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In recent decades the identification of pharmacogenomic gene-drug associations has evolved tremen-
dously. Despite this progress, a major fraction of the heritable inter-individual variability remains elusive.
Higher-dimensional phenomena, such as gene-gene-drug interactions, in which variability in multiple
genes synergizes to precipitate an observable phenotype have been suggested to account at least for part
of this missing heritability. However, the identification of such intricate relationships remains difficult
partly because of analytical challenges associated with the complexity explosion of the problem. To facil-
itate the identification of such combinatorial pharmacogenetic associations, we here propose a network
analysis strategy. Specifically, we analyzed the landscape of drug metabolizing enzymes and transporters
for 100 top selling drugs as well as all compounds with pharmacogenetic germline labels or dosing guide-
lines. Based on this data, we calculated the posterior probabilities that gene i is involved in metabolism,
transport or toxicity of a given drug under the condition that another gene j is involved for all pharma-
cogene pairs (i, j). Interestingly, these analyses revealed significant patterns between individual genes
and across pharmacogene families that provide insights into metabolic interactions. To visualize the
gene-drug interaction landscape, we use multidimensional scaling to collapse this similarity matrix into
a two-dimensional network. We suggest that Euclidian distance between nodes can inform about the
likelihood of epistatic interactions and thus might provide a useful tool to reduce the search space and
facilitate the identification of combinatorial pharmacogenomic associations.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Inter-individual variability in drug disposition is major cause
for lack of efficacy or adverse reactions to pharmacological treat-
ment in up to 50% of all patients, posing big challenges for medical
care and drug development. Post-market safety events resulting in
drug withdrawals, boxed warnings or safety communications
affect 32% of all novel therapeutics approved by FDA from 2001
to 2010, leading to substantial economic losses for pharmaceutical
industry [1]. Furthermore, epidemiological data from the US shows
that adverse drug reactions (ADRs) cause 8.25% and 19.2% increase
of hospital stay length and death rate, respectively, and severe
ADRs are estimated to be the 4th-6th leading cause of death [2].
It is estimated that 20–30% of these negative effects can be attrib-
uted to genetic variations and more than 200 pharmacogenomic
biomarkers have by now been incorporated into pharmacogenetic
labels that can provide clinically actionable information regarding
drug choice or dosing.

The absorption, distribution, metabolism, elimination (ADME)
of most drugs are complex and involve multiple enzymes and
transporter systems. As a consequence, it is likely that the effects
of functional alteration in one ADME protein on drug response phe-
notypes can be amplified or compensated if they coincide with
functional variation in another component involved in the disposi-
tion of the same drug [3]. Importantly, while such combinatorial
pharmacogenetic effects are plausible, only few examples have
been presented to date, including additive effects of functional
CYP2D6 duplications and UGT2B7*2 genotype for codeine toxicity
in breastfed neonates [4] and the balance between active CYP2D6
and CYP2C19 alleles for amitryptiline toxicity [5]. Importantly,
identification of such pharmacogenetic interactions is hampered
at least in part by the high complexity of the analytical problem,
which poses problems for traditional analysis methods.

Network analysis constitutes a promising strategy within the
field of systems pharmacology [6,7]. Previous seminal work
exploited protein-protein-interaction networks as templates to
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map and predict adverse events due to pharmacodynamic drug-
drug interactions using Bayesian networks [8]. Topological com-
munity detection and network proximity-based approaches that
leverage drug-drug interaction networks and disease modules
within the human protein–protein interactome can furthermore
facilitate the identification of novel drug-disease associations,
which, in turn, can be exploited for rational drug repurposing [9–
11]. In addition, network-based proximity provides a promising
measure to identify synergistic drug combinations that increase
therapeutic efficacy without additive toxicity [12]. However, net-
work analytical tools have to our knowledge not been applied in
the context of pharmacogenomic interactions.

Thus, in order to facilitate the identification of pharmacogenetic
interactions, we first systematically analyzed the landscape of drug
metabolizing enzymes and transporters for 212 drugs, including
the 100 top selling drugs of 2015 as well as all drugs with pharma-
cogenetic germline labels or dosing guidelines from FDA and phar-
macogenetic expert workgroups. Interestingly, these analyses
revealed reoccurring patterns of metabolic fates that provide
insights into protein-specific overlaps in substrate-specificity. Con-
struction of gene-drug interaction networks based on pharmaco-
logical information resulted in the formation of distinct clusters
containing chemically dissimilar entities that separated by thera-
peutic area. Furthermore, mapping of genetic variability data from
60,706 unrelated individuals on this network template reveals
areas of highest risk for pharmacogenetic sensitivity.

2. Methods and data sets

2.1. Drug information

162 drugs with pharmacogenetic labels were obtained from
FDA [13], CPIC [14] and DPWG [15]. This list was complemented
with 100 top selling drugs, resulting in a total of 212 drugs for
analysis. ADME fingerprints of all compounds were extracted from
DrugBank.

2.2. Pharmacogenetic data

Genetic variability data was obtained from ref. [16]. In short,
ADME gene variability was extracted from whole exome sequenc-
ing (WES) data from 60,706 unrelated individuals consolidated by
the Exome Aggregation Consortium [17] and the functional impact
of the identified variants was estimated using a computational pre-
diction framework optimized for pharmacogenetic predictions
[18]. The minor allele frequencies (MAFs) of variations classified
as functional were aggregated and complemented with the func-
tional variants CYP1A2*1C (rs2069514), CYP1A2*1F (rs762551),
CYP2C19*17 (rs12248560), CYP3A4*22 (rs35599367), CYP3A5*3
(rs776746), CYP2B6*22 (rs34223104), CYP2C8*3 (rs10509681,
rs11572080), CYP2C9*3 (rs1057910), CYP2E1*2 (rs72559710) and
UGT1A1*28 (rs8175347), which were not included in the analyses.
Furthermore, rs11572078 in CYP2C8 and rs2297595 in DPYD were
removed as false-positive predictions.

2.3. Network analysis

Networks were computed and visualized as previously reported
[19]. In short, the similarity of all items, both genes and drugs, was
calculated based on association strength as sij ¼ cij

wi�wj
with wi andwj

indicating the total number of occurrences and cij denoting the
number of co-occurrences of items i and j. The weighted network
used weights of edges assigned based on the number pharmacoge-
nomic labels from FDA, CPIC and DPWG, with gene-drug links
without pharmacogenomic labels weighted as 1. The non-
weighted network used equal weights for all gene-drug associa-
tions irrespective of pharmacogenomic labels. Mapping of the
items in a two-dimensional coordinate system is performed by

minimizing the objective function V x1; � � � ; xnð Þ ¼ P
i<jkxi � xjk2

with xi = (xi1, xi2) denoting a vector of the coordinates of item i
and kxi � xjk denoting the Euclidian distance between items xi
and xj. Minimization is performed under the constraint

2
nðn�1Þ

P
i<jkxi � xjk ¼ 1 to avoid the superposition of all points in a

single coordinate. This optimization problem was solved using a
variant of the SMACOF algorithm for multidimensional scaling
[20]. Assortativity was analyzed using the NetworkX package in
Python [21]. For clustering we used the sklearn.cluster module in
Python. K-means clustering was performed using a maximum of
300 iterations with 0.0001 tolerance. Agglomerative clustering
was conducted without distance threshold using ward linkage
and Euclidian distances to minimize the variance of the clusters
being merged.
3. Results

3.1. Posterior probability analysis reveals gene- and gene family-
specific pharmacological interaction patterns

In total, we extracted ADME information from 212 drugs
encompassing 94 associated genes involved in drug disposition
or toxicity. The selected drugs were distributed across therapeutic
areas with most compounds being used in psychiatry (n = 40),
oncology (n = 35) and cardiology (n = 28; Fig. 1). The genes that
were implicated in the disposition of most drugs were CYP3A4
(n = 141 drugs), ABCB1 (n = 94 drugs), CYP2D6 (n = 92 drugs) and
CYP2C19 (n = 64 drugs). In contrast, 53 genes were highly specific
and only affected 3 drugs or less. Particularly among transporters,
nomenclature can differ between the gene and its encoded protein
product, as exemplified for ABCB1 encoding P-gp or MDR1,
SLCO1B1 encoding OATP1B1 and SLC22A1 encoding OCT1. To facil-
itate comparisons between gene and protein-related data sets, we
consistently use the gene names throughout this work.

To identify patterns across pharmacological signatures, we first
calculated the Bayesian posterior probabilities Pi,j(Xi|Xj) for the
likelihood that protein i is involved in the disposition or toxicity
of a given drug under the condition that protein j is involved, for
all gene pairs (i, j) with i and j = 1,. . .n. Based on these values, we
derived DPi,j, defined as the difference between the posterior prob-
ability that gene i is involved in the disposition of a drug under the
condition that gene j is involved (Pi,j(Xi|Xj)), compared to the
unconditional probability P(Xi).

We found multiple clusters of functional metabolic overlap
(Fig. 2). For instance, GSTA1, GSTA2 and GSTM1 overlapped consid-
erably with DPi,j > 0.33. This finding is consistent with studies of
azathioprine metabolism for which activities of GSTA1, GSTA2
and GSTM1 were at least one order of magnitude higher than for
11 other GSTs [22]. Interestingly, this pattern is clearly distinct
from a neighboring cluster consisting of GSTM1, GSTM3, GSTP1
and GSTT1. Similar phenomena can be observed for the SLCO fam-
ily of transporters where SLCO1A2, SLCO1B1 and SLCO1B3 share
substantial substrate overlap, whereas SLCO1C1 and SLCO2B1 are
implicated in the transport of a different set of substrates. Further-
more, we see substantial metabolic interactions among and
between members of the UGT and SULT families of phase II
enzymes.

CYP metabolism was found to be noticeably correlated, i.e. if a
compound is known to be metabolized by one CYP enzyme, the
probability that other CYP enzymes partake in the metabolism of
the same compound is higher. Furthermore, the likelihood of CYP
metabolism is increased if SULT enzymes are involved in drug
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Fig. 1. Overview of the genes and drug considered for analysis. Large column plot depicts the number of drug associations per gene. In total n = 212 genes were considered.
The inlet shows the distribution of drugs across therapeutic areas.
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disposition, whereas, conversely, CYP metabolism is not a good
predictor for SULT metabolism. Notably, the identified patterns of
metabolic overlap were similar when all drugs with pharmacoki-
netic information from PharmGKB were considered instead (Sup-
plementary Fig. 1).

In addition to gene family- or subfamily-wide interactions, we
found highly specific interactions between individual gene pairs.
For instance, of 94 ABCB1 substrates in our data set, 81 were also
substrates of CYP3A4 (Fig. 3A). Accordingly, drugs that were trans-
ported by ABCB1 were 19.7% more likely to be also CYP3A4 sub-
strates than expected by chance. Similarly, implication of CYP2D6
was a decent predictor of CYP1A2 and CYP3A4 metabolism with
DP values of 0.14 and 0.13, respectively (Fig. 3B). Notably however,
DPCYP3A4,CYP2D6 substantially lower than DPCYP3A4,ABCB1. Further
notable associations were found for SLCO1B1 that shared substan-
tial overlap with ABCC2 (DP = 0.57) and ABCB1 (DP = 0.43; Fig. 3C).
Finally, TPMT overlapped with NUDT15 (DP = 0.74), ABCC5
(DP = 0.72) and SLC29A1 (DP = 0.72) but not with CYPs (DP < 0),
UGTs (DP < 0) or SULTs (DP < 0; Fig. 3D).
3.2. Pharmacogenetic network analysis suggests hotspots of
pharmacogenetic interactions

To get further insights into the patterns and similarities of meta-
bolic signatures across medications, we used network analytical
tools to systematically profile the gene-drug interaction landscape
(Fig. 4A). We first generated the network by mapping all analyzed
genes and drugs in a two-dimensional coordinate system so that
the distance between the nodes constitutes a measure of similarity,
whereas node size corresponds to the number of interactions. Net-
work topology was highly similar, irrespective of whether a
weighted or a non-weighted mapping approach was used (com-
pared Fig. 4A and Supplementary Fig. 2; see methods section).
The resulting network is assortative in nature with an assortativity
index of 0.33. This means that pleiotropic ADME genes that metab-
olize or transport many different medicines cluster preferentially
with other pleiotropic ADME genes, whereas ADME genes that
associate with only few drugs tend to associate with other ADME
genes that also metabolize or transport only few drugs.

To further analyze network structure, we used agglomerative
and k-means clustering. Notably, these analyses result in the for-
mation of distinct metabolic clusters that are consistent with our
posterior probability analysis, such as clusters of major CYPs, SLCs
or UGTs. Interestingly, drugs clustered mostly by therapeutic areas
(Supplementary Figs. 3 and 4). Most antidepressants and anxiolyt-
ics, including escitalopram, fluoxetine, clomipramine and diaze-
pam clustered closely together indicating similar metabolic
fingerprints, whereas antipsychotics, such as clozapine, olanzap-
ine, aripiprazole and haloperidol were clearly separated. ADME
patterns alone were moreover sufficient to cluster antineoplastic
medications, such as fluoropyrimidine (capecitabine, fluorouracil,
tegafur) and thiopurine (mercaptopurine, azathioprine and
thioguanine) compounds, as well as cisplatin. TPMT, DPYD, GSTs,
as well as ABC and SLC transporters constitute the major metabolic
focal points behind this cluster. In contrast, taxanes (paclitaxel)
and camptothecin derivates (irinotecan) show different signatures.

Next, we explored how these drug interactions might relate to
patterns of pharmacogenetic variability. To this end, we mapped
the genetic variability information that we previously extracted
from more than 60,000 individuals [16] using the weighted gene-
drug interaction network as template (Fig. 4B). We hypothesized
that if two genes are highly similar in their metabolic patterns,
i.e. are located close to each other in the network, their genetic
variability is most likely to result in combinatorial effects. Hotspots
of pharmacogenetic variability can be found around CYP2C8/
CYP2C9/ABCB1, VKORC1/CYP4F2/EPHX1 as well as ABCA1/UGT2B15/
UGT2B17/SULT2A1. However, once we factored in the number of
connections for a given gene as a metric for pharmacogenetic
importance, the largest signals can be found around the central
cluster comprising CYP genes and ABCB1. Further genes involved
in the metabolism of multiple clinically relevant drugs with con-
siderable genetically encoded functional variability include ABCG2,
UGT1A1, G6PD, TPMT, DPYD, SLC22A1 and NAT2. Combined, these
analyses provide a novel approach to leverage pharmacological
interaction data in order to reduce complexity in a combinatorial
pharmacogenomics framework, thereby pinpointing potential pri-
ority targets for the analysis of gene-gene-drug interactions.
4. Discussion

Drug transport and metabolism of many drugs is controlled by
genetic factors. Seminal twin studies demonstrated significantly
higher intrapair correlations of pharmacokinetic parameters in
monozygotic twins compared to dizygotic twins for most
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evaluated drugs in the published literature, including antipyrine,
dicoumarol, nortriptyline, tolbutamide, metoprolol and torsemide
with heritability estimates between 80% and 99% [23]. Importantly
however, common polymorphisms in genes involved in drug dis-
position can only account for a minority of the observed variability
[24]. Multiple factors have been proposed to contribute to this
missing heritability, including rare variants that are not commonly
interrogated in pharmacogenomic studies and low power to detect
gene–gene interactions [25].
Indeed, rare single nucleotide variants (SNVs) and copy number
variations (CNVs) have recently been shown to be highly prevalent
in multiple classes of ADME genes, including phase 1 and phase 2
enzymes, as well as various drug transporters [26–33], and careful
estimates suggest that such rare variants might account for up to
20–40% of the functional variability in pharmacogenes [34]. These
estimates are corroborated by structural mapping approaches,
showing that rare variants can be found in functionally important
residues in CYPs [35] as well as SLC [33] and SLCO [32]



TPMT

0

0.4

0.6

0.2

0.8

N
U
D
T1
5

S
LC
29
A
2

G
S
TM
1

A
B
C
C
5

S
LC
29
A
1

4

3

NUDT15

TPMT

0

0.1

0.15

0.05

0.2

0.25

ABCB1

C
Y
P
3A
4

A
B
C
G
2

C
Y
P
1A
2

C
Y
P
3A
5

C
Y
P
2C
19

13

81

60

ABCB1

CYP3A4

SLCO1B1

A
B
C
C
2

C
Y
P
3A
5

S
LC
O
1B
3

A
B
C
B
1

A
B
C
G
2

3

5

7

SLCO1B1

ABCC2

In
cr

ea
se

 in
 p

ro
ba

bi
lit

y
(c

om
pa

re
d 

to
 b

y-
ch

an
ce

)

0

0.08

0.12

0.04

0.16

C
Y
P
1A
2

C
Y
P
3A
7

A
B
C
B
1

C
Y
P
3A
4

C
Y
P
2C
19

CYP2D6

CYP2D6

18

56

36

CYP1A2

47

45

96

CYP3A4

Fig. 3. Examples of specific interactions between pharmacogenes. The difference (DP) between the posterior probability that gene 2 is involved in the disposition of a drug
under the condition that gene 1 is involved compared to the unconditional probability for metabolism by gene 1, defined as DP = P(gene2|gene1) � P(gene2) is shown for
gene1 as ABCB1 (A), CYP2D6 (B), SLCO1B1 (C) and TPMT (D) and the respective most closely correlated genes. Venn diagrams show the overlap of the number of drugs for the
top hits for each respective gene.

56 Y. Zhou, V.M. Lauschke / Computational and Structural Biotechnology Journal 18 (2020) 52–58
transporters. Thus, structural evaluations constitute important
tools to improve our understanding of functional consequences
of pharmacogenetic variants. However, whether rare variant profil-
ing can provide clinically actionable information that can improve
patient outcomes remains to be determined [36,37].

Besides rare variations, gene–gene interactions are suggested to
contribute to the unexplained genetically encoded variability in
drug disposition. We hypothesized that functional similarities
between genes, as defined by shared pharmacological pathways,
might flag genes that are more likely to have epistatic interactions.
To comprehensively map the gene-drug interaction landscape we
employed a network analysis strategy and multidimensional scal-
ing. Interestingly, pharmacological information alone was suffi-
cient to recapitulate structural similarities between drug binding
sites. For instance, ABCB1 clustered together with various CYP
genes including CYP3A4, whereas other ABC transporters cluster
distinctly different. CYP3A4 and P-gp (encoded by ABCB1) have
been shown to have flexible promiscuous binding pockets
[38,39], resulting in substantial overlap between CYP3A and P-gp
substrates and inhibitors [40].

While UGT enzymes cluster closely together in the network, a
separation between UGT1 and UGT2 family members can be
observed. These findings align with previous functional analyses
showing that members of the UGT1 and UGT2 subfamilies have
overall overlapping substrate specificity that can differ however
in their ability to glucuronidate specific chemical structures, such
as tertiary amines or planar phenols [41]. Similarly, network anal-
ysis revealed clear functional similarities between the genetically
unrelated cation-linked concentrative nucleoside transporters of
the SLC28 subfamily and the SLC29 family of energy-independent,
equilibrative nucleoside transporters [42].

Besides indicating overlaps in substrate specificity, networks can
give insights into metabolic interdependencies. For instance, the
posterior probability of metabolism by CYPs was much higher if
SULTs were involved in the disposition of the respective drug. How-
ever, the probability that a compound is metabolized by SULTs was
not detectably increased among CYP substrates compared to all
drugs.Moreover, GSTmetabolismand SLC transportwith the excep-
tion of SLC22A1 (OCT1) and SLC10A2 (ASBT) were largely uncorre-
lated with CYP metabolism. Notably, community identification in
networks constitutes a prolific field of research and a variety of con-
ceptually different algorithms have been presented that rely on cen-
trality measures [43], multifractal or differential network geometry
[44,45], graphmodularity [46] or label propagation [47]. Application
of these tools to pharmacological and pharmacogenetic networks is
an interesting frontier of network research that promises to provide
further insights into network function, organization and robustness.

We suggest that pharmacological networks might provide a
useful tool for the identification of combinatorial pharmacoge-
nomic effects. Specifically, we argue that genetically encoded func-
tional variability in genes with substantial pharmacological
overlap might be more likely to result in complex gene-gene-
drug interactions than unrelated genes whose nodes in the net-
work are distant. As such, mapping of genetic variability on the
network template, reveals hotspots in which multiple variable
genes share functional similarities and might thus represent
appealing candidates for the identification of combinatorial genetic
effects. From a structural perspective, the high degree of assortativ-
ity suggests that the network is rather robust to perturbations, i.e.
that disruption of central nodes due to loss-of-function polymor-
phisms or chemical inhibition is not sufficient to cause the cause
the network as a whole to become disconnected. This finding is
consistent with the observation that the most severe ADRs, such
as fluoropyrimidine toxicity in individuals with reduced DPYD
function and mercaptopurine myelosupression in TPMT deficiency,
affect nodes with low connectivity. In contrast, disruption of highly
connected nodes, such as CYP2C19 and CYP2D6, is common but
only rarely results in severe ADRs.

While we believe that our approach constitutes a relevant com-
plement to current analysis methods, multiple limitations have to
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be considered. The selection of ADME proteins might be biased by
the analytical assays, as these are often conducted in batteries. For
instance, when investigators are interested in the phase 2 metabo-
lism of a compound of interest, they are more likely to test multi-
ple phase 2 enzymes in parallel instead of testing one isolated
enzyme, thus increasing the likelihood to identify substrate over-
lap. Furthermore, our analysis was based on qualitative pharmaco-
logical information and we envision that the integration of
quantitative data will further refine interaction networks and facil-
itate the identification of gene-gene-drug interactions.

In summary, network analyses of gene-drug interactions based
on pharmacological information alone resulted in the formation of
distinct clusters that can inform about the likelihood of epistatic
interactions between pharmacogenes and thus might provide a
useful tool to handle the complexity explosion of higher-
dimensional interactions, which overwhelms conventional analy-
sis methods.

Declaration of Competing Interest

V.M.L is co-founder and owner of HepaPredict AB. Y.Z. has no
conflicts of interest to declare.

Acknowledgments

The work was supported by the Swedish Research Council
[grant agreement numbers: 2016-01153 and 2016-01154], by the
Strategic Research Programme in Diabetes at Karolinska Institutet
and by the European Union’s Horizon 2020 research and innova-
tion program U-PGx [grant agreement number 668353]. The



58 Y. Zhou, V.M. Lauschke / Computational and Structural Biotechnology Journal 18 (2020) 52–58
authors thank the Exome Aggregation Consortium and all con-
tributing groups for sharing their data, which was instrumental
for this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2019.11.010.

References

[1] Downing NS, Shah ND, Aminawung JA, Pease AM, Zeitoun J-D, Krumholz HM,
et al. Postmarket safety events among novel therapeutics approved by the US
food and drug administration between 2001 and 2010. JAMA 2017;317
(18):1854–63.

[2] Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in
hospitalized patients. JAMA 1998;279(15):1200.

[3] Wilke RA, Reif DM, Moore JH. Combinatorial pharmacogenetics. Nat Rev Drug
Discovery 2005;4(11):911–8.

[4] Madadi P, Ross CJD, Hayden MR, Carleton BC, Gaedigk A, Leeder JS, et al.
Pharmacogenetics of neonatal opioid toxicity following maternal use of
codeine during breastfeeding: a case-control study. Clin Pharmacol Ther
2009;85(1):31–5.

[5] Steimer W, Zöpf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J, et al.
Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6
and CYP2C19 identifies patients with low or high risk for side effects in
amitriptyline therapy. Clin Chem 2005;51(2):376–85.

[6] Zhao S, Iyengar R. Systems pharmacology: network analysis to identify
multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012;52
(1):505–21.

[7] McGillivray P, Clarke D, Meyerson W, Zhang J, Lee D, Gu M, et al. Network
analysis as a grand unifier in biomedical data science. Ann Rev Biomed Data Sci
2018;1(1):153–80.

[8] Huang J, Niu C, Green CD, Yang L, Mei H, Han J-DJ. Systematic prediction of
pharmacodynamic drug-drug interactions through protein-protein-interaction
network. PLoS Comput Biol 2013;9(3):e1002998.

[9] Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási A-L, et al.
Network-based approach to prediction and population-based validation of in
silico drug repurposing. Nat Commun 2018;9(1):2691.

[10] Udrescu L, Sbârcea L, Topîrceanu A, Iovanovici A, Kurunczi L, Bogdan P, et al.
Clustering drug-drug interaction networks with energy model layouts:
community analysis and drug repurposing. Sci Rep 2016;6(1):32745.

[11] Cheng F, Lu W, Liu C, Fang J, Hou Y, Handy DE, et al. A genome-wide
positioning systems network algorithm for in silico drug repurposing. Nat
Commun 2019;10(1):3476.

[12] Cheng F, Kovács InA, Barabási A-L. Network-based prediction of drug
combinations. Nat Commun 2019;10(1):1197.

[13] Table of Pharmacogenomic Biomarkers in Drug Labeling. FDA. https://www.
fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-
drug-labeling [Accessed 25.08.2019].

[14] CPIC Guidelines. https://cpicpgx.org/guidelines [Accessed 25.08.2019].
[15] DPWG Guidelines. https://www.knmp.nl/patientenzorg/

medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics
[Accessed 25.08.2019].

[16] Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. Integrating rare
genetic variants into pharmacogenetic drug response predictions. Human
Genomics 2018;12(1):26.

[17] Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al.
Analysis of protein-coding genetic variation in 60,706 humans. Nature
2016;536(7616):285–91.

[18] Zhou Y, Mkrtchian S, Kumondai M, Hiratsuka M, Lauschke VM. An optimized
prediction framework to assess the functional impact of pharmacogenetic
variants. Pharmacogenomics J 2019;19(2):115–26.

[19] van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for
bibliometric mapping. Scientometrics 2010;84(2):523–38.

[20] Shinkareva SV, Wang J, Wedell DH. Examining similarity structure:
multidimensional scaling and related approaches in neuroimaging. Comput
Math Methods Med 2013;2013:796183.
[21] Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and
function using NetworkX, in Proceedings of the 7th Python in Science
Conference (SciPy2008), pp. 11–15.

[22] Eklund BI, Moberg M, Bergquist J, Mannervik B. Divergent activities of human
glutathione transferases in the bioactivation of azathioprine. Mol Pharmacol
2006;70(2):747–54.

[23] Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse
drug reactions: from twin studies to Next Generation Sequencing. Eur J Pharm
Sci 2019;130:65–77.

[24] Matthaei J, Brockmöller J, Tzvetkov MV, Sehrt D, Sachse-Seeboth C, Hjelmborg
JB, et al. Heritability of metoprolol and torsemide pharmacokinetics. Clin
Pharmacol Ther 2015;98(6):611–21.

[25] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al.
Finding the missing heritability of complex diseases. Nature 2009;461
(7265):747–53.

[26] Gordon AS, Tabor HK, Johnson AD, Snively BM, Assimes TL, Auer PL, et al.
Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-
metabolism genes in a large-scale exome dataset. Hum Mol Genet 2014;23
(8):1957–63.

[27] Fujikura K, Ingelman-Sundberg M, Lauschke VM. Genetic variation in the
human cytochrome P450 supergene family. Pharmacogenet Genomics
2015;25(12):584–94.

[28] Bush WS, Crosslin DR, Owusu-Obeng A, Wallace J, Almoguera B, Basford MA,
et al. Genetic variation among 82 pharmacogenes: the PGRNseq data from the
eMERGE network. Clin Pharmacol Ther 2016;100(2):160–9.

[29] Santos M, Niemi M, Hiratsuka M, Kumondai M, Ingelman-Sundberg M,
Lauschke VM, et al. Novel copy-number variations in pharmacogenes
contribute to interindividual differences in drug pharmacokinetics. Genet
Med 2018;20(6):622–9.

[30] Wright GEB, Carleton B, Hayden MR, Ross CJD. The global spectrum of protein-
coding pharmacogenomic diversity. Pharmacogenomics J 2018;18(1):187–95.

[31] Zhou Y, Lauschke VM. Comprehensive overview of the pharmacogenetic
diversity in Ashkenazi Jews. J Med Genet 2018;55(9):617–27.

[32] Zhang B, Lauschke VM. Genetic variability and population diversity of the
human SLCO (OATP) transporter family. Pharmacol Res 2019;139:550–9.

[33] Schaller L, Lauschke VM. The genetic landscape of the human solute carrier
(SLC) transporter superfamily. Hum Genet 2019;138(11–12):1359–77.

[34] Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in
cellular transporters, metabolic enzymes, and nuclear receptors can be
important determinants of interindividual differences in drug response.
Genet Med 2017;19(1):20–9.

[35] Guengerich FP, Waterman MR, Egli M. Recent structural insights into
cytochrome P450 function. Trends Pharmacol Sci 2016;37(8):625–40.

[36] Lauschke VM, Ingelman-Sundberg M. Precision medicine and rare genetic
variants. Trends Pharmacol Sci 2016;37(2):85–6.

[37] Lauschke VM, Ingelman-Sundberg M. How to consider rare genetic variants in
personalized drug therapy. Clin Pharmacol Ther 2018;103(5):745–8.

[38] Ekroos M, Sjogren T. Structural basis for ligand promiscuity in cytochrome
P450 3A4. Proc Nat Acad Sci 2006; 103(37): 13682–13687.

[39] Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound,
outward-facing conformation. Science 2018;359(6378):915–9.

[40] van Waterschoot RAB, Schinkel AH. A critical analysis of the interplay between
cytochrome P450 3A and P-glycoprotein: recent insights from knockout and
transgenic mice. Pharmacol Rev 2011;63(2):390–410.

[41] Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M, Miners JO. Influence of N-
terminal domain histidine and proline residues on the substrate selectivities of
human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug
Metab Dispos 2009;37(9):1948–55.

[42] Young JD, Yao SYM, Baldwin JM, Cass CE, Baldwin SA. The human
concentrative and equilibrative nucleoside transporter families, SLC28 and
SLC29. Mol Aspects Med 2013;34(2–3):529–47.

[43] Ghalmane Z, El Hassouni M, Cherifi C, Cherifi H. Centrality in modular
networks. EPJ Data Sci 2019;8(15):1–27.

[44] Xue Y, Bogdan P. Reliable multi-fractal characterization of weighted complex
networks: algorithms and implications. Sci Rep 2017;7(1):7487.

[45] Sia J, Jonckheere E, Bogdan P. Ollivier-ricci curvature-based method to
community detection in complex networks. Sci Rep 2019;9(1):1–12.

[46] Newman MEJ. Modularity and community structure in networks. Proc Natl
Acad Sci 2006;103(23):8577–82.

[47] Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect
community structures in large-scale networks. Phys Rev E 2007;76(3).

https://doi.org/10.1016/j.csbj.2019.11.010
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0005
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0005
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0005
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0005
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0010
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0010
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0015
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0015
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0020
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0020
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0020
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0020
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0025
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0025
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0025
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0025
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0030
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0030
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0030
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0035
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0035
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0035
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0040
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0040
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0040
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0045
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0045
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0045
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0050
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0050
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0050
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0055
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0055
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0055
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0060
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0060
https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://cpicpgx.org/guidelines
https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics
https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1/pharmacogenetics
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0080
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0080
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0080
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0085
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0085
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0085
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0090
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0090
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0090
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0095
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0095
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0100
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0100
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0100
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0110
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0110
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0110
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0115
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0115
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0115
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0120
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0120
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0120
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0125
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0125
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0125
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0130
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0130
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0130
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0130
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0135
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0135
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0135
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0140
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0140
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0140
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0145
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0145
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0145
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0145
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0150
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0150
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0155
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0155
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0160
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0160
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0165
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0165
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0170
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0170
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0170
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0170
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0175
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0175
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0180
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0180
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0185
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0185
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0195
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0195
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0200
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0200
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0200
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0205
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0205
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0205
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0205
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0210
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0210
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0210
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0215
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0215
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0220
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0220
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0225
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0225
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0230
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0230
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0235
http://refhub.elsevier.com/S2001-0370(19)30364-2/h0235

	Pharmacogenomic network analysis of the gene-drug interaction landscape underlying drug disposition
	1 Introduction
	2 Methods and data sets
	2.1 Drug information
	2.2 Pharmacogenetic data
	2.3 Network analysis

	3 Results
	3.1 Posterior probability analysis reveals gene- and gene family-specific pharmacological interaction patterns
	3.2 Pharmacogenetic network analysis suggests hotspots of pharmacogenetic interactions

	4 Discussion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


