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Purpose. To investigate the changes of thickness in each layer, the morphology and density of inner neurons in rhesus monkeys’
retina at various growth stages, thus contribute useful data for further biological studies. Methods. .e thickness of nerve fiber
layer (NFL), the whole retina, inner plexiform layer (IPL), and outer plexiform layer (OPL) of rhesus monkeys at different ages
were observed with hematoxylin and eosin (H&E) staining. .e morphology and the density of inner neurons of rhesus monkey
retina were detected by immunofluorescence. Results. .e retina showed the well-known ten layers, the thickness of each retinal
layer in rhesus monkeys at various ages increased rapidly after infant, and the retina was the thickest in adulthood, but the retinal
thickness stop growing in senescent. Quantitative analysis showed that the maximum density of inner neurons was reached in
adolescent, and then, the density of inner neurons decreased in adults and senescent retinas. And some changes in themorphology
of rod bipolar cells have occurred in senescent. Conclusions. .e structure of retina in rhesus monkeys is relatively immature at
infant, and the inner retina of rhesus monkeys is mature in adolescent, while the thickness of each retinal layer was the most
developed in the adult group..ere was no significant change in senescence for the thickness of each retinal layer, but the number
of the neurons in our study has a decreasing trend and the morphological structure has changed.

1. Introduction

.e structural and functional complexity of retina makes it
vulnerable to alterations throughout the animal life. .e
morphology and function of retina may change along with
the age. Optical coherence tomography (OCT) has indicated
that nerve fibers, ganglion cells, and the inner plexiform
layers are thinner in diabetic retinopathy (DR) patients
[1–3]. Retinal thinning, ganglion cell layer (GCL) loss, and
changes in specific layers are also described in other neu-
rological disorders, including multiple sclerosis, schizo-
phrenia, and Parkinson’s disease (PD) [4–7]. Retinal
degenerative diseases in humans are incurable. .us, to

search for effective treatments, a number of animal models
have been developed in order to mimic different human
retinal diseases.

.e retina of rodent models has provided an invaluable
tool to study the morphology and function for more than 30
years. Among these animal models, they are mainly focused
upon secondary changes affecting inner retinal cells at
various times [8] or morphology of cells in the ganglion cell
layer [9]. In primate models, the emergence and differen-
tiation of the IPL were analyzed in the embryonic rhesus
monkey [10, 11]. Dacey has studied the morphology of
ganglion cells in the rhesus monkey [12], and quantitative
survey of bipolar and amacrine cell types in the inner nuclear

Hindawi
Journal of Ophthalmology
Volume 2019, Article ID 7089342, 7 pages
https://doi.org/10.1155/2019/7089342

mailto:chzhli75@163.com
http://orcid.org/0000-0002-9850-528X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7089342


layer in marmoset retina was reported [13]. Rhesus mon-
keys, closest to human in the genetic background, have been
used for developmental, physiological, and anatomical be-
havioral analysis of vision. However, the morphology of the
inner retina at various stages in primates during the post-
natal period was not well defined.

In this study, rhesus monkeys were selected as objects to
investigate the structure of rhesus monkey retinas of various
ages and provide a detail analysis of the changes occurring
during development. .is study aims at (1) investigating the
changes of each layer in the retina of rhesus monkeys at
various ages and (2) observing the morphology and survival
of inner retinal cells at various ages, e.g., RGCs and second-
order neurons in the retina of rhesus monkeys.

2. Materials and Methods

2.1. Subjects. In this study, 20 healthy rhesusmonkeys used for
this study were maintained by the National NHPs Research
Center of PriMed Shines Biotech Co., which is located in Ya’an,
Sichuan, Southwest China. .ese monkeys were divided into
four groups (n� 5 monkeys per group) according to age [14],
including infant group, adolescent group, adult group, and
senescent group. .e selections of sex were random in our
study, and food and water were provided ad libitum. All
subjects underwent standard ophthalmologic examinations
including refraction, orthoptic examination, IOP measure-
ment, and slit-lamp examination. Participants had no known
neurological disease, diabetes, or active cardiovascular disease.
Animal welfare was conducted under the regulation of the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals, issued by the Ministry of Science and
Technology of China [15]. All efforts were made to minimize
suffering and the number of animals used in the study. Fur-
thermore, these animals did not receive medical or immu-
nomodulatory treatments prior to the experiment (Table 1).

2.2. Histological Slide Preparation. All animals were deeply
anesthetized with 15mg/kg of ketamine and sacrificed, the
eyes were quickly enucleated and dissected, and the eye cups
were placed in formaldehyde-acetic acid-alcohol (FAA) for
24 hours. .e right eyes for H&E and the left eyes for
immunofluorescence were paraffin embedded, and serial
sections (5 μm) through the optic nerve head were processed
using a microtome (2035 Biocut Leica).

2.3. Immunofluorescence. .e samples are preincubated in
10% normal goat serum in PBS containing 1% bovine serum
albumin (BSA) and 0.3% Triton X-100 for one hour at room
temperature to block nonspecific binding activity. .en, the
samples were incubated overnight (4°C) with anti-NeuN
antibody (Abcom Plc, Cambridge, UK), anti-pkc-α anti-
body (Abcom Plc, Cambridge, UK), or anti-parvalbumin
antibody (Bioss, Beijing) to immunolabel RGCs, rod bipolar,
or amacrine, respectively. .en, the sections were incubated
with secondary Alexa Fluor 488 for 1.5 hours at room
temperature, and DAPI was used for nuclei staining. Sec-
tions were washed, mounted, and imaged by fluorescence

microscopy (Olympus BX43, Japan). PBS was treated as
negative control.

2.4. Retinal Morphometry Observation and Image Analysis.
Sections of the retina tissue stained by H&E and immu-
nofluorescence were analyzed, and the images were captured
by brightfieldmicroscopy (Olympus BX51, Japan) to observe
retinal structures. .e sections were analyzed at the superior
nasal side of the central retina defined as the region one-
third along the length of the retina starting from the optic
nerve outwards to the periphery for further morphometric
analysis (Figure 1). Morphometric analysis was utilized to
quantify the changes, including the thickness of the retinal
nerve fiber layer (NFL), the whole retina that defined as the
total thickness of pigment epithelium and retinal sensory
layer, and the density and size of RGCs. Briefly, thickness
was measured using the Jiangsu Jetta 801 morphological
image analysis system (Jieda, Nanjing, China), and the
density of RGCs was counted from the sections. For each
animal, cells were counted within the upper central regions
from three sections.

2.5. Statistical Analysis. Statistical analysis was presented as
mean± standard deviation (SD) using IBM SPSS Statistics
(version 20.0; IBM Crop.; Armonk, New York, NY). Statistical
analysis was performed using one-way ANOVA. P value≤ 0.05
was considered statistically significant (∗P< 0.05, ∗∗P< 0.01).

3. Results

.e effects of age on retinal morphology were examined by
H&E staining in rhesus monkeys (Figure 2(a)). .e retina
showed the well-known ten layers, as described earlier in
human, and the retina of the rhesus monkey forms three
distinct cell body layers, separated by two plexiform layers
[16]. .e outer plexiform layer (OPL) between inner nuclear
layer (INL) and outer nuclear layer (ONL) was gradually
broadened. .e IPL and OPL showed obvious reticular
structure, and the nuclei in the INL and ONL become larger
and denser at the adolescent stage, as compared with that in
the infant group. Table 2 shows the thickness of each retinal
layer in rhesus monkeys at various ages. .e thickness of
NFL (Figure 2(c)) in the central retinal region revealed that
there were no differences between infant and adolescent
subjects. However, the thickness of NFL in adults was sig-
nificantly (P< 0.01) thicker than that in the adolescent
group. No statistical difference in the thickness of NFL was
found between adults and the senescent. .e above results
suggested that the thickness of NFL changed obviously from
adolescent to adulthood and showed that it was thickest in

Table 1: .e detailed information of experimental animals (n� 5).

Group Ages (years) Weight (kg)
Infant 1.26± 0.11 1.19± 0.15
Adolescent 3.82± 0.42 3.40± 0.31
Adult 14.16± 0.96 8.11± 1.03
Senescent 20.6± 0.69 9.70± 1.63
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the adult group, but we did not find a significant change of
the thickness of NFL in the senescent compared with adults.
.e total retinal thickness (Figure 2(b)) revealed that there
were no differences between infant group and adolescent
group. However, there was a significant (P< 0.01) increase
in the adult group, compared with the adolescent group..e
mean thickness of the whole retina in the adult group had no
significant difference compared with aged rhesus monkeys.
.e thickness of IPL (Figure 2(d)) and OPL (Figure 2(e)) in
each group showed almost the same trend as the thickness of
NFL and the whole retina. .e results suggested that the
thickness of each retinal layer in rhesus monkeys at various
ages increased rapidly after adolescent and approached the
thickest in adulthood, but stopped growing after adults.

.e RGCs were labeling with NeuN antibody (Figure 3),
and the morphology of RGCs in the rhesus monkey was
dominated by midget and parasol cells..e results suggested
that the mean density of RGCs tended to decrease (P< 0.01)
from infant to adolescent (Figure 4(a)). Similarly, the mean
density of RGCs in the retina of adult rhesus monkeys is
significantly (P< 0.01) decreased when compared with the
adolescent group. In addition, it is also found that the
density of RGCs in the retina of senescent rhesus monkeys is
significantly (P< 0.01) lower when compared with adoles-
cent rhesus monkeys. However, no significance was found
between adult and senescent rhesus monkeys.

.e morphological structure of rod bipolar cells [14],
amacrine cells, and horizontal cells was displayed by im-
munofluorescence staining with anti-PKC-α antibody, anti-
parvalbumin antibody, and anti-calbindin antibody, re-
spectively, in the INL [17] (Figure 3). .e three proteins
expressed predominately in the INL and normally distrib-
uted over the retinal surface with a typical center-to-
periphery gradient. Rod bipolar cells in the infant, adoles-
cent, and adult groups were arranged neatly and exhibited
the well-knownmorphology with elliptical cell bodies, bushy
and a long axon and chandelier-like dendritic arborization
as described before [8]. However, in the senescent group,
neurite regeneration sprouted from the top of rod bipolar
cell indicated that the function of the second-order rod

bipolar cells transfer signal was affected. .e density of
amacrine in the adolescent group was the largest compared
with other groups and formed a clear horizontal line. .e
dendrites of horizontal cells developed better in the ado-
lescent group compared with other groups. Quantitative
analysis showed that the maximum density of parvalbumin-
positive amacrine cells was reached significantly (P< 0.01) at
adolescent in the INL; then, the density of all amacrine cells
decreased significantly in adult and senescent retains
(Figure 4(d)). Findings were the same in the rod bipolar cells
stained by PKC-α (Figure 4(c)), and the difference between
adolescent and adult groups was not significant. Finally, the
density of horizontal cells (Figure 4(d)) in adolescent
rhesus monkeys stained with anticalbindin is significantly
(P< 0.05) larger when compared with the infant and se-
nescent groups.

4. Discussion

.e present study documented morphological changes in
the retina at various ages through the whole life span in
rhesus monkeys. Clinically, OCT is used for the quantitative
detection of retinal thickness, which is widely used due to its
noninvasive and contactless imaging method [18]. In the
current OCT technology, it is not possible to reliably dif-
ferentiate the boundary between GCL and IPL [19]. How-
ever, the advantage of our study is that the structure of each
layer of the retina can be clearly identified by H&E staining.
Previous data have suggested that the central inner retina
around the area of high acuity (AHA) changed triphasically
which thickened in the embryonic stage, thinned transiently
after birth, and then resumed thickening [20]. Statistical
findings of retinal thickness in the present study show that
developmental changes in the thickness of the retinal layer
are not showing a linear relationship with age. In our study,
no obvious change in the thickness of the retina was found
between the infant and the adolescent. .e thickness in-
creased rapidly after youth and was the thickest in adult-
hood, but we did not find any decline in senescent. With age,
alterations of the thickness of IPL, OPL, and retinal thickness
in each group were consistent with NFL. NFL, IPL, and OPL
are important positions of the synapses and axons of inner
neurons and play an important role in forming the network
system, so synapses and axons of inner neurons could be well
developed in adulthood. Rhesus monkeys have about 1–1.5
million RGCs. [21] Over 17 types distinguished, the midget,
parasol, and small bistratified cell populations form the large
majority of RGCs [22, 23]. .e density of RGCs in our study
revealed a statistically significant increase with the devel-
opment of the retina from the infant to the adolescent and a
reduction at adult. However, whether the change in the
density of RGCs is due to the apoptosis or retinal expansion
for local densities is unknown. Amacrine cells, bipolar cells,
and horizontal cells are the second-order neurons in the
retinal circuitry that play a crucial role in visual function. All
amacrine cells labeled with parvalbumin are postsynaptic to
rod bipolar cells and are important neurons that drive rod
information to the cone bipolar pathway by means of
conventional chemical synapses [17, 24]. In our study, the

Figure 1: Images of a local section of an adult rhesus monkey retina
stained with H&E by brightfield microscopy showing the pre-
defined region for further morphometric analysis, and the region
was defined as 1/3 of the total linear length of the superior nasal side
of the retina from the optic nerve head; bar� 100 μm.
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dendrites of horizontal cells are basically the same as those of
bipolar cells. With age, horizontal cells which normally make
triad synaptic connections with photoreceptors and bipolar
cells may have dendrites that extended into the ONL in aged

retinas, and these were spatially juxtaposed with the elon-
gated dendrites of bipolar cells, which are previous data [25].
Some studies suggested that inner retinal damage may be
more susceptible to hyperglycemia than in outer retinal
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Figure 2: (a) Photograph of rhesus monkey retina stained with H&E at the infant (a), adolescent (b), adult (c), and senescent (d) stage,
respectively; bar � 50 μm. (b) Graph comparing the mean thickness (mean± SDs) of the whole retina in each group. (c) Average NFL
thickness of rhesus monkeys at different ages. (d) .e thickness of IPL in rhesus monkeys at different ages. (e) Statistical analysis of NFL
thickness in rhesus monkeys of various ages. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear
layer; OPL, outer plexiform layer; ONL, outer nuclear layer; IS, inner segment; OS, outer segment; RPE, retinal pigment epithelium. Results
were presented as mean± SDs (n� 5). ∗Significant difference between groups, P≤ 0.05.
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Table 2: .e thickness of each retinal layer in rhesus monkeys at various ages (n� 5).

Group Retina NFL IPL OPL
Infant 106.02± 23.05 25.16± 4.75 6.64± 2.09 4.24± 0.92
Adolescent 125.84± 12.53 26.26± 5.13 7.97± 2.85 5.03± 0.42
Adult 223.35± 30.19 44.15± 4.46 22.79± 9.5 21.25± 11.74
Senescent 214.57± 41.64 37.47± 6.14 43.14± 7.55 31.08± 12.29
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Figure 3: Sections of eyes from rhesus monkey retinas at the infant, adolescent, adult, and senescent, respectively. a–d: cells were stained
with NeuN antibody to immunolabel RGCs; e–h: the morphology of amacrine cells was revealed by parvalbumin; i–l: anti-pkc-α antibody
was used to immunolabel rod bipolar cells in the INL; m–p: sections were stained with calbindin antibody to sign horizontal cells. NFL,
retinal nerve layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; n� 5 for each
group; bar� 20 μm.
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Figure 4: Continued.
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neurons, which is characterized by the substantial reduction
in amacrine cells and RGCs density [26, 27]. In our research,
cell density among groups showed obviously different, same
as discussed in previous studies about capuchin monkey
[28]..emorphology and quantity of second-order neurons
varied with age, the dendrites were well developed, and the
density of the cells got to the highest at the adolescent stage.

In conclusion, certain morphological changes repre-
sented in this article have a clear physiological correlate.
With age, the eye went through certain changes, including
the thickness of each layer, the density, and the morphology
of RGCs and second-order neurons. .e maximum density
of second-order neurons was reached at adolescent in the
INL, while synapses and axons of inner neurons were well
developed in adulthood for each layer and got to the thickest
in adulthood..e above results indicate that the structure of
the retina in rhesus monkeys is relatively immature at infant,
and the inner retina of rhesus monkeys is mature in ado-
lescent, while the thickness of each retinal layer was the most
developed in the adult group. .ere was no significant
change in senescent for the thickness of each retinal layer,
but the number of the neurons in our study has a trend of
decreasing and the morphological structure has changed.
.ese changes may lead to more visual clarity and more
complete development from infant to adolescent, but vision
acuity may decline gradually from adult to senescent.
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