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Objectives: To investigate changes in functional connectivity between the vermis and
cerebral regions in the resting state among subjects with bipolar disorder (BD).

Methods: Thirty participants with BD and 28 healthy controls (HC) underwent the resting
state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity
(rsFC) of the anterior and posterior vermis was examined. For each participant, rsFC
maps of the anterior and posterior vermis were computed and compared across the two
groups.

Results: rsFC between the whole vermis and ventral prefrontal cortex (VPFC) was
significantly lower in the BD groups compared to the HC group, and rsFC between
the anterior vermis and the middle cingulate cortex was likewise significantly decreased
in the BD group.

Limitations: 83.3% of the BD participants were taking medication at the time of the
study. Our findings may in part be attributed to treatment differences because we did
not examine the effects of medication on rsFC. Further, the mixed BD subtypes in our
current study may have confounding effects influencing the results.

Conclusions: These rsFC differences of vermis-VPFC between groups may contribute
to the BD mood regulation.

Keywords: bipolar disorder, resting state, functional connectivity, cerebellum, vermis

Abbreviations: BD, Bipolar disorder; MRI, Magnetic resonance imaging; rsFC, Resting-state functional connectivity;
fMRI, functional MRI; ROI, Region of interest; HC, Healthy control; HDRS, Hamilton Depression Rating Scale; YMRS,
Young Mania Rating Scale; BOLD, Blood oxygen level dependence; GLM, Generalized linear model; FWHM, Full width
at half maximum; VPFC, Ventral prefrontal gyrus.
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INTRODUCTION

Bipolar disorder (BD) is a severe psychiatric illness characterized
by recurrent disturbances in sleep, behavior, perception,
cognition, and mood regulation (Goodwin and Geddes, 2007).
The cerebellum has long been regarded as a brain structure
involved in motor systems (anterior lobe and lobule VI),
there is growing contemporary evidence that it influences
cognition (posterior lobe) and mood regulation (the vermis;
Schutter and Van Honk, 2005; Schmahmann, 2019). The
cerebellum’s involvement in mood regulation is consistent
with earlier clinical studies that suggested the cerebellum
functioned as an emotional pacemaker (Heath, 1977; Heath
et al., 1979), as well as contemporary evidence that implicates
the cerebellar vermis and fastigial nucleus as the limbic
cerebellum (Schmahmann, 2001, 2004). The fastigial nucleus,
one of the deep cerebellar nuclei, mediates the connection
between the vermis and the cerebellar inferior peduncle and
connects to the reticular formation and the limbic system
through the inferior peduncle (Schmahmann, 2004). The
connections between the vermis and both the reticular and
limbic system imply that the vermis plays an important role
in the regulation of affect (Stoodley and Schmahmann, 2009;
Moulton et al., 2011). Some studies found that multi-episode
BD patients have smaller vermal V2 and V3 areas via structural
magnetic resonance imaging (MRI) compared to first-episode
patients (DelBello et al., 1999; Mills et al., 2005). These
data suggested that the vermis might therefore be subject to
atrophy during BD spells. Moreover, mood disorders such
as BD have been linked to impairments in anterior limbic
brain structures, wherein the cerebellum may modulate mood
(Strakowski et al., 2002).

Recent studies of spontaneous resting-state functional
connectivity (rsFC) have focused on the BD brain network
abnormalities such as abnormal rsFC in the frontotemporal
system (Chepenik et al., 2010; Dickstein et al., 2010) and
corticolimbic system (Anand et al., 2009). rsFC between the
cerebellum and the whole brain can also be defined as the
temporal dependency of their neural activation patterns by their
coherence in spontaneous fluctuations in resting-state functional
MRI (fMRI) signals (Buckner and Vincent, 2007). One recent
MRI study found that the cerebellum and basal ganglia are
closely correlated with mood states in BD, representing the
altered metabolic activity of BD patients’ cerebellum (Johnson
et al., 2018). Another resting-state fMRI study also found altered
cerebellum-brain region connectivity in unmedicated BD (Chen
et al., 2019).

In this study, we utilized a region-of-interest (ROI)
based approach to examine rsFC in individuals with BD
and healthy control (HC) participants. We selected the
vermis as ROI and hypothesized that the BD group would
show altered rsFC between vermis and cerebral regions
which are involved in mood regulation compared to the
HC group.

MATERIALS AND METHODS

Subjects
All BD participants were diagnosed using the Structured Clinical
Interview for DSM-IV (Bell, 1994) and fulfilled DSM-IV criteria
for BD in this study. Using DSM-IV criteria, psychologists
of our working group recruited all BD patients from the
outpatient center of the First Hospital of China Medical
University and Mental Health Center of Shenyang between June
2010 and August 2018. Enrolled patients were consistently aged
18–50 years right-handed, and exhibited neither neurological
illness nor head trauma involving loss of consciousness exceeding
5 min, nor any major physical disorder or contraindication
for fMRI scanning. Psychologists systematically evaluated the
presence or absence of Axis I Disorder for the recruited
patients and assessed patients’ mood state at scanning according
to the DSM-IV Structured Clinical Interview. Psychological
examinations of all HCs recruited from the local community
were normal, these examinations confirmed no personal histories
of mental illness, mood, psychotic, anxiety, or substance misuse
disorders in their first-degree family members. Thirty BD
patients and 28 HCs were ultimately included in the study
population (matched by age and gender, p > 0.05). Symptoms
were assessed using the Hamilton Depression Rating Scale
(HDRS) and the Young Mania Rating Scale (YMRS). Twenty-
five (83.3%) of the BD participants were taking medication
at the time of scanning. Some of the participants in this
study also participated in our previous study (Xu et al., 2014).
Their behavioral assessment was made by XJ. All participants
were approved by the ethics committee of the first hospital
of China Medical University and provided a signed, written
informed consent.

At the time of scanning, five (16.7%) participants with BD
met DSM-IV criteria for a depressive episode and six (20.0%)
for a manic/mixed or hypomanic episode, whereas the remaining
19 (63.3%) were euthymic. Detailed demographic and clinical
characteristics of the participants are presented in Table 1.

MRI Scanning and Image Preprocessing
All fMRI scans were performed using a 3.0-T GE Signa System
(GE Signa, Milwaukee, Wisconsin, USA) in the Department
of Radiology, the First Hospital of China Medical University.

TABLE 1 | Demographic and clinical data of subjects.

Healthy Bipolar disorder P

N 28 30 NA
Age (years, mean ± SD) 31.38 ± 8.08 30.51 ± 8.79 0.836
Sex (male: female) 13:15 18:12 0.300
HDRS (mean ± SD) 0.40 ± 0.77 9.71 ± 10.12 <0.001
YMRS (mean ± SD) 0.06 ± 0.35 6.43 ± 9.33 <0.001
Medication(yes/no) NA 25/5 NA
Typical antipsychotics (N) NA 16 NA
Anticonvulsant (N) NA 14 NA
Lithium salts (N) NA 5 NA
Antidepressants (N) NA 11 NA

SD, standard deviation; HDRS, Hamilton Depression Rating Scale; YMRS, Young Mania
Rating Scale; NA, not applicable; N, number.
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FIGURE 1 | The generated anterior (gray) and posterior (yellow) regions of interest (ROIs) in a representative subject.

The clinician asked the patients to remove any metal jewelry
or accessories that might interfere with the machine and briefly
introduced the procedure of MRI scanning to reduce the anxiety
of patients. Foam pads were provided to reduce head motion
and scanner noise when patients were lying down. Technician
set the parameter of a 3D-SPGR sequence to acquire three-
dimensional T1-weighted images in a sagittal orientation with
the repetition time (TR) = 7.1 ms, echo time (TE) = 3.2 ms,
field of view (FOV) = 24 cm×24 cm, flip angle = 15◦,
matrix = 256 × 256, slice thickness = 1.8 mm, no gap. The fMRI
scanning was performed in darkness, and an observer stood to
one side to ensure the patients kept their eyes closed, relaxing,
and moving as little as possible. The slices of functional images
were positioned approximately along the AC-PC line using a
gradient echo-planar imaging (EPI): TR = 2,000 ms, TE = 30 ms,
FOV = 24 cm × 24 cm, flip angle = 90◦, matrix = 64 × 64, slice
thickness = 3 mm, no gap, slices = 35. For each participant, the
fMRI scanning lasted 7 min. Image preprocessing was carried
out using SPM81 and DPABI (Yan et al., 2016). Preprocessing
consisted of slice-time correction, motion correction, spatial
normalization, and spatial smoothing full width at half maximum
(FWHM = 6 mm). Movement parameters were extracted out
by SPM8 for each participant, which can exclude the data sets
with more than 2 mm maximum translation along the x, y, or z
axes, allowing 2◦ of maximum rotation about three axes among
each image. Further preprocessing consisted of removing linear
drift through linear regression and temporal band-pass filtering
(0.01–0.08 Hz) to reduce the effects of low-frequency drifts and
physiological high-frequency noise.

Definition of ROIs
The vermis was divided into anterior vermis (vermis I-V) and
posterior vermis (vermis VI-IX) by AAL (Anatomical automatic
labelling; Pfefferbaum et al., 2011; Figure 1). For each ROI, the
blood oxygen level dependence (BOLD) time series of the voxels
within the ROI were averaged to generate the reference time
series.

1http://www.fil.ion.ucl.ac.uk/spm

A whole-brain mask was created by taking the intersections
of the normalized T1-weighted high-resolution images of
all participants, which were stripped using the software
BrainSuite22.

FC Analysis
A regression generalized linear model (GLM) was created for
each participant, including a time series regressor for one
of the two vermal subregions, and applied to each of eight
nuisance covariates (white matter, cerebrospinal fluid, and six
motion parameters). Correlation analysis was performed in
a voxel-wise manner between the seed ROIs and the whole
brain using DPABI. The correlation coefficients were then
transformed to z-values using the Fisher r-to-z transformation
for more conforming to Gaussian distribution. A one-sample t-
test model was used to delineate the functional connectivity of
each vermis ROI in the first-level analysis. Direct comparisons
were conducted to identify differences in functional connectivity
between BD vs. HC in the second-level random-effects analysis.

Statistical Analyses
Statistical significance was determined by a corrected
P < 0.05 that combined individual voxel p(uncorrected) < 0.01 with
GRF (Gaussian random field) correction for cluster-level
inference of p< 0.05 (Bousse et al., 2012). Additional exploratory
analyses (ANCOVA) were performed for effects of medications
(overall presence or absence of medication) on the regions that
showed significant differences between the HC and BD groups.
Finally, significant correlations between HDRS, YMRS in the
BD group, and the transformed z-scores showing significant
group differences were performed using exploratory correlation
analyses to identify the relationship between the symptom
severity and the strength of connectivity. A two-tailed p level of
0.05 was used as the criterion of statistical significance.

RESULTS

Regions with changed vermal connectivity between the BD
and HC groups are shown in Table 2. Compared to the HC

2http://brainsuite.org
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TABLE 2 | Detailed information for clusters showing group connectivity differences in BD at the given threshold (cluster size > 297 mm3, and P < 0.00014).

Voxels PV_X PV_Y PV_Z H Brain regions (AAL atlas) BA T

Anterior vermis
104 −6 68 7 L Ventral prefrontal cortex (Frontal_superior_medial) 10 −5.030
190 7 −16 32 R Middle cingulate cortex (Cingulum_middle) 23 −4.160

Posterior vermis
201 −4 69 5 L Ventral prefrontal cortex (Frontal_superior_medial) 10 −4.430

PV: peak voxel. X, Y, Z: coordinates in the Montreal Neurological Institute space. BA: Brodmann area. T: T values from a t-test of the peak voxel (showing greatest statistical difference
within a cluster).

FIGURE 2 | Functional connectivity between anterior vermis and ventral prefrontal cortex, middle cingulate cortex in the comparison between bipolar disorder (BD)
and healthy controls (HC) groups. Error bars represent the standard deviation of Z values at the peak voxel. BD, bipolar disorder; HC, healthy control.

group, significant differences in rsFC were observed between
the anterior vermis and brain regions that included ventral
prefrontal gyrus (VPFC; BA 10) and middle cingulate cortex
(BA 24; Figure 2), while the posterior vermis showed significant
differences in rsFC with VPFC (BA 10) in the BD group
(Figure 3). In addition, there were no significant effects of
medication on FC values in the regions that differed between
the HC and BD groups (ANCOVA test, p > 0.05). Finally,
correlation analysis was performed between the connectivity
coefficient within clusters showing significant group differences
and behavioral measures as assessed by HDRS, YMRS in
the BD group. Analyses of correlations did not show any
significant effects between functional connectivity and clinical
scores (Table 3).

DISCUSSION

The current study examined vermal connectivity in BD patients.
We discovered that two cerebral regions (VPFC and middle
cingulate cortex) showed decreasing connectivity with the
vermis. Previous studies show that these two brain regions

TABLE 3 | The correlation between the strength of these changed connectivity
regions and the clinical scores in BD group.

Brain regions Clinical scores

HDRS P YMRS P

Changed connectivity with the anterior vermis
Ventral prefrontal cortex −0.307 0.332 −0.434 0.213
Middle cingulate cortex −0.532 0.143 0.125 0.544

Changed connectivity with the posterior vermis
Ventral prefrontal cortex −0.631 0.095 0.154 0.510

The numbers in the table are Pearson’s correlation coefficients.

exhibited changed neural activity or disturbed connectivity
with other cerebral regions. We initially found the connectivity
pattern between vermis and these two cerebral regions was
similarly disturbed in BD patients.

Previous studies proposed that the vermis can be considered
as the ‘‘limbic cerebellum,’’ based on its regional connections
with limbic structures (Schmahmann, 2001, 2004). Patients with
the cerebellar cognitive affective syndrome can show emotional
lability, inappropriate laughing or crying, and changes in
affection, suggesting that these cerebellar-limbic connections are
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FIGURE 3 | Functional connectivity between the posterior vermis and ventral
prefrontal cortex in the comparison between BD and HC groups. Error bars
represent the standard deviation of Z values at the peak voxel. BD, bipolar
disorder; HC, healthy control.

involved in the modulation of emotional processing (Levisohn
et al., 2000). What’s more, malformations of the posterior
vermis have been confirmed to be associated with emotional
symptoms (Tavano et al., 2007). These studies implicated the
cerebellar vermis, especially the posterior vermis play important
roles in mood regulation. Interestingly, the VPFC has now also
been shown to play an important role in emotion processes
(Kringelbach, 2005). Many fMRI studies have found abnormal
activation of the VPFC in BD during tasks (Blumberg et al., 2003;
Elliott et al., 2004; Lawrence et al., 2004; Strakowski et al., 2004;
Malhi et al., 2005). Abnormal VPFC neural activity and disturbed
VPFC-amygdala rsFC were also observed by resting-state studies
(Liu et al., 2014; Xu et al., 2014). Trait abnormalities of VPFC
in BD are further supported by postmortem histopathological
findings such as decreased glial density and reductions in the
density of both neurons and glia (Ongur et al., 1998; Rajkowska,
2000, 2002). In our study, the entire vermis showed changed rsFC
patterns with the VPFC, establishing that the decreased rsFC of
vermis-VPFC plays an important role in the regulation of mood
linked to the core psychopathology of BD.

Another changed connectivity region of the anterior vermis,
which belongs to the anterior lobe of the cerebellum, is the
middle cingulate cortex (BA 24). The function of the anterior
cerebellar lobe is mainly associated with motor control (Stoodley
and Schmahmann, 2009). The middle cingulate cortex area is the
midsection of the cingulate gyrus in its anterior-posterior axis
and appears to be involved in both motor control and cognitive
tasks such as response selection, error detection, competition
monitoring, and working memory (Torta and Cauda, 2011).
Previous studies have consistently reported aberrant motor
control presentation in BD (Manschreck et al., 2004; Krebs et al.,
2010; Deveney et al., 2012; Weathers et al., 2012). Our findings
combined with previous studies suggest that the anterior vermis

may be involved in the motor control of BD patients, which
should be further validated by future studies.

There are several limitations to this study. First, 83.3% of
the BD participants were taking medication at the time of the
study. Although we did not find significant effects of medication
on FC values in this study, our findings may in part be
attributed to treatment differences. Second, confounding effects
may influence the result of mixed BD subtypes in our current
study; future studies that compare subtypes in BD would likely
contribute to our understanding of the underlying mechanisms
of BD. Thirdly, the sample size is modest. Finally, correlation
analyses did not reveal significant relationships between rsFC
and symptom measures in BD. In this study, only the HDRS and
YMRS symptom measurements were assessed in the BD group.
Future studies should include more comprehensive symptom
measurements to enhance our understanding of the relationship
between symptom severity and functional connectivity as well as
state vs. trait-related abnormalities in BD. Because themajority of
BD participants in this study were in remitted states, our findings
more likely reflect trait-related differences between BD and HC.

CONCLUSION

In summary, BD patients showed decreased rsFC of vermis and
VPFC as compared to the HC group. This resting-state fMRI
study suggests that the abnormal rsFC of vermis-VPFC may
contribute to mood regulation in BD patients. Further work
focusing on this field may contribute to our understanding of BD
neuropathphysiology.
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