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The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we
compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that
there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that
cycle at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated
genes expressed in different phases display different codon preferences. Here, we show empirically
that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent
with the non-optimal codon usage of genes expressed at this time, and lowest toward the end of G1,
reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl-,
threonyl-, and glutamyl-prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In
light of our findings, we propose that non-optimal (wobbly) matching codons influence protein
synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage
can give rise to cell-cycle regulation. In summary, our data indicate that cells exploit wobbling to
generate cell cycle-dependent dynamics of proteins.
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Introduction

The cell cycle is a fundamental cellular process that allows
cells to multiply and faithfully transfer their genetic informa-
tion to their offspring (Csikász-Nagy, 2009). The full complex-
ity of this process became apparent a decade ago with the first
genome-wide microarray studies of the mitotic cell cycle of
budding yeast (Cho et al, 1998; Spellman et al, 1998). During
the eukaryotic cell cycle, gene expression is regulated at
different levels, including through the translation of mRNAs
into proteins (Sonenberg and Hinnebusch, 2009). Accurate
translation is a complex event coordinated by essential
components of the cell, such as the ribosome, messenger
RNAs, aminoacylated (charged) transfer RNAs (tRNAs), and a
host of additional protein and RNA factors (Francklyn et al,
2002; Lackner and Bähler, 2008).

The tRNAs have a central role in translation as they are
adaptor molecules that link the nucleotide sequence of the
mRNA and the amino-acid sequence of a protein (Lowe and
Eddy, 1997; Percudani et al, 1997; Schattner et al, 2005;
Goodenbour and Pan, 2006). The expression of tRNAs is tissue
specific and it varies in distinct cellular conditions (Dittmar
et al, 2006). Recent studies demonstrate that the redundancy of

the genetic code allows a choice to be made between
‘synonymous’ codons for the same amino acid, which may
have dramatic effects on the rate of translation due to the tRNA
recycling and channeling into the ribosome (Cannarozzi et al,
2010; Weygand-Durasevic and Ibba, 2010; Brackley et al, 2011;
Gingold and Pilpel, 2011; Plotkin and Kudla, 2011). Moreover,
mRNAs usually start by using the codons corresponding to
rarer tRNAs, undergoing a slower phase of elongation, which
is then followed by a faster phase (Tuller et al, 2010).

The ‘redundancy’ in the genetic code implies that 61 codons
are translated requiring fewer than 61 tRNAs according to the
‘wobble’ base-pairing rules (isoaccepting codons; Crick,
1966). This is especially true when the base at the 50 end of
the anticodon is inosine (abbreviated as I), which deviates
from the standard base-pairing rules. The four main wobble
base pairs are guanine-uracil, inosine-uracil, inosine-adenine,
and inosine-cytosine (G:U, I:U, I:A, I:C; Lander et al, 2001).
Finally, the Percudani rules state that tRNAs only wobble with
a synonymous codon if there is no better tRNA for that codon
(Percudani et al, 1997).

Due to the degeneracy of the genetic code, all amino acids
except methionine and tryptophan are encoded by multiple,
synonymous codons. The usage of synonymous codons is far
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from uniform and there is a strong preference toward certain
codons in highly expressed genes when compared with other
genes (Sharp et al, 1986; Lavner and Kotlar, 2005; Goodenbour
and Pan, 2006). Indeed, codon usage preferences are closely
correlated with the abundance of corresponding tRNAs in
bacteria and yeast (Grantham et al, 1981; Ikemura, 1981, 1982;
Futcher et al, 1999), which maximizes the speed and accuracy
of protein translation (Gouy and Gautier, 1982; Ikemura, 1985;
Akashi and Eyre-Walker, 1998; Duret and Mouchiroud, 1999;
Coghlan and Wolfe, 2000; Duret, 2000; Wright et al, 2004;
Drummond et al, 2006). However, charging level of some
tRNAs matches some anomalous codon usage patterns for
different groups of genes in bacteria (Liljenström et al, 1985;
Dittmar et al, 2005). Moreover, the correspondence between
codon adaptation and gene expression makes translation
efficient at a global level rather than at the level of specific
genes (Kudla et al, 2009). More specifically, the first 30–50
codons of most mRNA sequences are less efficiently translated
than the following part of their sequences (Tuller et al, 2010).
The optimal correlation between tRNA levels and their
corresponding codon frequencies are dependent on the total
amount of tRNAs, ribosomes (Kudla et al, 2009), and the
aminoacyl-tRNA synthetases (aaRSs) that charge tRNAs
through a two-step aminoacylation reaction using ATP
(Orfanoudakis et al, 1987). Finally, changes in the ATP
availability in cells influence the concentration of charged
tRNAs during a cell cycle (Ibba and Söll, 2004).

Non-optimal codons adapt wobble codon–anticodon base
pairing with a low binding affinity. Recent studies revealed that
synonymous changes for non-optimal codons can alter the
expression of human genes (Kimchi-Sarfaty et al, 2007). More-
over, the codons with the least amount of tRNAs and, thus, the
lowest rate of translation, do not necessarily have the lowest
genome frequency (Parmley and Huynen, 2009), and they may
fulfill a role in translation ‘pausing’ between protein domains
(Makhoul and Trifonov, 2002). However, the function of non-
optimal codons, in general, and of wobble codon–anticodon base
pairing, in particular, in regulating the temporal aspects of
protein translation remains unclear in eukaryotes.

We have studied translation regulation of cell cycle-
dependent genes through comparative analyses of codon
preferences, dynamic quantitative proteomics (Sigal et al,
2006a; Cohen et al, 2008) and mathematical modeling. We
discovered that in four distant eukaryotes, proteins encoded by
cell cycle-regulated mRNAs have similar preferences in terms
of non-optimal codon usage and wobble codon–anticodon
base pairing. The dynamics of the charged tRNA pool is
expected to vary during the cell cycle as a result of the
variations in the ATP availability (Orfanoudakis et al, 1987). In
addition, we found experimentally that the levels of glycyl-,
threonyl-, and glutamyl-prolyl-aminoacyl-tRNA synthetases
oscillate during the human cell cycle, and that tRNA
expression levels increase in the G2/M phase of the yeast cell
cycle. Moreover, tRNAs are most weakly expressed toward the
end of G1 phase. Similarly, we found that genes expressed in
different phases of the cell cycle adopt different codon
preferences. We show that about 15% of the cell cycle-
regulated genes expressed in the G1 phase adopt relatively
optimal codon usage, even at the beginning of their coding
sequences. All other cell cycle-regulated genes prefer non-

optimal codons for their coding sequences. Finally, we
developed a mathematical model based on a competitive
mechanism in which the cycling of charged tRNAs leads to
oscillations in the rate of translation for mRNAs containing
non-optimal codons.

Results

Codon preferences of cell cycle-regulated genes

In unicellular prokaryotes and eukaryotes, the abundance of
certain tRNAs correlates with the codon preferences of genes
encoding highly expressed proteins, for example, ribosomal
proteins (Percudani et al, 1997; Kanaya et al, 1999; Bernstein
et al, 2002; Lavner and Kotlar, 2005; Kotlar and Lavner, 2006).
Thus, codons that perfectly match the anticodons of the tRNAs
are preferentially used in highly expressed genes (Grosjean
and Fiers, 1982). The mRNAs coding for rare proteins also
have selective codon usage, albeit much weaker than the
mRNAs coding abundant proteins (Liljenström and von
Heijne, 1987).

We hypothesized that cell cycle-regulated genes should also
exhibit a preference for certain codons and thus, we analyzed
the codon usage preferences for synonymous codons in three
sets of human cell cycle-regulated genes, B1, B2, top-600, from
an earlier study (Jensen et al, 2006; see Materials and
methods). Although the B1 set of genes is the most reliable
group of cycling genes, it includes highly expressed genes that
are strongly biased in terms of their codon usage, a situation
which is undesirable for our purposes. By contrast, highly
expressed genes are not so abundant in the B2 and top-600,
although they are of somewhat less reliable.

The three sets of cell cycle-regulated genes gave consistent
results, either all showing positive or negative preferences for a
given codon (Table I). To evaluate the statistical significance of
this result, P-values were calculated from 10 000 bootstrap
samples with the same codon adaptation index (CAI)
distribution as cell cycle-regulated genes (see Materials and
methods and Table I). The codon preference was considered as
significant when P-valueo0.01 for at least two of the three sets
of cycling genes (Table I). In fact, the codon usage is
confounded by the local GC content (Drummond and Wilke,
2008) and thus, we produced an additional bootstrap
procedure preserving the GC content instead of the CAI
distribution of the cell cycle-regulated genes. The P-values
obtained by this procedure did not alter the final conclusions
(see Supplementary information).

We found that cell cycle-regulated genes prefer non-optimal
codons, which are recognized by wobble base pairing, and
thus have a low codon–anticodon binding affinity (Table I).
For instance, TTT was overrepresented among cycling genes
when we consider the TTT and TTC codons of phenylalanine
(Table I). While no tRNA genes exist for the corresponding
AAA anticodon, a tRNA gene does exists with the GAA
anticodon. In addition, asparagine, aspartic acid, cysteine,
histidine, and tyrosine were similarly seen to display a
preference for the non-optimal codons (Table I). Using
accurate thermodynamic data for binding affinities of all
possible wobble base-pairing cases (I:C, I:A, I:T, G:T, G:C, C:G,
U:A) (Watkins and SantaLucia, 2005), we found that for all
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Table I The codon preferences for the sets of human cell cycle-regulated genes: B1, B2 and top-600 sets (Jensen et al, 2006)

Aa Codon 50-30 Preferences human P-values human Anticodon 30-50 Binding at
third position

Affinity Organisma

B1 B2 Top-600 B1 B2 Top-600 S.p. S.c. A.t.

Ala GCA 0.04 0.05 0.03 0.05 0.09 0.14 CGI I:A Low K
Ala GCC �0.1 �0.07 �0.04 0.0001 0.01 0.16 CGI I:C High K
Ala GCG �0.01 �0.03 �0.02 0.58 0.01 0.03 CGC C:G High K K K
Ala GCT 0.07 0.05 0.03 0.0001 0.0001 0.05 CGI I:T Low K K K
Arg AGA 0.07 0.05 0.04 0.02 0.14 0.13 UCU U:A Low K
Arg AGG �0.02 �0.02 �0.01 0.17 0.0001 0.02 UCC C:G High K K
Arg CGA 0 0.03 0.02 0.19 0.0001 0.0001 GCI I:A Low
Arg CGC �0.01 �0.04 �0.03 0.75 0.09 0.06 GCI I:C High
Arg CGG �0.06 �0.04 �0.03 0.0001 0.2 0.19 GCC C:G High K K K
Arg CGT 0.02 0.02 0.01 0.07 0.0001 0.04 GCI I:T Low K K
Asn AAC �0.13 �0.11 �0.08 0.0001 0.0001 0.0001 UUG G:C High K
Asn AAT 0.13 0.11 0.08 0.0001 0.0001 0.0001 UUG G:T Low K
Asp GAC �0.1 �0.1 �0.07 0.01 0.0001 0.01 CUG G:C High K
Asp GAT 0.1 0.1 0.07 0.01 0.0001 0.01 CUG G:T Low K
Cys TGC �0.15 �0.12 �0.04 0.0001 0.0001 0.37 UCG G:C High K K K
Cys TGT 0.15 0.12 0.04 0.0001 0.0001 0.37 UCG G:T Low K K K
Gln CAA 0.1 0.06 0.05 0.0001 0.42 0.09 GUU U:A Low
Gln CAG �0.1 �0.06 �0.05 0.0001 0.43 0.1 GUC C:G High
Glu GAA 0.13 0.1 0.08 0.0001 0.03 0.04 CUU U:A Low K K
Glu GAG �0.13 �0.1 �0.08 0.0001 0.04 0.04 CUC C:G High K K
Gly GGA 0.04 0.05 0.04 0.35 0.15 0.29 CCU U:A Low K
Gly GGC �0.04 �0.06 �0.04 0.17 0.01 0.21 CCG G:C High K
Gly GGG �0.05 �0.03 �0.03 0.02 0.09 0.0001 CCC C:G High K
Gly GGT 0.05 0.04 0.03 0.01 0.0001 0.0001 CCG G:T Low K K
His CAC �0.14 �0.13 �0.07 0.0001 0.0001 0.05 GUG G:C High K K
His CAT 0.14 0.13 0.07 0.0001 0.0001 0.05 GUG G:T Low K K
Ile ATA 0.05 0.05 0.04 0.03 0.12 0.08 UAI I:A Low
Ile ATC �0.12 �0.12 �0.08 0.01 0.0001 0.02 UAI I:C High K
Ile ATT 0.07 0.07 0.04 0.02 0.0001 0.06 UAI I:T Low K K K
Leu CTA 0.02 0.01 0.01 0.0001 0.03 0.02 GUI I:A Low K
Leu CTC �0.05 �0.04 �0.03 0.0001 0.0001 0.0001 GUI I:C High K K
Leu CTG �0.1 �0.08 �0.06 0.0001 0.04 0.02 GUC C:G High
Leu CTT 0.03 0.04 0.03 0.06 0.01 0.05 GUI I:T Low K K
Leu TTA 0.06 0.04 0.03 0.0001 0.03 0.0001 AAU U:A Low K
Leu TTG 0.04 0.03 0.02 0.0001 0.0001 0.0001 AAC C:G High K K
Lys AAA 0.04 0.09 0.06 0.43 0.01 0.11 UUU U:A Low
Lys AAG �0.04 �0.09 �0.06 0.44 0.01 0.11 UUC C:G High
Met ATG 0 0 0 1 1 1 UAC C:G High K K K
Phe TTC �0.13 �0.1 �0.07 0.0001 0.0001 0.0001 AAG G:C High K
Phe TTT 0.13 0.1 0.07 0.0001 0.0001 0.0001 AAG G:T Low K
Pro CCA 0.07 0.04 0.04 0.01 0.06 0.02 GGI I:A Low K K K
Pro CCC �0.1 �0.06 �0.06 0.0001 0.02 0.0001 GGI I:C High K K
Pro CCG �0.02 �0.03 �0.02 0.19 0.02 0.07 GGC C:G High K K K
Pro CCT 0.05 0.05 0.04 0.01 0.0001 0.0001 GGI I:T Low
Ser AGC �0.05 �0.05 �0.03 0.0001 0.0001 0.02 UCG G:C High K K
Ser AGT 0.03 0.04 0.03 0.03 0.0001 0.0001 UCG G:T Low
Ser TCA 0.03 0.03 0.02 0.1 0.02 0.34 AGI I:A Low K
Ser TCC �0.05 �0.04 �0.03 0.0001 0.0001 0.0001 AGI I:C High K
Ser TCG �0.02 �0.02 �0.02 0.0001 0.01 0.57 AGC C:G High K K
Ser TCT 0.06 0.04 0.03 0.0001 0.0001 0.01 AGI I:T Low K K K
Thr ACA 0.01 0.03 0.02 0.63 0.29 0.72 UGI I:A Low K
Thr ACC �0.05 �0.07 �0.05 0.09 0.0001 0.1 UGI I:C High K
Thr ACG �0.05 �0.03 �0.02 0.0001 0.0001 0.11 UGC C:G High K K K
Thr ACT 0.09 0.07 0.05 0.0001 0.0001 0.0001 UGI I:T Low K K K
Trp TGG 0 0 0 1 1 1 ACC G:C High K K K
Tyr TAC �0.08 �0.1 �0.06 0.03 0.0001 0.05 AUG G:C High K
Tyr TAT 0.08 0.1 0.06 0.04 0.0001 0.05 AUG G:T Low K
Val GTA 0.07 0.05 0.03 0.0001 0.0001 0.0001 CUI I:A Low
Val GTC �0.05 �0.05 �0.03 0.0001 0.0001 0.0001 CUI I:C High K
Val GTG �0.09 �0.06 �0.05 0.01 0.15 0.03 CUC C:G High K
Val GTT 0.07 0.06 0.05 0.01 0.01 0.01 CUI I:T Low K K

P-values were calculated using bootstrapping procedure over 10 000 random samples. The binding affinity was found from the study of Watkins and SantaLucia (2005).
Non-optimal codons characterized by low codon–anticodon affinities are presented in bold. Human cell cycle-regulated genes usually have high preferences for these
codons. Most of the preferences in human are supported by that of Schizosaccharomyces pombe (S.p.), Saccharomyces cerevisiae (S.c.) or Arabidopsis thaliana (A.t.) for
their corresponding sets of the cell cycle-regulated genes.
aS.p. is Schizosaccharomyces pombe, S.c. is Saccharomyces cerevisiae, A.t. is Arabidopsis thaliana.
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amino acids cell cycle-regulated genes have a strong,
significant (Po0.01) preference for codons with a low
codon–anticodon binding affinity (Table I).

To assess the biological importance of the codon preferences
observed, we tested whether they are evolutionarily con-
served. To this end, we analyzed sets of cell cycle-regulated
genes in Schizosaccharomyces pombe, Saccharomyces
cerevisiae, and Arabidopsis thaliana (Jensen et al, 2006). For
both yeasts species, these genes show significant and
consistent preferences for non-optimal codons of amino acids,
which use the inosine modification at the wobble position.
There are eight such amino acids in Schizosaccharomyces
pombe (as in higher eukaryotes) and seven in S. cerevisiae
(Supplementary Tables 1 and 2). For Arabidopsis thaliana, a
significant preference for non-optimal codons was found for
amino acids encoded by two or more codons, also consistent
with the trend in humans (Supplementary Table 3). Although
the GC content of genes appears to influence the codon
preferences of cell cycle-regulated genes in yeast (Supplemen-
tary Tables 4–7), the trends are nonetheless consistent with
that observed for human genes. Together, these results show
that the preference for using non-optimal codons to encode cell
cycle-regulated proteins is conserved across distantly related
eukaryotes (see Table I).

To study if the cell cycle-regulated genes expressed in
different phases of the cell cycle adopt the same codon
preferences, we used the top-600 sets of genes. Notably, non-
optimal codon usage was observed for genes expressed in all
phases except the G1 phase (see Supplementary information).
In this phase of the cell cycle, both ATP and charged tRNA
concentrations are likely to be low (Orfanoudakis et al, 1987),
as is the total tRNA pool, which we found to be lowest toward
the G1 phase in yeast S. cerevisiae (Table II; Figure 1). As a
result, relatively optimal codon preferences were observed in
human and yeast genes expressed in G1 phase (Supplementary
Table 8). Finally, we found that the level of aaRSs is also likely
to be low in the G1 phase, while augmented in the G2/M phase
of the human cell cycle (Figure 2A; Supplementary Figure 1).
Taken together, these findings indicate that genes may use

Table II The concentration of tRNA during the cell cycle in the yeast S. cerevisiae

Time points
(min)

tRNA concentration
(mg/ml)

Estimated
cell-cycle phase

0 10.0 Synchronized in M phase
30 7.8 M
60 14.9 G1
90 13.7 G1
120 4.1 G1
150 10.8 G1
180 7.9 S
210 11.5 S
240 21.3 G2
270 21.5 G2
300 9.7 M
330 8.9 M
360 11.1 M

The measurements were performed using cells synchronized in M phase and
then released. Over the 4-h time course the cells started in and subsequently
returned to M phase. Accordingly, the tRNA concentrations measured at the
beginning and end of the experiment are consistent.
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Figure 1 The tRNA concentration during the cell cycle of S. cerevisiae. The
concentration was calculated as an average of the different points in the same
phases of the cell cycle according to Table II.
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Figure 2 Total fluorescence as a function of the time during two cell cycles for
YFP-tagged proteins, glycyl-tRNA synthetase (GARS), threonyl-tRNA synthe-
tase (TARS), tryptophanyl-tRNA synthetase (WARS), and glutamyl-prolyl-tRNA
synthetase (EPRS), when compared with GAPDH and ARGLU1 . (A) The lines
represent the average fluorescence (±standard error) from 415 individual cells
during two generations for the synthetases that show significant cell cycle-
dependent protein dynamics. ARGLU1 is used as a positive control. (B) The total
fluorescence (±standard error) for WARS and GAPDH as a negative control.
WARS and GAPDH do not show the cell cycle-dependent protein dynamics.
Source data is available for this figure in the Supplementary Information.

Genes adopt non-optimal codon usage
M Frenkel-Morgenstern et al

4 Molecular Systems Biology 2012 & 2012 EMBO and Macmillan Publishers Limited



synonymous codons to adjust their expression pattern during a
cell cycle.

Protein dynamics of aaRSs

aaRSs covalently attach amino acids to tRNAs and conse-
quently, they have a fundamental role in controlling the
amount of charged tRNAs available for protein synthesis (Ibba
and Söll, 2004; Francklyn et al, 2008). Thus, we systematically
measured the aaRSs available during the cell cycle of
individual human cells. We used time-lapse microscopy to
measure the dynamics of four aaRSs found in the LARC library
(Sigal et al, 2006a, b, 2007; Cohen et al, 2008; see Supplemen-
tary information), namely glycyl-tRNA synthetase (GARS),
threonyl-tRNA synthetase (TARS), tryptophanyl-tRNA synthe-
tase (WARS) and glutamyl-prolyl-tRNA synthetase (EPRS). In
these studies, we also measured the dynamics of glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) as a negative
control and that of the arginine-glutamate-rich protein-1
(ARGLU1) as a positive control, the expression of which is
regulated through the cell cycle at the protein and mRNA levels
(Sigal et al, 2006a; Supplementary Figure 2). Each synthetase
was tagged with the yellow fluorescent protein (eYFP) at its
endogenous chromosomal location in the H1299 cell line (see
Supplementary information), and the resulting videos
(recorded over 72 h) were analyzed to quantify the accumula-
tion of the proteins at each time point as described previously
(Sigal et al, 2006a).

Cell-cycle regulation was defined on the basis of a criterion
of at least two-fold difference in the rate of accumulation over
the cell cycle, and a difference of at least eight-fold standard
errors between the highest and lowest protein accumulation
rate (Sigal et al, 2006a). Based on these criteria, the protein
dynamics of GARS, TARS, EPRS, and ARGLU1 were clearly cell
cycle dependent, whereas WARS and GAPDH could not be
considered to have cell cycle-dependent protein
dynamics (Figure 2; Supplementary Figure S1). Interestingly,
glycine, threonine, and proline are encoded by four different
codons and glutamic acid is by two codons. Therefore,
cell cycle-dependent protein levels of GARS, TARS, and EPRS
may be a source for the cell cycle-regulated behavior of
charged tRNAGly, tRNAThr, tRNAGlu, and tRNAPro, as evident in
our mathematical model described below. Tryptophan is
only encoded by one codon, which leaves no margin for
gene-specific, cell cycle-dependent translation rates through
the use of suboptimal codons, and which would explain
why WARS does not exhibit cell cycle-dependent protein
dynamics (Figure 2B). In general, changes in the concentration
of aaRSs are not necessary for all the corresponding
amino acids to be cell cycle dependent because the ATP pool
oscillates during the human cell cycle (Orfanoudakis et al,
1987), and because tRNA levels also rise and fall
during the cell cycle (Table II; Figure 1). Thus, in steady-state
circumstance, the cycling of ATP and aaRSs levels together
provides a mechanism to generate oscillating levels of charged
tRNAs (aa-tRNAs) synthesized by steady-state levels of aaRSs.
Taken together, these observations indicate that the
availability of charged tRNAs during a cell cycle may regulate
the expression of genes with regard to their codon usage
preferences.

Codon usage of proteins with cell cycle-dependent
protein dynamics

To evaluate the translational regulation of proteins that do not
cycle at the mRNA, but do cycle at protein levels, we used the
protein data set studied previously (Sigal et al, 2006a) but
extended with the five additional proteins (Figure 2). Thus, 11
proteins were found to have cycling protein levels but non-
cycling mRNA levels (Whitfield et al, 2002; Gauthier et al,
2008, 2010): DDX5, USP7, TOP1, ANP32B, H2AFV, GTF2F2,
RBBP7, SFRS10, GARS, TARS, and EPRS, which were
determined as cell cycle regulated in means of protein
dynamics in human cells. ARGLU1 cycles at the mRNA level
and was excluded from that analysis. As a negative set, we
used the 11 proteins that were found to not cycle at the protein
level despite the mRNA cycling (Whitfield et al, 2002): SAE1,
SET, HMGA2, YPEL1, DDX46, LMNA, HMGA1, ZNF433,
KIAA1937, GAPDH, and WARS. The cell-cycle codon scores
(CCCS) (see Materials and methods) were calculated for all the
proteins analyzed (Supplementary Table 9) and consistent
with our hypothesis, we found a significant difference between
median distributions of the two groups (Wilcoxon’s test;
P-valueo1E�3) (Figure 3). All of the 11 cycling proteins had a
positive CCCS, while the non-cycling proteins had both
negative and positive scores (Figure 3). Taken together, these
observations indicate that the presence of many non-optimal
codons in a gene is not sufficient to cause large-amplitude
oscillations at the protein level.

Mathematical model

To describe how temporal changes in the tRNA pool can lead to
the translational regulation mathematically (Figure 4), we
concentrated only on two processes: amino-acid charging of
tRNAs by aaRSs (producing aminoacyl-tRNAs or ‘aa-tRNAs’);
and cognate or ‘wobble’ aa-tRNA binding to mRNAs. The rate
of transport of aa-tRNAs species to a ribosomal A site, the
intrinsic kinetics of peptidyl transfer, ribosome concentration
and their translocation were not considered in this model.

The aminoacylation reaction is achieved in two steps
(Ibba and Söll, 2004). First, the amino acid is activated by
the attack of a molecule of ATP at the [alpha]-phosphate,
giving rise to an aminoacyl-adenylate intermediate and an
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inorganic pyrophosphate. Second, the amino acid is trans-
ferred to the 30-terminal ribose of the cognate tRNA, yielding
an aa-tRNA and AMP:

½aa� þ ½ATP� �!½S� ½aa-AMP� þ ½PPi� ð1Þ

½aa� AMP� þ ½tRNA� �!½S� ½tRNAaa� þ ½AMP� ð2Þ

Assuming that the cells are not under amino-acid starvation,
the production rate of the charged tRNA (tRNAaa) is propor-
tional to a concentration of the corresponding aaRS (S), the
amino acid (aa), and ATP:

½tRNAaa� ¼ ktRNA½tRNA�½S�½ATP� ð3Þ

where ktRNA is a charging rate of tRNA per synthetase and ATP
molecule (Ibba and Söll, 2004).

½mRNA� þ ½tRNAaa� ! ½mRNA :: tRNAaa� ð4Þ
Assuming the termination rate as a constant, VT, for simplicity
and using the Michaelis–Menten kinetics, the observed rate of
mRNA translation is

dp

dt
¼ amRNA½mRNA� ½tRNAaa�

kþ ½tRNAaa� � VT ð5Þ

where amRNA is an mRNA-specific translation constant, and k
is the codon–anticodon affinity of a tRNA.

For simplicity, assume that we have two mRNAs in equal
concentration: mRNATTC is a poly-TTC chain and mRNATTT is
a poly-TTT (Figure 4). The TTC codon binds the cognate
tRNAPhe ‘strongly’ to the corresponding anticodon GAA (GAA-
tRNAPhe), while the TTTcodon does not have a cognate tRNA
and binds to the same GAA-tRNAPhe ‘weakly’ (Figure 4A and
B). ([mRNATTC]¼ [mRNATTT]¼[mRNA]). (It is routine that we
write the anticodon sequence from 50 to 30.) The energetic
difference between ‘strong’ and ‘weak’ binding was evaluated
using the HyTher program (Watkins and SantaLucia, 2005).
Since the translation rate of a protein is proportional to the
production rate of the complex mRNAHtRNAaa, the produc-
tion rates of the proteins are

dp1

dt
¼ a1½mRNA� ½tRNAPhe

TTC�
kTTC þ ½tRNAPhe

TTC�
� VT

dp2

dt
¼ a2½mRNA� ½tRNAPhe

TTC�
kTTT þ ½tRNAPhe

TTC�
� VT

ð6Þ

For the wobble and perfect matches, at steady state
let us assume that codon–anticodon affinities fulfill:
kTTC � [tRNATTC] � kTTT:

½p1� / const

½p2� /
½tRNATTC�

kTTT

ð7Þ

This implies that the production rate of p1, which has the
mRNATTC as a precursor, does not depend on the concentration
of charged tRNA, whereas that of p2, with mRNATTT, is directly
proportional to the concentration of GAA-tRNAPhe (Figure 4C).
In other words, the mathematical model shows that the pool of
the charged tRNAs can specifically affect the translation rate of
proteins encoded by non-optimal codons rather than by
optimal codons during a cell cycle. This is also supported by
the observation that we found a much higher proportion of
non-optimal codons in cell cycle-regulated genes (57%)
compared with their non-cell cycle-regulated paralogs (37%)
that encode protein products with similar sequences (Gauthier
et al, 2008, 2010; Supplementary Table 10).

Discussion

We have presented a comprehensive analysis of cell cycle-
regulated codon usage and a mathematical model describing a
mechanism of translational regulation through changes in the
charged tRNA pool during the cell cycle in four eukaryotes.
The model was illustrated for the very simple situation, in
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which only two mRNAs encoding poly-phenylalanyl exist, one
using the perfect-matching codon for a tRNA and the other
using the wobble match. If many charged Phe-tRNAPhe

molecules are present in the cell, both mRNAs will be
efficiently translated. However, if only a few charged Phe-
tRNAPhe molecules are available, the mRNA with optimal
(perfectly matched) codons will be translated, while the
mRNA with non-optimal (wobbly matched) ones will be
unable to compete for charged tRNAs and will thus only be
translated very slowly. The independence of translation rate on
codon usage if many charged tRNAs are present may explain the
lack of correlation between codon bias and a certain protein
expression level published by Kudla et al (2009).

Cell cycle-dependent changes in the pool of charged tRNAs,
due to oscillations in aaRS protein levels, tRNAs, and the
cellular ATP concentration, are likely to explain why non-
optimal codon usage is only associated with efficient transla-
tion during the cell-cycle phases when many charged tRNAs
are available. The idea that codon usage may provoke cell
cycle-regulated translation is supported by the observation
that three sets of cell cycle-regulated genes in humans, and in
other eukaryotes, together with another set of cell cycle-
regulated human proteins, all have an overrepresentation of
non-optimal codons.

Our findings are consistent with the ‘recycling’ principle of
tRNAs presented recently (Cannarozzi et al, 2010): once
non-optimal codons are used for amino acids encoding cell
cycle-regulated genes, the subsequent codons for these amino
acids are likely be the same. Notably, the novelty of our
findings is that genes may gain the functional advantage of
preferably using wobbling and non-optimal codons to create
oscillations during the cell cycle. In addition, we found that
genes cycling in the G1 phase of the cell cycle prefer optimal
codons even at the beginning of their coding sequences
(Supplementary Table 8). Therefore, the early elongation
‘ramp’ and primary slow translation proposed recently (Tuller
et al, 2010) does not have advantages for the G1 phase genes,
when we have shown that the tRNA level decreases to a
minimum. Finally, Tsutsumi et al (2007) showed that the
modified base inosine in tRNA used for wobble base pairing is
vital for the G1/S and G2/M cell-cycle transitions in
Schizosaccharomyces pombe. These findings explain the
significant preferences for non-optimal codons that adapt the
wobble codon–anticodon base pairing found in cell cycle-
regulated genes in yeast.

The aaRSs are remarkable examples of proteins that are
dynamic during the cell cycle, although their mRNA tran-
scripts do not cycle. It is tempting to speculate that perhaps
most aaRSs have cycling protein dynamics, considering
that the preference for non-optimal codons is observed
for all members of the aaRS family except for methionine
and tryptophan. However, this does not have to be the case,
since the ATP concentration varies during the cell cycle
(Orfanoudakis et al, 1987), which in itself will affect the
concentration of charged tRNAs in a cell cycle-dependent
manner. Indeed, in the steady state, the cycling of ATP and
tRNA levels together provides a mechanism to generate
oscillating levels of the charged aa-tRNA.

The codon preference will lead to cycling production rates
for a protein in the same way as cycling mRNA levels affect

cycling protein synthesis rate. But since the half-life of a
protein is usually far longer than the cell cycle, this is not
sufficient to cause large-amplitude change of the level of
cycling proteins. For that to happen, the protein must be
actively degraded at some point of the cell cycle. Thus, a
protein with no degradation signals is unlikely to cycle
significantly, even if it has strong codon preferences to non-
optimal codons.

In summary, cell cycle-regulated genes contain a significant
overrepresentation of non-optimal codons, adapting to wobble
codon–anticodon base pairing. Protein translation rates are in
part controlled by the availability of charged tRNAs, which in
turn depends on the concentration of ATP, tRNAs, and aaRSs,
which have been shown to oscillate during the cell cycle. We
propose a competitive mechanism to explain how the presence
of many non-optimal codons in some mRNAs can induce cell
cycle-dependent protein expression. Thus, it is thus tempting
to speculate that the absence of tRNA genes with certain
anticodons in the human genome, and the preference for the
resulting wobble codon–anticodon base pairing in cell cycle-
regulated genes, may serve as a hitherto unknown regulatory
control in the cell cycle.

Materials and methods

Data sets

Three sets of human cell cycle-regulated genes were studied here
(Jensen et al, 2006): 63 cell cycle-regulated genes identified through
single gene studies (the B1 set), 438 genes with E2F transcription factor
binding sites in their promoter regions (the B2 set), and the 600 most
significantly oscillating genes according to DNA microarray expression
data (the top-600 set; Whitfield et al, 2002). Similar sets were
considered for Schizosaccharomyces pombe, S. cerevisiae, and Arabi-
dopsis thaliana (see Supplementary information and Jensen et al,
2006).

Codon preferences calculation

The codon usage table (CUT) was calculated using cDNA sequences of
all annotated human genes. The codon preference of a specific codon,
CP, was calculated with the following formula:

CPSðCÞ ¼ FrequencySðCÞ � CUTðCÞ ð8Þ
where FrequencyS(C) is a relative frequency of the codon, C, with
respect to all codons in genes from a given data set S (namely the B1,
B2, top-600, non-cycling genes with cell-cycle phenotype; Mukherji
et al, 2006, or non-cycling genes with cycling orthologs; Jensen et al,
2006). Finally, CUT(C) is the global frequency of the codon C in human
genes.

Bootstrapping and the P-value calculation

In all, 10 000 bootstrap samples were generated for each list of cell
cycle-regulated genes from all the annotated genes in a given
organism. The random sampling was first performed such that the
CAI distribution of each bootstrap sample matched that of the cell
cycle-regulated genes. All genes for a particular organism were binned
based on their CAI. We then counted number of genes from each bin in
the actual observed sample, and generate bootstrap samples by
randomly sampling the same number of genes from each CAI bin,
thereby ensuring that the overall CAI distribution is preserved in the
bootstrapped samples.

The second bootstrap sampling ensured that the GC content
distribution of the bootstrap samples matched that of the cell cycle-
regulated genes. The P-values were calculated for each codon by

Genes adopt non-optimal codon usage
M Frenkel-Morgenstern et al

& 2012 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2012 7



comparing its usage in the set of cell cycle-regulated genes with the
empirical distribution obtained from the bootstrap samples. The codon
preference was considered as significant if the P-values were o0.01 for
at least two sets of the cell cycle-regulated genes.

The CCCS

For each human gene, the cell-cycle codon score (CCCS) was
calculated as a sum of the top-600 codon-preference values over all
codons in the cDNA of the gene, normalized to the length of the cDNA:

CCCSðgÞ ¼
X

codonðgeneÞ
CPtop�600ðcodonÞ=lengthðgÞ ð9Þ

where for every codon of a gene, g, the codon preference in the top-600
set, CPtop-600(codon), is calculated by the formula 7 above. Thus, the
CCCS of a specific gene evaluates how well the codon usage matches
that of the top-600 cell cycle-regulated human genes.

The codon–anticodon affinity

The low and high codon–anticodon binding affinities were found using
the accurate thermodynamics data of Watkins and SantaLucia (2005)
for the synonymous codons of the same amino acid. For instance, for
the G-T wobble anticodon:codon base-pairing cases, namely,
XXG:XXC and XXG:XXT (or simply, G:C and G:T, G:C4G:T), have a
‘high’ and ‘low’ binding affinity, respectively (Table I). Moreover,
according to the thermodynamics data the affinity trend for the I:X
pairs for inosine wobble base pairing is I:C4I:AXI:T (Watkins and
SantaLucia, 2005). Therefore, I:C has a high binding affinity and I:A,
I:T low binding affinities among the I:X pairs of the same amino acid
(Table I). Finally, for the codons AGA, AGG of arginine, TTA, TTG of
leucine, CAA, CAG of glutamine, and GAA, GAG of glutamic acid, the
affinity trend is C:G4U:A, and thus, C:G and U:A are the high and low
binding affinities, correspondingly (Table I). The cell cycle-regulated
genes have strong consistent preferences for codons adapting the
wobble anticodon:codon base pairing, G:T, I:A and I:T.

Copy number of tRNA genes

The gene copy number for different types of human tRNAs was
obtained from the Genomic tRNA database (http://lowelab.ucsc.edu/
GtRNAdb: Lowe and Eddy, 1997). The main assumption was that the
number of tRNA genes is a true representation of the tRNA abundance
within the cell. Many previous studies have shown that this
assumption is not unfounded (Duret, 2000; Comeron, 2004; Lavner
and Kotlar, 2005).

Isolation of tRNA during the yeast cell cycle

The CDC-15 yeast strain, which contains a temperature-sensitive cdc15
gene (Johnson and Blobel, 1999), was used to obtain cell cycle-
synchronized cells. The cdc15 gene encodes the protein CDC-15, which
controls the timing of cell division (Johnson and Blobel, 1999).

An overnight culture of CDC-15 grown at 211C in YPD media was
used to inoculate a 50-ml culture, which was grown to OD600 to B1.0.
The 50-ml culture was diluted by YPD to 500 ml to an OD600 of 0.2, and
then grown forB15 h at 211C until an OD600 of 0.6 was reached. At this
time, the culture displayed heterogeneous phenotypes when examined
under a microscope and it was shifted to 371C for 3 h to arrest cdc-15.
The cell-cycle arrest was confirmed by a microscope analysis and the
cells had a homogeneous phenotype. The culture was then shifted
back to 251C, which was termed T0. An aliquot of the cultured was
removed at T0 and every 30 min after T0 to extract tRNA.

The extraction of tRNA

A total of 13 tRNA samples were prepared from the cell culture
following a previously published procedure (Whipple et al, 2011).
Yeast cells from each sample were spun down and resuspended on ice

in 150 ml of the RNA elution solution (0.3 M sodium acetate (pH 4.5),
10 mM EDTA). An aliquot of glass beads (B0.5 ml) was added to the
cell suspension, and the cells were vortexed four times for 15 s each
and extracted three times with an equal volume of phenol saturated in
the RNA elution buffer for 15 s. After centrifugation at 5 K for 10 min at
41C, the aqueous phase of the phenol extraction was recovered and
after centrifugation at 13.2 K r.p.m. for 4 min at 41C, the aqueous phase
was again recovered and the tRNA in the aqueous phase was ethanol
precipitated and collected by centrifugation. The cell suspension in the
phenol extraction was back-extracted with 100ml of the RNA elution
buffer and the tRNA in the suspension was further precipitated by
ethanol and collected by centrifugation. The tRNA pellets were
resuspended in 20 ml of RNA elution buffer, combined and precipitated
by ethanol one more time. The final tRNA pellet was resuspended in
20 ml of RNA elution buffer to determine the concentration by
absorption at OD260 (1 OD¼40 mg), before it was stored at �701C.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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