the gut
microbiota and PND (Table 1), though this relationship is
becoming a research hotspot. Many perioperative factors can
cause gut dysbiosis. The abundance of gut microbiota has been
shown to change significantly after surgery/anesthesia, with an
increase in the proportion of Gram-negative bacteria. LPS, a
key component of Gram-negative bacteria cell walls, is a strong
agonist of TLR4 on the surface of intestinal epithelial cells,
increasing intestinal permeability (Guo et al., 2013). Additionally,
surgical trauma and oxidative stress caused by surgery/anesthesia
can induce the release of proinflammatory factors such as IL-1β,
IL-6, and TNF-α (Wakabayashi et al., 2014). Proinflammatory
cytokines can damage the integrity of the BBB and cross the
BBB via specific surface receptors and transporters on BBB
endothelial cells, eventually contributing to microglial activation
and neuroinflammation in the brain. The gut microbiota can
synthesize and release neurotransmitters such as 5-HT, GABA,
and dopamine. Accumulating evidence indicates that delirium
results from neurotransmitter system dysfunction (Li et al., 2012).
There were significantly increased concentrations of dopamine
and 5-HT metabolites in the CSF, hippocampus, and basolateral
amygdala of rats with POD. After treatment with the selective
5-HT1A antagonist WAY-100635, the rats showed a partial
reversal of the POD symptoms. This may be attributable to the
inhibition of PI3K/Akt/mTOR activation in the hippocampus
and basolateral amygdala by the treatment, thus hampering
NLRP3-mediated release of IL-1β into the CSF (Qiu et al., 2016).
GABA subtype A (GABAA) receptors are important targets
for most anesthetics. The α5GABAA receptor of non-vertebral
cells in the hippocampus was shown to be activated by the
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TABLE 1 | Characteristics of included studies on the relationship between gut microbiota and PND.

Studys Country Animal Surgery Intervention Associations found

Wen et al.,
2020

China 210 SPF male C57BL/6J
mice 90 young (age,
6 weeks; body weight,
25 ± 2 g) and 120 aged
(age, 18 months; body
weight, 44 ± 2 g)

Splenectomy surgery Lactobacillus mix, oral gavage,
0.2 mL twice a day for 1 month

Lactobacillus and NaB
protected the postoperative
cognitive functions of the aged
and gut dysbiosis mice

Liufu et al.,
2020

United States 9 or 18 months old female
mice

Laparotomy Lactobacillus salivarius, once
per day for 10 days before
surgery. Probiotics once per
day for 20 days before surgery

Microbiota dysbiosis contribute
to postoperative delirium and
treatment with Lactobacillus or
a probiotic could mitigate
postoperative delirium

Jiang et al.,
2019

China 18-month-old C57BL/6
mice

Tibial fracture internal
fixation

VSL#3, oral gavage, once a
day for 17 days

Deficits in reference memory
induced by anesthesia/surgery
are mediated by intestinal
dysbacteriosis

Feng et al.,
2017

United States Male LCR or HCR rat Tibial fracture
intramedullary fixation

Preoperative exercise 5 days
per week for 6 weeks

Exercise can ameliorate the
decline of cognition
postoperatively by improving
diversity of the gut microbiome
in the LCR rats

Meng et al.,
2019

China Aged male F344xBN F1 Laparotomy surgery TMAO (120 mg/kg), 3 weeks
(2 weeks preoperatively, 1 week
postoperatively)

Elevated circulating TMAO may
contribute to exaggerations of
neuroinflammation and
cognitive decline in aged rats
following surgery

Yang et al.,
2018

China SPF Sprague-Dawley male
rats (8 months old)

Abdominal surgery with
laparotomy combined
with mesenteric
ischemia-reperfusion

B-GOS solution, 21 days
(18 days preoperatively, 3 days
postoperatively)

B-GOS has a beneficial effect
on regulating
neuroinflammatory and
cognitive impairment and was
associated with gut microbiota

Zhan et al.,
2019

China 18-month-old male
C57BL/6J mice (28–32 g)

The intramedullary
fixation for tibial fracture
surgery

Not mentioned Alterations in the composition
of gut microbiota are probably
involved in the pathogenesis of
POCD in aged mice

Zhang et al.,
2019

China 8-week-old C57BL/6J male
mice (25 g)

Laparotomy Transplant fecal bacteria into
antibiotics–induced
pseudo–germ–free mice

Abnormal gut microbiota
composition after abdominal
surgery may contribute to the
development of POD.

Liang et al.,
2018

China 6–8-week-old CD-1 male
mice

Exploratory laparotomy 10 mg cefazolin in 0.1 m,
intraperitoneally injected 30 min
before surgery, once every day
for 5 days

Cefazolin can attenuate
surgery-induced postoperative
memory and learning
impairment by affecting gut
microbiome in mice

Xu et al., 2021 China Adult (8–10 weeks old)
male C57BL/6J mice

Partial hepatectomy SCFA mixture orally for 4 weeks Pretreatment with SCFAs
attenuated cognitive
impairment induced by surgical
trauma and anesthesia

Yu et al., 2019 China 10-week-old SD rats
weighing 280–300 g

Ischemia/reperfusion of
the left coronary artery

Probiotic once a day, gavage
for 2 weeks until the day of
surgery

Probiotics may attenuate
cognitive impairment caused
dysbiosis of the gut flora

Fonken et al.,
2018

United States Adult (3 months) and aged
(24 months) male F344XBN
F1 rats

Laparotomy surgery Subcutaneous injections of
Mycobacterium vaccae, one
injection per week for 3 weeks

Mycobacterium vaccae
mitigate the neuroinflammatory
and cognitive impairments
induced by surgery

anesthetic etomidate, which was associated with the anesthesia-
induced amnestic effect and memory decline (Cheng et al., 2006;
Zurek et al., 2014). Moreover, in rats, the GABAA receptor is
critical for regulating cognition, including influencing spatial
learning by activating the protein kinase A signaling pathway

(Cheng et al., 2006; Zurek et al., 2014). After anesthesia/surgery,
there has been reported to be an increased proportion of E. coli
in the gut. E. coli, Bacillus subtilis, and Salmonella in the gut can
synthesize Aβ protein, which disrupts the host’s defense system
by enhancing pathogenic microorganism adhesion and biofilm
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FIGURE 2 | Possible role of gut microbiota in perioperative neurocognitive disorders (PND).

development (Friedland and Chapman, 2017). Intestinal Aβ can
enter the circulation via a damaged intestinal barrier, thereby
triggering cross-reactive immune responses. This excessively
activates inflammatory signaling and causes Aβ deposition in
the brain. Aβ deposition can interfere with the N-methyl-D-
aspartate (NMDA) receptor mRNA expression in hippocampal
neurons and reduce synaptic plasticity, eventually leading to
cognitive impairment (Parihar and Brewer, 2010; Newcombe
et al., 2018). In this regard, perioperative intestinal dysbiosis
can impair neurotransmitter and neuromodulator synthesis and
secretion, causing cognitive dysfunction via the gut-brain axis.

Prevention and Treatment of
Perioperative Neurocognitive Disorders
From the Perspective of Gut Microbiota
Perioperative neurocognitive disorders is directly related to
prognosis in surgical patients. Therefore, the treatment and
prevention of PND are of great significance. Currently, a
variety of agents are used to improve the cognitive function
of patients with cognitive impairment, including vitamins,
synthetic GABA derivatives (piracetam), ergot alkaloids
(dihydroergotamine alkaloids), calcium antagonists (nimodipine),
cholinesterase inhibitors (donepezil), glutamate receptor
antagonists (memantine), and neurotrophic factors (nerve growth
factors), but the effects of these agents still need to be confirmed
(Whitaker et al., 2002).

Prevention is the best approach for dealing with POCD.
Early identification and management of potential perioperative
risk factors play an important role in the prevention of POCD.

Prolonged preoperative fasting can not only cause gut dysbiosis,
but it can also increase the stress response and worsen catabolism,
thereby increasing the risk of cognitive impairment (Kotekar
et al., 2018; Yang et al., 2019). Hence, the current guidelines
recommend shortening the fasting time and carbohydrate pre-
loading, which reduces neuroendocrine stress, catabolism, and
insulin resistance, and improves patient outcomes (Batchelor
et al., 2019). Emerging evidence indicates that the use of
antibiotics alone may induce cognitive dysfunction via gut
dysbiosis in mice without surgery. However, a study by Liang
et al., found that perioperative use of cefazolin could attenuate
surgery-induced postoperative memory and learning impairment
in mice. This may be related to the direct anti-inflammatory
effect of cefazolin (Liang et al., 2018). Besides, Feng et al.
(2017) discovered that although the low capacity runner (LCR)
rats exhibited cognitive decline following surgery, preoperative
exercise improved both the diversity of gut microbiota and
cognitive function. Meanwhile, Lai et al. (2021b) found that
low-intensity exercise stabilized gut microbiota and reduced the
production of valeric acid (a product of gut microbiota harmful
to learning and memory), thereby reducing learning and memory
impairment in aged mice undergoing surgery. A large amount
of clinical evidence indicates that moderate physical activity and
social participation can ameliorate cognitive dysfunction (Heyn
et al., 2004). Hypothermia can contribute to changes in the
composition of the gut microbiota. Perioperative hypothermia
increases the risk of infections, delays wound healing, and
increases the risk of POCD (Salazar et al., 2011; Madrid et al.,
2016). Therefore, temperature monitoring and heating devices
should be used to maintain normal body temperature.
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Additionally, maintaining the appropriate depth of anesthesia
and cerebral oxygenation can reduce the risk of developing
POCD (Kotekar et al., 2018). Anesthesia approaches and
anesthetic types are also closely related to the occurrence of
POCD, and recent studies have shown that they can alter the
gut microbiota composition. Regional anesthesia is associated
with a lower incidence of POCD than general anesthesia.
Moreover, the incidence of POCD after major surgery was
higher in patients who received inhalational anesthesia than
those maintained with intravenous propofol, while continuous
intravenous dexmedetomidine infusion reduced the incidence of
POCD (Carr et al., 2018). Therefore, to prevent POCD, regional
anesthesia should be considered as an alternative to general
anesthesia when appropriate. Furthermore, inhalation anesthesia
should be avoided as far as possible and dexmedetomidine is
recommended for conscious sedation and as an adjunct for
anesthesia. In addition, the use of multimodal analgesia may
reduce the incidence of POCD, as the gut microbiota is involved
in the regulation of pain, and pain can in turn lead to gut
dysbiosis, and pain is also closely linked to POCD (Wang et al.,
2007; Guo et al., 2019).

Due to the close relationship between gut microbiota and
cognition, several studies conducted to develop agents for
cognitive-related diseases have focused on the gut microbiota.
The main goal is to restore the abundance and diversity
of the gut microbiota. Pretreatment of aged mice with
mixed probiotics (VSL#3) or a combination of antibiotics
to eliminate the gut microbiota mitigated anesthesia/surgery-
induced impairment in reference memory, which was related
to alterations in the abundance of 37 bacterial genera (18
families) in the gut (Jiang et al., 2019). Similarly, treatment
of mice undergoing anesthesia/surgery with Lactobacillus or
other probiotics ameliorated anesthesia/surgery-induced changes
such as age-dependent POD-like signs, dysbiosis, and synaptic
loss, mitochondrial dysfunction, and increased IL-6 in the
brain (Liufu et al., 2020). Furthermore, fecal microbiota
transplantation (FMT) is a recently proposed treatment for gut
dysbiosis. It involves transplanting an ideal donor’s microbiota
to supplement or replace the recipient’s gut microbiota. Sun J.
et al. (2019) recently reported that FMT improved cognitive
impairment in an APPswe/PS1dE9 transgenic mouse model
of AD, accompanied by reduced Aβ deposition in the brain
and decreased phosphorylation of tau protein. However, this

conclusion needs to be further explored and verified in
animal models of PND.

CONCLUSION AND PROSPECT

Emerging evidence demonstrates that the gut microbiota is
involved in the pathophysiology of PND by regulating the
gut-brain axis. Various perioperative factors may affect the
diversity and composition of the gut microbiota, causing an
imbalance. The interactions between the gut microbiota and the
brain are mainly realized through the intestinal mucosal barrier
and BBB, immune system, HPA axis, metabolic system, and
vagus nerve. Gut dysbiosis damages the intestinal epithelium,
resulting in mild chronic inflammation of the intestine and
elevated intestinal permeability. Toxic substances can then leak
into the circulation, which leads to systemic inflammation
and oxidative stress. Systemic inflammation triggers CNS
inflammation via the BBB. The CNS inflammation leads
to excessive activation of hippocampal microglia, decreased
hippocampal synaptic plasticity, and increased hippocampal
oxidative stress, neuronal apoptosis, mitochondrial dysfunction,
and Aβ deposition (Figure 2). There is little basic research on
the gut microbiota and perioperative cognition, and most of
the studies lack in-depth exploration. Therefore, mechanistic
studies should be conducted to identify specific microorganisms
and/or signaling pathways that affect perioperative cognition to
identify targets that could be used to develop treatments for
PND. Moreover, there are few clinical studies on PND and
gut microbiota, and we should be cautious about extrapolating
the results of animal studies to the clinic. So, more clinical
studies should also be carried out to provide clinical evidence.
Furthermore, the current PND prevention and treatment
methods related to the gut microbiota are not well developed, so
further exploration of these methods is needed.
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