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ABSTRACT: During urethral catheterization, sliding friction can
cause discomfort and even hemorrhaging. In this report, we use a
lubricant-impregnated polydimethylsiloxane coating to reduce the
sliding friction of a catheter. Using a pig urethra attached to a
microforce testing system, we found that a lubricant-impregnated 70C, 2h Ovemight
catheter reduces the sliding friction during insertion by more than a
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Catheter PDMS-Catheter Slippery Catheter
factor of two. This suggests that slippery, lubricant-impregnated pery
surfaces have the potential to enhance patient comfort and safety
during catheterization.
Bl INTRODUCTION Pitcher plants are carnivorous plants that have modified

leaves known as pitfall traps, a prey-trapping mechanism
featuring a deep cavity filled with digestive liquid (Figure
1a).>' ™ The peristome enables the trapping of live prey, as it

Approximately 15—25% of patients admitted to hospitals are
indwelled with urinary catheters."”” However, urethral catheters

i f injury. F le, 47—90% of . ot . . .
can cause dlscofn ort or even Injury. For example, 4_7 0% o contains microridges impregnated with lubricant to render the
patients experience catheter-related bladder discomfort;

) i ) L surface ultraslippery.”” Inspired by pitcher plants, researchers
symptoms include a burning sensation, pain in the lovs\rfg have engineered lubricant-impregnated surfaces (LIS) that are
abdomen, muscle spasms, and a sense of urgency to urinate.

i ) i ; ) ; ultraslippery to immiscible test liquids.”™>* To stably lock the
Another issue is catheter-associated urinary tract 1nfect1(?ns lubricant in place, the surface is either micro/nanostruc-
(CAUTIs), with more than 1 million cases occurring tured®®*° or highly absorbent.*"*> Over the past decade, LIS

1,10—13 1~: ..
annually. Discomfort and urethral injury can occur have been shown to repel a wide variety of test liquids as well

during insertion, especially for males (who have a longer as exhibit antifouling, "’ antiscalirég,44 anti-icing,” enhanced
urethra).' Long-term complications from urethral trauma can condensation,*® water harvesting,4 and droplet sorting.47
include strictures, incontinence, and infertility; " although rare, Germane to the above topic of catheters, biomedical devices
patient mortalities have also been reported.15 The incidence with LIS exhibit antibiofouling.43’48_52 For example, a
rate for urethral trauma is about 0.3—1.3% of all catheters lubricant-infused polydimethylsiloxane (PDMS) coating was
inserted; of those affected, over 80% had a complication that applied to polyurethane catheters to reduce biofilm formation
was Clavien-Dindo grade 2 or higher.ls_17 by an order of magnitude for a flow culture of P. aeruginosa.53
There are two primary types of urologic catheters: A follow-up study showed that lubricant-infused PDMS was
intermittent and indwelling.'*"*" Intermittent catheters are highly resistant to P. aeruginosa and S. epidermidis biofilms,
inserted for just long enough to empty the bladder and then even under static conditions for days.”* Using a flow culture
removed again, repeating the process multiple times per day.”! bioreactor, another study showed a 10°-10* reduction of
Indwelling catheters are left in place after insertion, and urine bacterial cell density for lubricant-infused PDMS compared to
is drained into a collection bag; a water-filled balloon holds the conventional PDMS for P. aeruginosa grOWth-ss However, to
catheter in place within the bladder.”” This latter type is also date, there are no studies of how urethral catheters with LIS
known as the Foley catheter, which was invented in 1929 by affect the sliding friction during urethral insertion and
Frederic Foley."”* For both types of catheters, several studies withdrawal. Given that multiple reports measure a suE)ésEeggltive
have compared the performance of uncoated versus coated reduction in drag for fluid flows over a LIS surface,”™ " we
catheters.”* ™" The most common choice is a hydrophilic
polymer coating that becomes slippery when wet. Clinical Received: October 2, 2023
studies have shown that the use of hydrophilic catheters Revised: ~ December 19, 2023
significantly reduces the incidence of CAUTIs. It has also been Accepted:  December 29, 2023
demonstrated that catheters coated with hydrophilic polymers Published: January 10, 2024

exhibit reduced surface friction, where the friction coefficient
depends on the molecular weight of the selected copolymer.*
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Figure 1. Lubricant-impregnated slippery surfaces are inspired by pitcher plants. (a) Pitcher plants exhibit a slippery surface for prey-trapping by
impregnating a microstructured peristome with secreted nectar and rainwater. The photograph entitled “Pitcher Plant” is by Judith and is reprinted
with permission under a CC BY-NC 2.0 Deed license, Copyright 2016. (b) Photograph of a Foley catheter, which passes through the urethra and
into the bladder to drain urine. (c) Schematic of the fabrication process of lubricant-impregnated slippery surfaces on catheter tubes to reduce the

sliding friction.

Figure 2. Photograph of the pig’s urethra inside a tube. (a) Front view of the pig urethra inside the tube. (b) Side view of the urethra tube with a

length of 7 cm.

hypothesize that LIS coatings also have the potential to reduce
sliding friction during catheterization.

Here, we designed a LIS treatment for catheter tubes and
measured the sliding friction during urethral insertion and
withdrawal. The LIS treatment comprises a PDMS coating that
was swollen with silicone oil (Figure 1c). The sliding friction
was measured by inserting and withdrawing a catheter tube
into a pig urethra fixed to a force transducer. Compared to the
control case of an uncoated tube, the catheter with LIS
decreased the sliding friction during insertion by more than a
factor of 2. This indicates that LIS has the potential to
substantively increase patient comfort and decrease the risk of
complications during catheterization.

B MATERIALS AND METHODS

Preparation of Pig Urethra Tubes. Test samples were
prepared by sewing pig urethras within autoclaved tubes with
an inner diameter of 15.875 mm (Figure 2a). The fresh urethra
was cut from a deceased pig body and directly sewn into a tube
in a veterinary laboratory at the Virginia-Maryland College of

Veterinary Medicine. The urethra tubes were frozen to keep
fresh, and thawed overnight in a refrigerator and rinsed with
buffer solution (0.9% sodium chloride) before testing. Both the
pig urethra and the autoclaved tube were approximately 7 cm
long (Figure 2b). The pig urethra is physiologically
comparable to the human urethra and is, therefore, a suitable
candidate as a model system for study.””®°

Fabrication of Lubricant-Impregnated Tubes. Clear
polyvinyl chloride (PVC) tubing (Finger Lakes Extrusion
Corp., Flextubing 8870-424S5) of inner diameter D; = 3.175
mm and outer diameter D, = 6.35 mm was cut into 10 cm-long
test segments to mimic a catheter tube. The choice of 10 cm
for the catheter tube length was to ensure that a significant
portion of the tube could remain external to the urethra to
keep it attached to the force testing system. The French size of
a urethral catheter is 14—16 for adult men, 10—12 for adult
women, and 8—10 for female pigs, where the French size is the
diameter in millimeters multiplied by 3.°' Each tube was rinsed
with ethanol and deionized water, dried at room temperature,
and treated with oxygen plasma (PlasmaEtch Inc., USA) to
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tailor surface characteristics and increase surface receptivity for
the polymer coating. PDMS (Dow Sylgard 184) was prepared
by mixing the silicone elastomer base with a silicone elastomer
curing agent in a 10:1 ratio in a plastic container. The mixture
was stirred for S min with a wood dowel and allowed to sit at
room temperature until there were no appreciable bubbles
remaining. Afterward, the plasma-treated catheter tubes were
rinsed in the PDMS solution to obtain a uniform coating on
the tube’s exterior (the tube’s interior was plugged). The
PDMS-coated catheters were cured in an oven at 70 °C for a
curing time of 2 h. As a result, only the outer surface of the
catheters received the PDMS layer, which covalently binds the
polymer surface with the PDMS coating (thickness of a few
microns). To transform a dry PDMS coating into a LIS, a
PDMS-coated tube was submerged overnight in a graduated
cylinder containing 10 ¢St (0.93 g/mL at 25 °C), 100 cSt (0.96
g/mL at 25 °C), or 1000 cSt (0.97 g/mL at 25 °C) silicone oil.
After the tube was pulled from the oil bath, it was hung
vertically for several hours to drip off any excess silicone oil.
For PDMS submerged in silicone oil for 12 h, the mass
swelling ratio is approximately SR ~ 2.1 due to impregna-
tion.>” This large swelling ratio is because, in the presence of a
chemically compatible solvent, the polymer chains of PDMS
extend to maximize Ec_)lymer—solvent interactions throughout
the polymer matrix.*”**%>

Setup of the Sliding Friction Tests. A microforce testing
system (MTS, Tytron 250) was used to measure the sliding
friction between a pig urethra and a catheter. This Tytron 250
load unit works together with TestStar software and a force
transducer, whose load capacity ranges from 1 mN to 250 N.
Before a test, a frozen pig urethra tube was thawed overnight in
a refrigerator. The urethra tube was rinsed with a buffer
solution (0.9% sodium chloride, Irrigation USP) before any
given trial. The rinsed urethra tube was placed on a fixed
platform on the MTS containing the force transducer, and the
catheter tube was placed on the opposing translation stage.
The insertion and withdrawal processes were achieved using
the software to translate the catheter tube at a fixed speed of §
mm/s. The choice of 5 cm for displacement was to ensure that
the front end of the catheter tube would not go beyond the
end of the urethra tube during insertion. The friction as a
function of displacement was captured by the force transducer
and generated by the TestStar system software. Five different
types of catheter tubes were tested, respectively: uncoated (U),
a dry PDMS coating (PDMS), PDMS infused with 10 cSt
silicone oil (LIS-10), PDMS infused with 100 cSt silicone oil
(LIS-100), or PDMS infused with 1000 cSt silicone oil (LIS-
1000). All silicone oils were purchased from Sigma-Aldrich.
Three trials were carried out to calculate the averages and
standard deviations.

B RESULTS AND DISCUSSION

PVC tubing was used as a representative catheter tube
material. Material choices for Foley catheters include silicone,
latex, or PVC;®® we elected to use PVC as it is also commonly
used for intravascular catheters.®* Also, the stiffness of the PVC
tubing (relative to silicone) made it easier to install on the
microforce testing system for repeatable insertion. Five
different types of tubes were tested: uncoated PVC (U), a
dry PDMS coating (PDMS), and PDMS coatings infused with
10 cSt silicone oil (LIS-10), 100 cSt silicone oil (LIS-100), or
1000 cSt silicone oil (LIS-1000). The dry PDMS-coated tube
approximates the material of a silicone catheter, while three
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different silicone oils were tested to determine whether the
viscous resistance of the lubricant affects the sliding friction.
PDMS is a popular material choice for LIS because it is highly
compatible with silicone oils in particular, and the hydro-
phobicitz of PDMS minimizes the chances of water displacing
the oil.’

A microforce testing system was used to measure the sliding
friction between the pig urethra and catheter during insertion
and removal. Figure 3 shows how the sliding friction

b Starting position of inserting C Inserting

Pig Urethra

ﬂ

€ Withdrawing

Figure 3. Sliding friction test between pig urethra tubes and catheters.
(a) Photograph of the sliding friction measurement with the pig
urethra and PVC tube fixed on the platforms. The platform with the
pig urethra is static, while the platform with the PVC tube is inserted
into the pig urethra and then withdrawn. (b) Initial insertion position
of the pig urethra and PVC tube. (c) Inserting process with a speed of
S mm/s. (d) Initial withdrawal position of the pig urethra and PVC
tube. (e) Withdrawing process with a speed of S mm/s.

d Starting position of withdrawing

measurements were obtained. Prior to insertion, the very tip
of the catheter tube was manually placed at the entrance of the
fixed pig urethra to ensure alignment. Subsequently, the MTS
was actuated to induce linear insertion of the catheter at a fixed
rate of S mm/s, followed by withdrawal at 5 mm/s. The total
displacement in both directions was approximately 5 cm.
Between trials for a given catheter type, the urethra was rinsed
with a buffer solution. When switching to a different catheter
type, an entirely new urethra was used to avoid cumulative
tissue damage, conflating the comparison of tube performance.

Figure 4a graphs the sliding friction as a function of the
displacement during insertion. For the first half of the insertion
process, the friction does not vary appreciably among the five
types of catheter tubes. We expect that this is due to the
leading edge of the catheter tube being the dominant source of
friction early on. This is supported by the fact that the sliding
friction almost instantaneously jumps to F & 200 mN at the
beginning of insertion and only increases weakly with
displacement. After a displacement of about 30 mm, the
friction force doubles to F ~ 400 mN, indicating that the
sliding friction from the catheter’s surface area begins to
outcompete that of the leading edge. Consequently, the curves
diverge for all five types of catheter tubes as the surface area
continually increases with continued insertion, exhibiting

https://doi.org/10.1021/acsomega.3c07640
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Figure 4. Sliding friction graphs for the insertion and withdrawal processes. (a) Friction of the insertion process as a function of the insertion
displacement for different types of catheters. The insertion displacement is set to zero in Figure 3b. (b) Bar graph of the maximum friction during
the insertion process. (c) Friction of the withdrawal process is a function of the withdrawal displacement for different types of catheters. The
withdrawal displacement is set to zero in Figure 3d. (d) Bar graph of the maximum friction during the withdrawal process. All values represent the
average of three separate trials, with error bars corresponding to the standard deviation.
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Figure S. Sliding friction during catheter insertion, showing the variation across three trials on the same pig urethra. (a) For the uncoated (U) PVC
catheter, the maximum friction increased from trial to trial. (b) In contrast, the lubricant-impregnated catheters show minimal trial-to-trial variation

in maximal sliding friction, as shown here for the LIS-10 catheter.

markedly different maximal friction values by the end of the
insertion process, where the friction force is maximal.

The maximal friction force for each type of catheter surface
is compared in Figure 4b. As expected, the uncoated tube
exhibited the highest maximal friction force compared to the
other tubes (Fy = 880 + 80 mN, n = 3 trials). The catheter
with the dry PDMS coating was slightly better, with Fppy =
700 + 30 mN, due to PDMS being softer than PVC. The
Young’s modulus of PVC is approximately 3.4 GPa, compared
to only 2.85 MPa for PDMS using a 10:1 cure ratio.”>*® The
lubricant-infused PDMS coatings performed markedly better
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with Fyg 1 = 420 + S mN, Fyy 100 = 478 % 2 mN, and Fyyg 1000
= 500 + 20 mN. The two key takeaways are that LIS catheters
roughly halve the sliding friction of dry catheters and that the
slipperiness of the LIS catheters improves weakly with
decreasing lubricant viscosity.

Figure 4c graphs the sliding friction versus displacement for
the reverse process of catheter withdrawal from the urethra.
The friction curves readily increase with displacement during
the initial 10 mm withdrawal and are independent of the
catheter type. Both of these facts suggest the dominance of the
receding edge in generating friction during early withdrawal.

https://doi.org/10.1021/acsomega.3c07640
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The curves then diverge weakly as they peak around 15 mm
displacement, followed by a smooth decrease to zero friction as
the withdrawal is completed. It follows that the friction of the
catheter’s surface area becomes dominant at the peak of each
curve, such that F decreases linearly for the remaining
withdrawal.

Finally, the maximal friction force during withdrawal is
graphed in Figure 4d for each catheter type. The LIS-10
catheter still exhibited the smallest friction of Fyg o = 129 +
12 mN. Surprisingly, LIS-1000 featured the highest maximal
friction of Fy g 1000 = 200 + 90 mN, compared to Fy = 140 =+
30 mN, Fppys = 130 + 30 mN, and Fjjq 00 = 162 + 15 mN.
However, when considering the much larger error bars of the
friction measurements during withdrawal, there is no obvious
difference between the catheter types. Further, these maximal
friction values for withdrawal are substantially smaller than for
insertion, in some cases by nearly an order of magnitude. It is,
therefore, only for insertion and not for subsequent withdrawal
that LIS catheters seem to have the potential to reduce patient
discomfort and injury. The general trends shown in Figure 4,
of a two-step friction force during insertion (insertion-
dominant followed by a kinetic area-dominant) and a much
weaker force during withdrawal, are consistent with a recent
report.”’

For the noninfused catheters only, the sliding friction
consistently increased when iterating across the three trials
with the same urethra sample. This can be seen in Figure Sa,
where the maximum friction force was F; & 800 mN for trial 1
but increased to Fy & 1000 mN by trial 3. In contrast, there
was minimal trial-to-trial variation for the infused catheters,
where the maximal friction was only Fii5 o ®# 420 mN for
every trial (Figure S). The trial-to-trial increase in the sliding
friction for the PVC catheter strongly implies cumulative tissue
damage, whereas the consistent and low sliding friction of the
LIS catheter implies minimal tissue damage.

The high-purity silicone oil impregnated in the catheters
should be safe. Silicone is widely used in the medical sector
due to its high biocompatibility and desirable clinical
performance.”” For example, the safety of breast implants
involving silicone has been demonstrated to be nontoxic by the
National Institutes of Health.°® As discussed earlier, medical
tubing infused with silicone oil has the added benefit of lower
bacterial attachment to reduce the chances of bacterial
infections.” If desired, the concept of reducing sliding friction
with lubricant-impregnated urethral catheters should also
extend to other choices of biocompatible working fluids (ex:
perfluororodecalin).”’ Durability tests were not possible in the
present study; however, it is well-known that the ultralow
contact angle hysteresis of lubricant-infused PDMS is stable for
many days even under rugged conditions.’>*’

B CONCLUSIONS

We have shown that a lubricant-impregnated coating reduces
the sliding friction of a catheter, complementing its
antibiofouling capabilities that have already been demon-
strated.> By infusing PDMS coatings with silicone oil, we
designed lubricant-impregnated catheter tubes that decreased
the sliding friction during urethral insertion by more than two
times compared to an uncoated PVC catheter tube. Measure-
ments were obtained by sewing a fresh pig urethra within a
supporting tube, fixing the sample to a force transducer, and
inserting an opposing catheter at a fixed translation rate. While
decreasing the viscosity of the lubricant did weakly decrease
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the sliding friction, all LIS catheters performed dramatically
better than an uncoated catheter. The catheter type did not
appreciably affect the friction of withdrawing the catheter, but
this is less important as the sliding friction during withdrawal
was substantively less than insertion anyway. Fruitful avenues
for future research could include testing noninfused versus
infused catheters comprised of pure silicone or latex (rather
than PVC or PDMS-coated PVC), clinical trials to quantify the
real-life increase in patient comfort and decrease in
complications, and imaging the urethra postinsertion to
correlate the differences in friction and trial-to-trial variation
with the extent of internal damage. It would also be interesting
to quantify the relationship between friction reduction and
biofilm development.
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