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ABSTRACT

Adenovirus VA RNAs are short non-coding tran-
scripts that assist in maintaining viral protein
expression in infected cells. Six sets of mismatch
and compensatory base pair mutants of VA RNAI

were examined by gel mobility and RNA UV melting
to assess the contribution of each structural domain
to its overall structure and stability. Each domain of
VA RNAI was first assigned to one of two apparent
unfolding transitions in the wild-type melting profile.
The Terminal Stem and Central Domain unfold in a
single cooperative apparent transition with an
apparent Tm of �608C. In contrast, the Apical Stem
unfolds independently and with much higher appar-
ent Tm of �838C. Remarkably, this domain appears
to behave as an almost entirely autonomous unit
within the RNA, mirroring the functional division
within the RNA between PKR binding and inhibition.
The effects of mismatch and compensatory muta-
tions at five of the six sites on the RNA melting
profile are consistent with proposed base pairing
and provide further validation of the current sec-
ondary structure model. Mutations in the Central
Domain were tested in PKR inhibition assays and a
component of the VA RNAI Central Domain structure
essential for PKR inhibitory activity was identified.

INTRODUCTION

Adenoviruses devote a significant portion of their genome
to ‘immune evasion’ genes that allow them to maintain
persistent infections (1). Among these are the genes
encoding the ‘Virus-associated’ (VA) RNAs, short non-
coding RNA polymerase III transcripts that accumulate
to extremely high levels in late stages of infection (2,3). All
adenoviruses encode at least one such RNA and

sometimes two, named VA RNAI and VA RNAII,
respectively. Where two are produced, VA RNAI is the
most active species and accumulates to higher levels. This
may reflect a level of redundancy or it is possible that
other undefined roles of VA RNAII may also exist (4). The
best characterized role of VA RNAI is to inhibit the
double stranded RNA-activated protein kinase PKR that
would otherwise phosphorylate the eukaryotic initiation
factor 2 (eIF2) to halt protein synthesis in the infected cell
(3,5–8).
VA RNAI sequences from different adenovirus sero-

types vary considerably (9), but each can be drawn in a
similar extended secondary structure containing three
major domains (10,11): a Terminal Stem (including the
paired 50- and 30-ends), a Central Domain and an Apical
Stem (Figure 1). Specific functions have been delineated
for each domain. The Terminal Stem contains internal
promoter sequences, may fulfil a role in protecting the
RNA against exonuclease degradation (9), and has been
implicated in suppression of RNAi mechanisms (12).
The Apical Stem is the primary site of interaction for the
two dsRNA binding domain (dsRBD) motifs of PKR
(13–17) while the Central Domain contributes to PKR
binding and is responsible for its inhibitory activity
(10,13–15,18–20).
Initial secondary structure models for VA RNAI

(10,11,21) were refined by extensive mutagenesis and
structure probing studies (14,22,23) and by comparative
sequence analysis (4,9). The most recently proposed
secondary structure (Figure 1) incorporates the pairing
of two highly conserved tetranucleotides (GGGU/ACCC,
nucleotides 37–40/119–122) within the Central Domain
(9,14,20). Mutation of either strand reduced RNA activity
significantly and although compensatory changes partially
restored function, PKR inhibition did not reach wild-type
levels (20). Other investigations into VA RNAI structure
by mutagenesis have typically used either large deletions
or alterations of the RNA sequence (10,14,18,22). From
these it was broadly concluded that the length and
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position of the Apical Stem are essential for VA RNAI

function but the precise sequence is less important (22).
However, one study using a series of point mutations
within the Central Domain showed that approximately
40% of the changes reduced RNA function to some extent
suggesting a degree of sequence specificity (24).
While considerable insight into VA RNAI structure and

function has been gleaned from this large body of work, it
is clear that alternative approaches are required for further
understanding. Adenovirus VA RNAs are highly G/C
rich (�65% for Adenovirus type 2; Figure 1) and have
high thermal stability. We designed a strategy to exploit
these properties to probe the RNA stability and structure

of Adenovirus type 2 (Ad2) VA RNAI using site-directed
mutagenesis and UV melting analysis. Mismatch and
compensatory mutations could be introduced in contin-
uous helical regions without resulting in complete
destabilisation of the RNA structure and changes in UV
melting profiles could be readily detected upon switching
tandem G–C base pairs to A–U. The sites of modification
were distributed throughout the VA RNAI structure in
order to assess the contribution of each domain to the
global RNA architecture and stability. These studies
support the current VA RNAI secondary structure
model (Figure 1) but uncover a remarkable division
between the two functional domains of VA RNAI,
responsible for binding or inhibition of PKR, which
appear to exist independently within the RNA structure.

MATERIALS AND METHODS

Mutagenesis and preparation of VARNAI

in vitro transcripts

A plasmid for in vitro transcription of Ad2 VA RNAI with
a 30-hepatitis delta virus (HDV) ribozyme was created as
described previously (26). Mutant sequences (Table 1 and
Figure 1) were generated in this plasmid using the
QuikChange site-directed mutagenesis kit (Stratagene)
and confirmed by automated DNA sequencing. Templates
for in vitro transcription reactions with T7 RNA poly-
merase (T7 RNAP) were prepared by DraI digestion of
CsCl gradient purified plasmid DNA. Transcription
reactions (0.5–1.0ml) were performed using 100 mg/ml
template DNA under optimal conditions for VA RNAI

(27). RNA transcripts were purified by preparative poly-
acrylamide gel electrophoresis with gels containing 50%
urea and 8% acrylamide and eluted from excised bands
using a Biotrap device (Schleicher and Schuell). The
integrity of the recovered RNA was assessed by urea
denaturing PAGE. This process uncovered the electro-
phoretic mobility differences for one set of mutants
(Figure 2).

UVmelting analysis of wild-type and mutant VARNAI

Typically, samples contained �20–25 mg RNA in a buffer
solution containing 10mM MOPS buffer pH 7.0 and
50mM KCl. UV melting curves were measured on a
Varian Cary 400 UV/Vis spectrophotometer, equipped
with a 6-cell multichanger and in-sample temperature
probe. Up to five melting curves were collected in a single
run with a heating rate of 0.58C/min. First derivatives
(‘melting profiles’) of the melting curves (Figure 3) were
calculated using a Savitsky–Golay algorithm as imple-
mented in the program ‘OD Deriv’ (D.E. Draper, Johns
Hopkins University; http://www.jhu.edu/�chem/draper/).
The melting profile of wild-type VA RNAI was essentially
unaffected by choice of monovalent salt. Higher concen-
trations of salt or addition of Mg2+ produced a general
stabilization of both peaks in the melting profile with no
evidence of specific stabilization of one component of the
structure. However, under conditions of higher ionic
strength than those used here, the second apparent

Figure 1. Adenovirus type 2 (Ad2) VA RNAI secondary structure and
compensatory base pair mutations. Secondary structure model pro-
posed following identification of two highly conserved complementary
tetranucleotides (shown in outline typeface) and redrawing the Central
Domain to base pair these sequences (9,14,20). Compensatory base pair
modifications were made at six sites (1–6) distributed through the
Terminal Stem, Central Domain and Apical Stem (see Table 1).
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transition rapidly increased in stability to beyond the
measurable range (>988C; data not shown). To simplify
comparison of the relative hypochromicities at 260 and
280 nm for one set of mutants (site 2; Figure 5A and inset),
their melting profiles were normalized at both wavelengths
to the maximum value of the peak centred on 608C. This
corresponds to the portion of the Terminal Stem/Central
Domain structure unaffected by the mutation and is
identical in Tm and hypochromicity for each mutant at the
same wavelength. The large increase in relative hypochro-
micity at 260 compared to 280 nm for the compensatory
mutant AU2 is indicative of base pairing between these
nucleotides.

PKR autophosphorylation inhibition assays

PKR was expressed in a non-phosphorylated form in
E. coli and purified as described previously (28). PKR was
dialysed into 2� reaction buffer (100mM Tris pH 7.8,
100mM KCl, 10% glycerol, 5mM DTT) and purified VA
RNAI diluted into the same buffer to prepare 5� stocks
for each concentration tested. PKR (�0.1 mg) was pre-
incubated with each VA RNAI concentration at room
temperature for 15min. An equal volume of the activating
solution (0.02 mg/ml poly(I).poly(C) activator RNA,

0.2mCi/ml 32P ATP (6000Ci/mmole; 10mCi/ml in
buffered solution; MP Biomedicals), 40 mM ATP,
4 mM MgCl2) was added and the mixture incubated at
room temperature for a further 10min. The reaction was
stopped by the addition of 0.5 volume of 3� SDS PAGE
loading dye. Samples were heated at 908C for 2min and
fractionated on a 7.5% acrylamide SDS PAGE gel. Gels
were fixed, dried and exposed to an imaging plate
(Molecular Dynamics) for 30min and viewed using a

Figure 2. Denaturing polyacrylamide gel mobility assay. Wild-type and
mutant VA RNAIs were resolved on an 8% polyacrylamide gel
containing 50% urea. Size markers (M) correspond to RNAs of 170
and 220 nt.

Table 1. Mismatch and compensatory base pair mutations in VA RNAI

Modification
Positiona

Nucleotide
numbering

Wild-type
sequence

Mutated sequencesb,c

Mismatch Compensatory

aCorrespond to boxed sites 1–6 on the VA RNAI secondary structure (Figure 1).
bMutated nucleotides are shown in outline typeface.
cRNA names in parenthesis are those used in the main text and Figures 2, 4 and 5 to denote the RNA
containing the shown mutations.
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Typhoon 8600 variable mode phosphorimager.
Quantitation of autophosphorylation was performed
using ImageJ software.

RESULTS

Site-directed mutagenesis was used to incorporate com-
pensatory base pair mutations into each structural domain
of VA RNAI, at six sites in total (Figure 1 and Table 1).
Each modification involved the exchange of two
Watson–Crick G–C for A–U base pairs within a
continuous helical segment of secondary structure of not
less than four base pairs. In three cases both flanking base
pairs were G–C (sites 4, 5 and 6), and for the others by
one G–C and one A–U base pair (sites 1, 2 and 3). The
modifications were located to probe each of the helical
regions of VA RNAI, specifically: the lower (1) and upper
(2) regions of the Terminal Stem, the Central Domain
(3 and 4), and the lower (5) and upper (6) regions of the
Apical Stem (Figure 1). Seven further mutations that
introduced A � C and G � Umismatched pairs at four sites
were also created (Table 1).

Denaturing PAGE analysis of wild-type and
mutant VARNAI

VA RNAI exhibits an aberrant mobility on denaturing
polyacrylamide gels, migrating with an apparent size of
�220 nt (14). None of the compensatory or mismatch
modifications altered the length of the RNA and the effect
of each on the global RNA structure was expected to be
small, particularly for the compensatory base pair
changes. No significant effect on the VA RNAI gel
mobility was therefore anticipated and this was found to
be the case for all mutants generated except those at site 5,

at the base of the Apical Stem. Here, each mutation
dramatically altered the RNA’s electrophoresis mobility
(see Figure 2; compare wild-type VA RNAI in Lane 1 with
Lanes 6, 13 and 14). The effect is greatest for the 50-strand
partial mutant (AU5L; Lane 13), which migrates as
expected for an RNA of 155 nucleotides. However, the
reduction in gel retardation appears largely independent
of which strand is altered and is substantial even for the
compensatory base-paired mutant (Lane 6).

UVmelting analysis of wild-type and base pair
compensatory mutants of VARNAI

UV melting analysis can be used in simple cases to derive a
range of thermodynamic parameters for nucleic acids. For
large structured RNAs, however, unfolding typically
occurs in multiple overlapping transitions and the result-
ing unfolding ‘profiles’ are often complex (25). The peaks
in the melting profiles presented here are therefore referred
to as ‘apparent’ transitions, and the analysis of thermo-
dynamics of RNA unfolding is limited to an estimation of
the apparent Tm associated with each apparent transition
in the profile.

Wild-type Ad2 VA RNAI unfolds with two major
apparent transitions, with Tm values of approximately
608C and 838C (Figure 3) under the solution conditions
used. All UV melting profiles were collected under
identical conditions of 10mM MOPS buffer at neutral
pH with 50mM KCl (see ‘Methods’ section), which was
found to be optimal for measuring the apparent transition
Tm values. KCl could be substituted for other monovalent
salts with little effect. However, addition of higher
concentrations of salt or addition of Mg2+ dramatically
increased both apparent Tms but with little effect on the
shape of the melting profile for wild-type VA RNAI (data
not shown). Addition of as little as 0.5mM MgCl2
increased the Tm of the first apparent transition by 128C
to �728C and increased the Tm of the second apparent
transition beyond the measurable range (>988C). The
stabilising effect of Mg2+ on the first apparent transition
reached a maximum at �5mM with an apparent Tm of
818C (data not shown).

The compensatory base pair changes at each site in VA
RNAI were first used to assign each structural domain of
VA RNAI to these apparent transitions (Figure 4).
Compensatory changes in the Terminal Stem (AU1 and
AU2 RNAs) and Central Domain (AU3 and AU4 RNAs)
affect only the first apparent transition. In contrast, the
Apical Stem compensatory changes (AU5 and AU6
RNAs) affect only the second, higher temperature
apparent transition. These mutations clearly assign
unfolding of the Terminal Stem and Central Domain to
the first, and the unfolding of the Apical Stem to the
second apparent transition. For two of the compensatory
changes, AU1 and AU6 RNAs, the shape of the melting
profile was unaltered but a shift in hypochromicity
(increased at 260 nm compared to 280 nm) and reduction
in apparent Tm (decreases of approximately 48C and 88C,
respectively) were observed. These are the changes that
might be predicted upon exchange of G–C for A–U base
pairs within an otherwise unaltered RNA structure

Figure 3. UV melting analysis of wild-type Adenovirus type 2 (Ad2)
VA RNAI. Normalized UV melting curves (grey) collected at 260 nm
(solid line) and 280 nm (dashed line) shown scaled to the 280 nm data.
The corresponding ‘melting profiles’, the first derivative of the melting
curve, at each wavelength are shown in black.
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(see ‘Discussion’ section). Compensatory mutations at the
remaining four sites, AU2-5 RNAs, produce more
complex effects on the melting profile. This indicates
that each apparent transition is composed of at least two
or more cooperative unfolding transitions in the wild-type
RNA and that these transitions can be uncoupled by
changes to the stability of specific regions of the RNA.
These were investigated further using partial, mismatch
mutants at sites 2–5 (Table 1). In all these additional
mutant RNAs, the effect of each mutation remained
almost exclusively restricted to the same apparent transi-
tion as for the complete compensatory change.

Uncoupling of connected unfolding transitions using
mismatch mutations

All mutations at site 2 cause an uncoupling of unfolding
transitions within the first apparent transition with no
effect on the second transition (Figures 4 and 5A).
Mismatch mutations on either side of the helix that
introduce adjacent A � C and G � U base pairs, in AU2L
and AU2R RNAs (Table 1), both produce a shoulder on
the low temperature side of the first apparent transition.
The compensatory base pairing does not restore a wild-
type like profile as shown by the AU2 RNA. All three
RNAs exhibit an equal lowered hypochromicity in the
apparent transition that remains centred at �608C.
However, when the 260 nm and 280 nm data for each
RNA are normalized to the absorbance of the invariant
apparent transition at Tm �608C, it is clear that the
difference in hypochromicity at 260 nm versus 280 nm is
significantly greater in the compensatory base paired
RNA than either mismatch mutant (Figure 5A, inset),
consistent with base pairing of these nucleotides.
Mismatch and compensatory mutations at site 3 also

affect only the first apparent transition (Figure 5B). The
50-strand was modified to create tandem destabilising
A � C mismatches (AA3 RNA; Table 1) and, accordingly,
this was expected to have the most deleterious effect of all
changes at site 3. However, the changes in the melting
profile for AA3 RNA compared to wild-type VA RNAI

are relatively modest. A shoulder is observed on the low
temperature side of the 608C apparent transition, which is
still present in the melting profile with only a small
reduction in hypochromicity. The melting profile is most
similar to that of AU2L RNA, the mismatch mutation on
the opposite strand about half a helical turn below. The
melting profile for the compensatory base pair mutant has
a broadened shoulder with reduced apparent Tm. The
most dramatic effect at site 3, however, is caused by
mutation of the 30-strand to create tandem G � U
mismatches at this site (UU3 RNA). Hypochromicity of
Tm �608C peak is reduced further as more apparent
unfolding transition(s) are uncoupled. There are now at
least three apparent transitions visible: one broad transi-
tion at low temperature, a sharper shoulder at �538C, and
the same apparent transition, but with further reduced
hypochromicity, centred at �608C. Interpretation of the
effects of mutations at this site may be complicated by
possible involvement of these nucleotides in a higher order
structure of the Central Domain (see ‘Discussion’ section).
The compensatory mutation at site 4 (AU4 RNA) also

produces a new lower temperature apparent transition
that appears as a shoulder on the apparent transition at
Tm �608C (Figure 5C). As before, this is still present in the
melting profile but with reduced hypochromicity, while
the high temperature apparent transition is completely
unaffected. One additional mutation was made at site 4
that introduces tandem A � C mismatches (AA4 RNA;
Table 1). The shoulder observed for AU4 RNA is no
longer present in AA4 RNA although the first apparent
transition still exhibits significantly lower hypochromicity
than wild-type (Figure 5C) indicating that this RNA lacks
some element(s) of the wild-type RNA fold, potentially

Figure 4. UV melting profiles for wild-type VA RNAI and compensa-
tory base pair mutants. (A) Melting profiles collected at 280 nm for
wild-type (black) and compensatory base pair mutant VA RNAIs: AU1
(red), AU2 (orange), AU3 (light green), AU4 (dark green), AU5
(cyan), and AU6 (blue). (B) Melting profiles collected at 260 nm
coloured as in (A). Note that the hypochromicity is significantly greater
at 280 nm than 260 nm; however, compensatory base pair changes from
G–C to A–U may increase the relative hypochromicity at 260 nm
for the apparent transitions affected. Mutations in the Terminal Stem
and Central Domain affect only the first apparent transition
(Tm �608C) while mutations in the Apical Stem affect only the
second (Tm �838C).
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the Central Domain tertiary structure. To assess the
importance of this lost structure for VA RNAI activity,
PKR kinase inhibition assays were performed with wild-
type, AU4 and AA4 RNAs (see below).
Compensatory mutations at sites 5 and 6 affected only

the second apparent unfolding transition with a more
dramatic effect at site 5 (Figure 4). Mismatch mutations
creating adjacent A � C and G � U mismatches at this
position (AU5L and AU5R) affect the high temperature
transition similarly. Although the RNAs appear to retain
their structure, the apparent transition is uncoupled into
at least two separate apparent transitions. All three RNAs
with mutations at site 5 retain some structure that unfolds
in a broad transition centred around 838C. AU5 and
AU5R RNAs have an apparent transition in their melting
profiles at �708C that is most pronounced in the

compensatory mutant consistent with restoration of base
pairing. For the two mismatch mutants, the melting
profiles suggest there may be some additional effect on the
first apparent transition that corresponds to Terminal
Stem and Central Domain unfolding. A slight shoulder is
observed on the low temperature side of the transition and
the hypochromicity for the first transition is significantly
reduced for one single strand mutant, AU5R RNA. It is
likely that the first observation corresponds to an
uncoupled unfolding transition of the Apical Stem that
is destabilised to such an extent that it unfolds in a broad
transition overlapping with the first apparent transition at
608C. The more significant reduction in hypochromicity in
the first apparent transition for AU5R RNA, suggests that
the stability of the base of the Apical Stem may have
some, albeit limited, interaction with the Central Domain,

Figure 5. Uncoupling of apparent transitions in VA RNAI with mismatch and compensatory mutations at sites 2–5. Melting profiles for single strand
and partial mutations (denoted AA, UU or R/L, see Table 1), and compensatory mutations at (A) site 2, (B) site 3, (C) site 4 and (D) site 5. The
melting profile of wild-type VA RNAI at 280 nm is shown as a shadow in each plot for comparison. In (A), the inset plot shows the shoulder region
with the profiles at 260 nm and 280 nm normalized to the height of the apparent transition centred on 608C; this indicates a significant increase in
relative hypochromicity at 260 nm for the compensatory mutant (marked with double-headed arrow).
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presumably through stacking of bases at the interface of
the two domains. The largest effect of this mismatch
mutation in the UV melting analysis parallels its effect on
the gel mobility of VA RNAI (Figure 2).

Inhibition of PKR autophosphorylation by wild-type VA
RNAI and site 4 mutants

Finally, we wished to assess whether any observations
made in the UV melting analysis might provide further
insight into the structural determinants of VA RNAI

function. While several mutations caused significant
changes to the melting profile of VA RNAI, in only one
instance (at site 4) did this appear to indicate a partial loss
of structure. The effects of mutations at site 3 may be
complicated by potential involvement of RNA tertiary
structure (see Discussion). Mutations at sites outside the
Central Domain are unlikely to affect PKR inhibition as
the full structure appears to be retained, albeit destabilized
in one specific domain. Furthermore, other mutations we
have made that alter the bases making up sites 1, 2 and 6
but maintain base pairing and helical structure do not
affect PKR inhibitory activity significantly (not shown).

Comparison of the UV melting data for the compensa-
tory (AU4) and mismatch (AA4) mutants at site 4
suggested that AA4 RNA may lack a component of the
wild-type VA RNAI structure, visible as a low tempera-
ture shoulder on the first apparent transition in the profile.
To test whether this component of RNA structure might
be important for activity, mutants and wild-type VA
RNAI were tested in assays of PKR autophosphorylation
inhibition. AA4 RNA is a significantly poorer inhibitor of
PKR autophosphorylation compared to wild-type VA
RNAI and requires higher concentrations to reach
complete inhibition (Figure 6). The AU4 RNA compen-
satory mutant, in contrast, is as active as wild-type VA
RNAI.

DISCUSSION

In order to assign the secondary structure domains of
Adenovirus type 2 VA RNAI to one of the two apparent
transitions in the wild-type RNA melting profile, six sets
of tandem compensatory base pair changes were intro-
duced. Exchanging G–C for A–U base pairs might be
expected to have one or more of three major effects on the
RNA UV melting profile: (1) the relative hypochromicity
of the unfolding transition(s) associated with the modified
region should be altered, with a relative increase at
260 nm, compared to 280 nm; (2) the associated Tm(s) for
the transition(s) may decrease; (3) individual unfolding
transitions that are coupled as a single cooperative
unfolding event (i.e. apparent transition) in the wild-type
RNA may be uncoupled and become visible as distinct
peaks or shoulders. Each VA RNAI with compensatory
base pair modifications was analysed by UV melting and
all these effects were observed. The domains of VA RNAI

could be immediately assigned to one of the two apparent
unfolding transitions: the Terminal Stem and Central
Domain unfold as a single cooperative apparent transition
at �608C while the Apical Stem unfolds at higher

temperature with an apparent transition centred around
838C.
Most strikingly, this division of the domains is

maintained for all mutants examined suggesting that the
two halves of the RNA behave as independent structural
domains. In wild-type VA RNAI, the structure and
stability of the Terminal Stem and Central Domain are
tightly coupled and they unfold in a single cooperative
apparent transition. The Apical Stem in contrast appears
to be a highly stable and independently folded domain
within the global architecture of the RNA. This structural
division thus mirrors the functional division of VA RNAI,
with the Apical Stem as the primary site of binding for
PKR distinct from the Central Domain that inhibits the
activity of PKR.
VA RNAI migrates on denaturing gels with an apparent

size of �220 nt and this phenomenon has been used as a
simple assay for the structural integrity of mutant
sequences (14). The results presented here suggest some
caution may also be required in interpreting this
phenomenon as a proxy for global VA RNAI folding.
The analysis of compensatory base pair changes here has
confirmed that the structure at the base of the Apical Stem
as the source of this effect. The aberrant gel mobility is
almost certainly due to incomplete denaturation of this
extraordinarily stable RNA domain structure even under
the strongly denaturing conditions used. In support of
this, in UV melting studies in buffer containing 2–6M urea
the Apical Stem structure of wild-type VA RNAI retains
an apparent Tm of >708C (data not shown). Since even

Figure 6. PKR kinase activity inhibition assays with wild-type, AA4
and AU4 VA RNAIs. Levels of PKR autophosphorylation were
quantified after preincubation with various concentrations of each
inhibitor VA RNA (0–10mg/ml) and subsequent activation with
poly(I)–poly(C) dsRNA. The partial mutant AA4, that lacks an
unfolding transition (Figure 5C) that may correspond to Central
Domain tertiary structure, shows reduced inhibitory activity while the
compensatory mutant AU4 is as active as wild-type VA RNAI.
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compensatory mutations at the site analysed in the base of
the Apical Stem (site 5) do not recover the wild-type gel
mobility or apparent Tm, clearly both the sequence and
structure in this region are critical to its stability and
resistance to denaturation. The four nucleotides corre-
sponding to site 5 are almost completely conserved across
all VA RNAI and VA RNAII sequences from all
Adenovirus serotypes (9). While this may simply reflect
the evolutionary closeness of these sequences, there is
obvious sequence variation in other base-paired regions of
the VA RNAs suggesting that the conservation of these
base pairs and the unusual stability they impart could
arise from functional benefits to the virus. For example,
the extreme stability of the Apical Stem may make this
critical PKR-binding domain more resistant to unwinding
or degradation by cellular RNases that form part of the
host cell defences. It does not appear from the current
data, however, that the Apical Stem structure/stability
directly stabilises the Central Domain, as previously
proposed (22), since it appears to be an essentially
independent domain within the overall VA RNAI

structure.
Compensatory mutations in the outermost helical

regions of the RNA, AU1 in the Terminal Stem and
AU6 in the Apical Stem, produced the simplest changes in
the melting profiles: a reduction in Tm and shift in relative
hypochromicity at the two wavelengths measured but with
no other alteration in the shape of the profile. At the other
four sites of modification, more complex changes were
observed and these were investigated further by analysis of
several mismatch mutations (Table 1). Mutations at each
of these sites uncoupled the unfolding of different regions
within the Terminal Stem/Central Domain (sites 2, 3 and
4) or Apical Stem (site 5). The Terminal Stem apparent
transition is split into at least two apparent unfolding
transitions by all mutations at sites 2 and 3. A component
of the structure retains wild-type stability and still unfolds
in an apparent transition at the wild-type Tm (�608C) but
with reduced hypochromicity. New apparent transitions
are observed as lower temperature peaks or shoulders in
the profile of varying Tm and broadness. The stability
of the Central Domain appears to be dependent upon that
of the Terminal Stem as they unfold cooperatively in the
wild-type RNA and this is retained upon introducing
compensatory mutations in the lower Terminal Stem
(site 1). However, the reverse is not true; sequence changes
in the Central Domain that reduce its stability do not
necessarily affect the Terminal Stem structure/stability.
Mutations within in the Central Domain therefore appear
to uncouple unfolding of the Central Domain secondary
and tertiary structure from the Terminal Stem. A similar
dependency is observed in the Apical Stem where
alterations at the top of the stem (site 6) reduce the
stability of the entire stem, while those made at the base of
the stem uncouple unfolding transitions leaving some part
of the structure at the wild-type Tm.
For five of six sets of mutations the comparison of the

melting profiles for mismatch and compensatory muta-
tions shows changes consistent with base pairing of the
altered nucleotides. At the one exception (site 3), a series
of similar mutations were made in a previous study and

assessed in functional and structure probing assays (20).
Though direct evidence of base pairing was not observed
in the structure probing experiments, both the restoration
of partial inhibitory function and concerted changes in
adjacent nucleotides upon compensatory mutation indi-
cated pairing of these bases, possibly within a higher order
tertiary structure of the Central Domain. For all other
compensatory changes, an increase in relative hypochro-
micity at 260 nm or recovery of a transition in the melting
profile is observed for compensatory mutants. In an
alternative secondary structure model, proposed prior to
comparative sequence analysis (11) and used in the
interpretation of some mutational studies (10,24), the
nucleotides at sites 3 and 4 are not base paired (Figure S1).
While interpretation of the effects of mutations at site 3
remains unclear, the melting profiles show clear evidence
of base pairing at site 4. A component of the Central
Domain secondary or possibly tertiary structure that is
lost upon introduction of destabilising A � C mismatches
(AA4 RNA) is returned by the compensatory mutation
(AU4 RNA) and is visible as a low temperature shoulder
on the 608C apparent transition. The mismatch mutant
AA4 RNA lacking this structure was a less active inhibitor
of PKR, while the compensatory mutant showed wild-
type activity. Confirmation that these nucleotides are
paired provides further experimental validation of the
secondary structure proposed from sequence analysis
(Figure 1) and confirms that the ‘shoulder’ in the UV
melting profile corresponds to a critical element of VA
RNAI structure, potentially the Central Domain tertiary
structure. This opens the possibility of a focussed analysis
of point mutations within this domain and their effect on
this critical functional component of VA RNAI structure.
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