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Data‑driven discovery 
of the governing equations 
of dynamical systems via moving 
horizon optimization
Fernando Lejarza1 & Michael Baldea1,2*

Discovering the governing laws underpinning physical and chemical phenomena entirely from data 
is a key step towards understanding and ultimately controlling systems in science and engineering. 
Noisy measurements and complex, highly nonlinear underlying dynamics hinder the identification 
of such governing laws. In this work, we introduce a machine learning framework rooted in 
moving horizon nonlinear optimization for identifying governing equations in the form of ordinary 
differential equations from noisy experimental data sets. Our approach evaluates sequential subsets 
of measurement data, and exploits statistical arguments to learn truly parsimonious governing 
equations from a large dictionary of basis functions. The proposed framework reduces gradient 
approximation errors by implicitly embedding an advanced numerical discretization scheme, which 
improves robustness to noise as well as to model stiffness. Canonical nonlinear dynamical system 
examples are used to demonstrate that our approach can accurately recover parsimonious governing 
laws under increasing levels of measurement noise, and outperform state of the art frameworks in the 
literature. Further, we consider a non-isothermal chemical reactor example to demonstrate that the 
proposed framework can cope with basis functions that have nonlinear (unknown) parameterizations.

Differential equation models play a critical role in describing the governing behavior of a variety of systems 
encountered in science and engineering. As minimal order expressions describing the system behavior, govern-
ing models are generalizable, readily interpretable, and have good extrapolation capabilities. Historically, the 
discovery and formulation of fundamental governing equations has been a relatively lengthy process, supported 
by careful experimentation and data collection using prototype experimental systems. Nonetheless, the data sets 
that have, through the history of science, supported the discovery of such fundamental natural laws may seem 
“small” by today’s standards. With decreasing costs of sensors, data storage systems, and computing hardware, 
immense quantities of data can be easily collected and efficiently stored. As a consequence, the applications of 
machine learning (ML) and artificial intelligence (AI) have witnessed meteoric growth in science and engineer-
ing. ML techniques can perform exceptionally well in regression and classification tasks, but the resulting models 
are most often black- or grey-box in nature, offering little physical insight, and extrapolate poorly to regimes 
beyond the range of the training data. Moreover, prediction accuracy typically comes at the cost of model com-
plexity, which is at odds with the typically parsimonious nature of a system’s governing dynamics derived e.g. 
via first principles analysis.

Leveraging ML/AI frameworks to discover (as opposed to merely fit) the governing equations of physical 
systems from large amounts of data offers intriguing possibilities and remains an open field of research. Related 
recent efforts towards physically-constrained ML include physics-informed discovery strategies (of which a recent 
review can be found in1) combining first principles arguments with ML models, such as deep neural networks2. 
These models embed “informative priors”, e.g., mass and energy conservation laws, within ML architectures 
in order to improve their interpretability and reduce extrapolation error. Physics-informed neural networks 
(PINNs)2 are an example of such frameworks and have recently attracted significant attention in the literature, 
witnessing numerous extensions (e.g.,3–6). Nevertheless, it should be noted that these methods are mostly geared 
towards finding high fidelity data-driven solutions to partial differential equations (PDEs), as well as solving asso-
ciated inverse problems by means of knowledge embedding, generally without emphasizing knowledge discovery.
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Past work on automated data-driven discovery of governing equations is based on nonlinear regression 
strategies7. Initial efforts exploited symbolic regression8 and genetic programming algorithms9. However, the 
combinatorial nature of these approaches can render them computationally prohibitive, restricting their applica-
bility to low-dimensional systems and to considering relatively small initial sets of candidate symbolic expressions 
(which inherently diminishes the success rate of identifying the true underlying system dynamics). Furthermore, 
symbolic regression strategies can be prone to overfitting, i.e., generating overly complex expressions in an 
attempt to decrease prediction error8. Later works10,11 combine deep learning architectures with established model 
fitting techniques (e.g., dimensional analysis, polynomial and symbolic regression), which result in improved 
performance relative to original symbolic regression schemes8,12. Despite their potential computational perfor-
mance limitations, schemes based on genetic programming benefit from not requiring a complete library of basis 
functions (i.e., new terms can be generated through crossover and mutation steps13).

In a different vein, sparse nonlinear regression techniques14,15 have been proposed to improve on the com-
putational complexity of symbolic regression-based frameworks. Brunton et al.16 employed sequentially thresh-
olded least-squares (STLSQ) and least absolute shrinkage and selection operator (LASSO), that is, ℓ1 regularized 
regression, for sparse identification of nonlinear dynamics (SINDy). These algorithms recover governing equa-
tions by identifying a small number of relevant nonlinear functions from within an a priori specified large set 
of candidate basis functions using state measurement data sets. Theoretical convergence properties have been 
established17, and the framework has been implemented as an open-source code18. Numerous extensions to 
SINDy have since been proposed, addressing a variety of classes of systems and problem settings including, e.g., 
PDEs19,20, unknown coordinate systems21, biological networks22, model predictive control23, isothermal chemical 
reactions24. A similar approach based on elastic net regression (i.e., a combination of both ℓ1 and ℓ2 regulariza-
tions) was introduced in25, but resulted in less parsimonious equations relative to e.g. LASSO regression. In a 
related effort26, the selection of basis functions was performed via mixed-integer nonlinear programming, with 
a view towards identifying low-order surrogate representations of nonlinear algebraic models.

Recent efforts have focused on extending the SINDy concept to cope with corrupted data sets, as well as 
dynamical systems of higher complexity. For example, to overcome the instability associated with comput-
ing derivatives directly from noisy data, the integral (or weak) formulation of the system dynamics was used 
for systems of ODEs27,28 and (high-order) PDEs29. Similarly, Goyal et al.30 incorporated Runge-Kutta integra-
tion schemes within the dynamics discovery formulation to bypass direct estimation of derivatives from data 
and reduce gradient estimation errors relative to lower order methods. Extensions for automatically denoising 
measurement data, learning and parametrizing the associated noise distribution, and subsequently inferring 
the underlying parsimonious governing dynamical system were developed31. Similarly, Cao et al.32 proposed 
employing the Fourier transform of the original time series data to identify governing PDEs using the low fre-
quency component of the signal, which significantly improves robustness to noise. Tran et al.33 proposed an ℓ1 
minimization formulation and an alternating solution algorithm to discover chaotic systems when the data are 
corrupted with a large percentage of outliers. A later work34 introduced a unified framework leveraging non-
convex sparsity promoting regularization functions (e.g., ℓ0 penalties) to detect and trim outliers while inferring 
the governing equations. The framework proposed in34 also allows for considering parametric dependencies in 
the basis functions, as well as physical constraints. Recently, Fasel et al.35 reported the use of bootstrap aggrega-
tion (“bagging”) by identifying an ensemble of SINDy models, which substantially improves robustness to noise 
while also allowing for uncertainty quantification and probabilistic forecasts. A related effort36 combined a weak 
formulation of differential equations with ensemble symbolic regression to identify fluid flow dynamics from a 
pool of variables and candidate models derived from general physical principles.

In this work, we propose a framework for discovering governing equations from noisy measurement data 
that is formulated via nonlinear dynamic optimization, a mathematical programming technique that offers 
substantially more flexibility than the previously cited examples. The proposed formulation aligns with ideas 
introduced in weak SINDy implementations27–29, in that it implicitly leverages advanced numerical integration 
(orthogonal collocation on finite elements37) to represent the underlying candidate governing equations, thus 
circumventing derivative estimation from data, reducing gradient approximation errors relative to lower order 
methods, and improving numerical stability. Further, we propose a method inspired by control theory, namely, 
moving horizon estimation38 and its counterpart, model predictive control39, to efficiently solve the aforemen-
tioned dynamic nonlinear program (DNLP). Moving horizon optimization strategies have been extensively used 
for reconstructing state values from noisy process measurements38,40, estimating model parameters from data41, 
or determining the optimal inputs for controlling dynamical systems whose equations have a known structure. 
Conversely, the methodology introduced here differs significantly from the moving horizon estimation canon 
in that the true structural form of the system dynamics is unknown, and sparsifying strategies are developed to 
recover parsimonious governing equations from a dictionary of candidate basis functions. The resulting sequence 
of discovered governing equations is aggregated (e.g., by taking the average of the estimated model coefficients 
and basis functions parameters), which is expected to further improve robustness to noise and allow for statistical 
characterization of the coefficient estimates in a similar sense as ensemble SINDy35.

Hence, relative to several of the previously cited works, the main contributions of the proposed framework 
are: (i) a general nonlinear programming-based optimization approach that can cope with parametric basis 
function libraries and can include domain knowledge-derived constraints, (ii) a moving horizon optimization 
framework that improves scalability and leverages statistical arguments to promote sparsity in the identified 
governing equations, and (iii) implicitly embedded discretization schemes that are stable and of high-order 
which improve robustness to noisy data, and are able to capture multiscale or stiff dynamics.
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Results
Problem formulation.  We consider dynamical systems governed by ordinary differential equations 
(ODEs) of the form:

where x(t) ∈ R
nx is the vector of states and u(t) ∈ R

nu is a vector of control (manipulated) inputs at time t, and 
the map f(·) : Rnx × R

nu → R
nx represents the (nonlinear) dynamics of the system. The function f  is unknown 

and is precisely what we attempt to infer from a given set of time-resolved measurement data. To that end, we 
collect a sequence of measurements (x̂(t̂j), û(t̂j)) of the state and input variables observed at sampling times 
t̂0, . . . , t̂m , and assume that the derivative ˆ̇x(t̂j) cannot be directly measured. The data are assumed to be contami-
nated with (Gaussian, zero-mean) measurement noise, and smoothing techniques and statistical tests are used 
to perform pre-processing of the training data set (See Methods). The resulting pre-processed data are denoted 
by x̃(t̂j), ũ(t̂j) ∀j = 0, . . . ,m.

Remark 1  The proposed framework in the present form is intended to be used for analyzing systems whose 
dynamics are governed by ordinary differential equations. As it will be discussed at length subsequently, the ideas 
proposed herein can be readily extended to systems with spatial differential operators and to partial differential 
equations, an extension that will constitute a direction of future research.

To discover the underlying governing equations, we consider a dictionary of nθ candidate symbolic non-
linear basis functions denoted as �(xT , uT , c) , where �(·) : R1×nx × R

1×nu → R
1×nθ and c ∈ R

nc is a vector 
that captures some unknown parametrization of the basis functions (e.g. let basis function i be θi such that 
θi(x

T , uT ) = uT exp(−cix
T ) ). The dictionary is defined a priori, potentially leveraging some domain insights 

regarding the underlying system25. We assume that the governing equations can be expressed as a linear combi-
nation of the basis functions in this dictionary as:

where � ∈ R
nθ×nx is a matrix of coefficients whose columns are given by the sparse (i.e., most entries are zero) 

vectors ξξξ 1, . . . ,ξξξnx . This sparse model structure is illustrated in Fig. 1C using the well-known two-dimensional 

(1)
dx(t)

dt
= f(x(t),u(t))

(2)
d

dt
x(t) = f(x(t),u(t)) = �T�(x(t)T , u(t)T , c)T

Figure 1.   Summary of the present framework using the Lotka–Volterra system as an illustrative example, and 
for simplicity without considering control inputs u or parametric basis functions �(xT , c) . (A) Noisy data x̂ are 
collected from physical experimentation or simulation. (B) The data are smoothed using filtering techniques 
and preliminary statistical analyses are performed to refine the library of basis functions and initialize the DNLP. 
(C) The dynamics are discretized and the DNLP is solved for the current window of data. (D) Every ω iterations 
of the moving horizon algorithm, coefficient thresholding is performed to eliminate basis functions having 
a coefficient of variation greater than a given tolerance (exemplified by histograms with grey background). 
(E) Once convergence is established the recovered equations are validated via simulation, by subsequently 
computing suitable regression error metrics, and by applying visualization techniques.
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Lotka–Volterra predator–prey model as an example. Further, we distinguish between active coefficients (i.e., 
ξi,j  = 0 then basis function j is active for state variable i in the true governing equations), and inactive coefficients 
(i.e., ξi,j = 0 in the true governing equations). Following the sparsity argument, the fundamental challenge of 
discovering the governing equations translates to identifying the (few) active coefficients associated with the 
basis functions that are truly present in f(x(t),u(t)).

Remark 2  We note that the vast majority of existing frameworks concerned with using regression mechanisms 
to learn governing equations from data16,25,27–29,35 rely on solving a linear optimization problem to estimate the 
unknown coefficients � , and cannot cope with parameterized libraries of basis functions that require estimating 
coefficients � and parameters c in function �(·) in (2), simultaneously. Equivalently, the existing frameworks 
assume implicitly or explicitly that the dynamics in (1) can be expressed as �T�(x(t)T , u(t)T ) , i.e., a function 
that is linear with respect to all unknown parameters and coefficients. The ability to handle the structural form in 
(2) represents a key advantage of the framework proposed here and one of the major contributions of this paper.

In the aforementioned works, sparse regression techniques are used, whereby for each state variable 
i ∈ {1, . . . , n} the sparse vector ξξξ i is estimated as the solution of the following norm-regularized optimization 
problem:

The goal is thus to minimize, in a norm sense, the difference between the value of the state derivatives predicted 
by the model, �(x̃(t̂j)

T , ũ(t̂j)
T , c)ξξξ i , and the corresponding derivative values ˙̃x(t̂j) that are typically approximated 

numerically (via e.g. finite difference equations) from the m data samples at each sample time ̂tj . The second part 
of the expression above is a regularization function composed of the ℓ1 and ℓ2 norms weighted by parameters � 
and ρ , thereby enforcing the sparsity of the solution by penalizing non-zero values of ξξξ . Note that there is no regu-
larization with respect to parameters c , as � alone determines the sparsity of the recovered governing equations. 
An ℓ0 regularization penalty was considered in34 for improved sparsity of the discovered dynamics, which was 
solved using the SR3 framework42 that allows for tackling nonconvex instances of the optimization problem (3).

Nonlinear dynamic optimization.  In contrast to what has been proposed in the literature, in order to 
simultaneously learn the sparse coefficient matrix � and parameters c in (2), we formulate a constrained dynamic 
nonlinear program (DNLP) minimizing a given error metric. A discretization scheme using collocation on finite 
elements37 is implemented to convert the candidate model from the continuous-time ODE form in (2) to a 
system of nonlinear algebraic equations, which is embedded in the constraints of the DNLP43. The proposed 
discretization scheme is A-stable, high-order and can handle nonsmooth events at the element boundaries (e.g., 
nonsmooth or discontinuous control profiles), an improvement relative to the numerical properties of prior 
works (e.g.30,34), thus making it particularly suitable for stiff differential equations. As an additional contribu-
tion, algebraic constraints reflecting lower and upper bounds on the coefficients � and parameters c , derived via 
pre-processing and/or available domain knowledge, can be seamlessly incorporated in the problem formulation 
to improve the convergence of the DNLP to the most parsimonious and accurate version of the governing equa-
tions (See Methods for further details on how these constraints can be derived). The DNLP is thus formulated in 
discrete time to minimize the mean ℓ2-error plus some regularization term as follows:

where x(tij) are the states predicted by the candidate governing law at time point tij (i.e., in finite element i and 
collocation point j), the algebraic constrains g(·) = 0 represent the discretized version of the nonlinear dynam-
ics given in (2), �L, cL and �U , cU are respectively the lower and upper bounds of the estimated coefficients and 
parameters, and K is the number of collocation points on each of the N finite elements. The collocation equations 
form a set of algebraic constraint given by:

where hi is the length of finite element i, ti−1 = tij − τjhi , and the state variable x(t) is interpolated using Lagrange 
polynomials ℓk as follows:

(3)ξξξ i , ci ∈ argmin
1

2m

m
∑

j=0

||�(x̃(t̂j)
T , ũ(t̂j)

T , c)ξξξ i − ˙̃x(t̂j)||
2
2 + �ρ||ξξξ i||1 +

�(1− ρ)

2
||ξξξ i||

2
2

(4)

min
�,c,x

1

2NK

N
∑

i=0

K
∑

j=0

||x(tij)− x̃(tij)||
2
2 + �ℓ(�)

s.t. g(�(x(tij)
T , ũ(tij)

T , c),�) = 0

� ∈ {�L,�U }, c ∈ {cL, cU }

(5)

dx(t)

dt

∣

∣

∣

∣

tij

=
1

hi

K
∑

k=0

xik
dℓk(τj)

dτ
, j ∈ {1, . . . ,K}, i ∈ {1, . . . ,N}

dx(t)

dt

∣

∣

∣

∣

tij

= �T�(x(tij)
T , u(tij)

T , c)T , j ∈ {1, . . . ,K}, i ∈ {1, . . . ,N}

x(ti+1,0) =

K
∑

k=0

ℓk(1)x(tik), i ∈ {1, . . . ,N − 1}
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The optimal choice of the interpolation points τj is derived in detail in37 (Theorem 10.1). Note that the data might 
need to be resampled (e.g., via interpolation) to estimate the measurements at the defined collocation points. In 
compact form, we denote (5) and (6) by g(�(x(tij)

T , ũ(tij)
T , c),�) = 0.

It should be noted that in (4) the basis functions in the dictionary are not directly evaluated on the measure-
ment data x̃ , as is the case in (3). Estimating derivatives directly from data further propagates measurement noise 
increasing differentiation error, irrespective of the numerical scheme used. Rather, (4) represents a symbolic 
nonlinear function of the predicted states and does not directly require an approximation of ˜̇x to derive the coeffi-
cients � (as is done in (3)), thus reducing errors related to noise propagation due to numerical differentiation. The 
proposed approach is analogous to the weak formulations introduced in27–29, whereby the system dynamics are 
expressed in integral from so as not to directly use the estimated derivative in the regression calculation. While 
the approximation error of (5) is evidently nonzero, as with any discretization scheme, in this case the truncation 
error is O(h2K−1) for Lagrange-Radau collocation points37. Thus, the gradient approximation error is expected 
to be lower than in the case of approaches that directly compute ˙̃x16,34, or that use lower order methods28,30, as 
long as a sufficiently high number of finite elements and collocation points is used.

Moving horizon optimization and thresholding.  Evidently, the dimension of the DNLP (4) increases 
with the granularity of the discretization used, as indicated by K and N, and indirectly with the dimension 
the data m (i.e., data for longer time horizons require more discretization points for an equivalent approxima-
tion error). Similarly, the dimension nθ of the dictionary of basis functions (and associated parameterization) 
is positively correlated with the number of decision variables in (4), as the coefficient matrix has dimensions 
� ∈ R

nθ×nx . Nonethless, increasing N, K, m or nθ are all desirable attributes that improve the likelihood of dis-
covering the true governing equations. Thus, solving (4) while taking into consideration the entire available data 
set, as is generally done in existing discovery frameworks based on sparse regression16,25,30,34, is likely computa-
tionally expensive (particularly for granular discretizations and large dictionaries of basis functions). Noting that 
solving (4) is generally NP-hard, the actual computational effort and solution time cannot be predicted from the 
above problem dimensions.

An additional fundamental challenge is related to imposing parsimony in the learned model. This sparsifica-
tion entails eliminating the basis functions that are not part of the true model (1) by setting the corresponding 
coefficients � to zero. A particular difficulty arises when the true value of a coefficient is “small:” while the cor-
responding estimate may also be small, it is difficult to discern whether this outcome is correct or the non-zero 
estimated value is the result of ovefitting (i.e., a spurious attempt to further decrease the value of the objective 
function in (4) for the training data by increasing model complexity and retaining a larger number of basis 
functions). A thresholding approach consisting of eliminating terms whose estimated coefficient magnitudes 
are below a specific value (determined via cross-validation) can in principle be employed16, but its performance 
is expected to degrade with increasing model stiffness and for systems having a broad range of coefficient 
magnitudes.

The framework proposed here addresses both fundamental challenges described above. To deal with dimen-
sionality, the DNLP in (4) is decomposed into a sequence of lower-dimensional problems defined on shorter time 
horizons (i.e., using smaller subsets of the available data), for which optimal solutions to (4) can be obtained with 
significantly lower computational effort. An illustration of the structure of data subsets is shown in Supporting 
Fig. S.2. After a solution of (4) is computed, a new data subset is selected (intuitively—but not necessarily—by 
shifting the time window forward by a smaller step than the window size) which is then used to solve (4) again. 
The repetition of this procedure allows for efficiently learning and refining a sequence of governing equation 
models each with different coefficient estimates (further details are provided in Algorithm 2 in Methods). This 
temporal decomposition of the optimization problem is the premise of model predictive control39and moving 
horizon state estimation38, by which significant computational speedup has been attained. In conjunction with 
this moving horizon strategy, the following thresholding claim is made:

Claim 1  The coefficients in � corresponding to inactive basis functions typically contribute to overfitting. Small, 
non-zero values reflect the use of the corresponding functions to fit the noise in the training data. Hence, coefficient 
estimates derived from the sequence of problems described above that correspond to inactive basis functions are 
likely to have a relatively high variance.

The converse argument can be made for coefficients of active basis functions: the variance of a sequence of 
estimates is expected to be relatively low. These claims then support the use of dispersion metrics from statistics 
(e.g., the coefficient of variation) for the parameters obtained in a sequence of estimates based on subsets of 
the data, to infer whether a basis function belongs to the true dynamics or not (i.e., if it is active or inactive). In 
this way, the proposed framework allows for learning dynamics that are truly sparse, similarly to what would be 
expected from ℓ0 regularization for coefficient selection. Once convergence is established (e.g., the structure of 
the discovered equations does not change after a certain number of iterations), the average or the median of the 
coefficients can then be used in the aggregated model.

(6)

x(t) =

K
∑

k=0

ℓk(τ )xik , t ∈ [ti−1, ti], τ ∈ [0, 1]

ℓk(τ ) =

K
∏

j=0,�=k

τ − τj

τk − τj
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Remark 3  The proposed training mechanism is in a way similar to ensemble methods (e.g.,35,44) commonly 
used in machine learning, where a pool of models is trained on different subsets of the data (typically randomly 
sampled by means of bootstrapping), to reduce variance in the coefficient estimates and thus improve the per-
formance of the final aggregated model prediction.

A comprehensive illustration of our entire proposed framework is shown in Fig. 1 for the Lotka–Volterra 
predator–prey model, for which the dynamics have the form of ẋ = �T�(xT )T . That is, the governing equations 
do not involve control inputs u or parametric basis functions dependent on c , as in the more general model in 
(2). We consider this type of systems first in order to demonstrate the performance of our approach and compare 
it against existing frameworks. Subsequently, we present a case study showing that the proposed framework can 
cope with dynamics of the form in (2).

Validation using canonical nonlinear dynamical system examples.  To validate our framework, we 
consider a series of canonical nonlinear dynamical systems shown in Fig. 2A. For each system, the true model in 
Fig. 2A was used to generate simulated measurement data which were artificially contaminated with white zero-
mean uncorrelated noise of increasing standard deviation σ . This approach and the amount of noise considered 
are comparable to prior works in the literature16,27–29,35. The results obtained and validation the discovered gov-
erning equations are summarized in Fig. 2B–E. The convergence of our method is shown in Fig. 2B, where even 
for increasing noise levels the number of terms in the discovered equations converges to the black dashed line 
indicating the number of terms or basis functions in the true dynamics. For data sets with increasing noise vari-
ance, the pre-processing step fails to reduce the size of the basis which results in a greater number of iterations 
to converge to the discovered equations. These results indicate that the proposed moving horizon can cope with 
larger libraries of basis functions at the expense of a greater number of iterations.

The evolution of the coefficient of variation (CV) of the basis functions retained after pre-processing is 
shown in Fig. 2C, which is the statistical metric used for the proposed tresholding strategy. The fact that the CV 
of active variables is noticeably below the established threshold and is considerably lower than for inactive vari-
able, supports and validates the arguments made in Claim 1. Interestingly, per the results in Fig. 2C, active and 
inactive coefficients can be quantitatively and discretely distinguished which allows for discrete basis function 

Figure 2.   Numerical experiments on canonical nonlinear dynamical systems with governing equations of the 
form of ẋ = �T�(xT )T . (A) System name and true governing equations. (B) Mean number of basis functions 
in the discovered model as a function of iterations over 10 random samples of the simulated measurement 
data for each noise level considered (shaded area corresponds to two standard deviations from the mean, 
dashed black line is used to indicate the number of terms in the true dynamics). Two-dimensional systems 
were initialized with 28 basis functions, and 3-dimensional systems with 66 (See Supplementary Information 
for further details). (C) Coefficient of variation for each basis function after each thresholding step (results 
correspond to the highest noise setting considered for each system). (D) Average mean squared error (MSE) 
between simulations of the true dynamics and the discovered dynamics. (E) Comparison of discovered 
dynamics against true model and measured data (results correspond to the highest noise setting considered for 
each system).
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selection, similarly to solving a ℓ0 regularized regression problem, while at the same time circumventing the 
complexities associated with integer programming26. We note that for all dynamical systems and noise settings 
the variability tolerance was set to ψ = 1 (a natural choice to distinguish between coefficients with high and low 
variability, independently of the underlying dynamical systems). Conversely, determining the optimal choice 
of hyperparameters for prior sparse regression approaches (e.g., determining the regularization penalty for 
LASSO regression or the coefficient cut-off threshold for sequentially thresholded least squares16 is typically 
highly dependent on and related to the underlying system dynamics and its associated coefficient magnitudes. 
Further demonstrating the performance of our framework, supporting Figs. S.3 and S.4 show the performance 
of our approach with different values of hyperparameters including the number of finite elements (N) and col-
location points (K), variability tolerance ( ψ ), and optimization horizon length (H). In particular, the results for 
varying H emphasize the scalability advantages associated with the moving horizon scheme employed (i.e., CPU 
time increases dramatically as H approaches the entire time horizon in which the data was sampled). Coarse 
discretizations lead to high approximation errors, while fine discretizations lead to optimization problems with 
more variables and constraints, that may be more challenging to solve. Figure S.6 shows the simultaneous effect 
of measurement noise and sampling frequency on the accuracy and success rate of the proposed discovery 
framework for the Lotka–Volterra model. The results suggest that the approach maintains good performance 
even for decreasing sampling frequency (i.e., increasing sparsity of measurement data) when the measurement 
noise is not substantial.

Figure 2D shows the mean squared error (MSE) between the simulated discovered equations and the true 
system dynamics for each noise instance considered. While the structural form of the governing equations was 
correctly identified, increasing measurement noise results in relatively higher error and variance in the values of 
the estimated coefficients, which intuitively increases the MSE between the two trajectories. Note that the associ-
ated coefficients were accurately estimated even for the highest noise instances (the average coefficient estimate 
error was 0.32%, 1.6%, 0.41%, 2.5% respectively for Lotka–Volterra, van der Pol, Brusselator and Lorenz dynami-
cal systems). Nonetheless, even for the highest noise setting for each system, Fig. 2E indicates that the discovered 
equations via DySMHO accurately capture the dynamics in the measured data and the overall behavior of the 
true system dynamics. Similar to ensemble methods35, the sequence of coefficient estimates corresponding to 
iterations where the structure of the discovered equations no longer changes (e.g., convergence) can be used to 
quantify uncertainty and derive confidence intervals. This characterization then allows for using Monte Carlo 
sampling strategies to simulate and validate the discovered dynamics for a range of possible coefficient values45.

Benchmarking against existing sparse regression‑based discovery frameworks.  To evaluate 
the performance of the present framework relative to state of the art governing equation discovery schemes, 
we perform benchmarking experiments against several versions of the SINDy algorithm16, assessing different 
available options (mainly the choice of optimization algorithm and the value of the regularization coefficient) 
using the Python implementation PySINDy18. We consider three benchmarks corresponding to conventional 
SINDy, weak SINDy (W-SINDy)29, and ensemble SINDy (E-SINDy)35, the latter two being some of the latest 
developments in the area. All three aforementioned instances of SINDy were tested with three different optimi-
zation routines; specifically sequential thresholded least squares (STLSQ)16, LASSO regression14,16, and sparse 
relaxed regularized regression (SR3)34,42. For the SINDy and E-SINDy methods, that rely on direct state deriva-
tive estimation from measurement data, we used the smoothed finite difference option18, which employs the 
Savitzky-Golay filter and was observed to perform the best among the other differentiation methods available. 
Each combination of SINDy method and optimization solver was screened for a range of hyperparameters for 
which further details can be found in the Supporting Information. For the present framework, the coefficient of 
variation thresholding tolerance ψ was the main hyperparmater evaluated, as it dictates the extent of regulariza-
tion, and for which an intuitive choice for all systems is ψ = 1.

The benchmarking results for all canonical nonlinear dynamics under increasing noise variance are shown 
in Fig. 3, where the set of results for each method corresponds to different combinations of hyperparmaters. In 
order to compute the complexity for SINDy models, we set all “small” (but nonzero) coefficients estimates to zero 
if their absolute values were lower than 10% of the smallest coefficient in the true governing equations. While 
this alteration favors the complexity score of the models identified with SINDy (i.e., it yields a lower complexity 
than was actually identified), it highlights the inherent advantage of our proposed thresholding method which 
results in truly sparse dynamics (i.e. the coefficients of basis functions that are deemed inactive are set exactly 
to zero). This property, together with the more intuitive selection of the thresholding tolerance ψ for the present 
work, results in discovering models that are generally sparser than those identified via SINDy methods, as can be 
noted from the results shown in Fig. 3. We note that, in particular, SINDy methods failed to eliminate trigono-
metric basis functions ( sin(x) and cos(x) ) and constant terms, which are likely low in magnitude relative to the 
measurement data and serve to reduce MSE by overfitting noise. The coefficients associated with these (inactive) 
basis functions exhibit considerable variability when estimated on sequential data sets, and thus are pruned in 
our framework, resulting in identified governing equations of relatively lower complexity.

For low noise instances, our approach exhibits comparable performance (in terms of MSE and model com-
plexity) to that of the different SINDy methods when the appropriate regularization parameter is used. We note 
that for the Lorenz oscillator dynamics, due to its chaotic nature, even very minor coefficient estimation errors 
can result in significant deviations between the simulated trajectories and the original model, which in turn 
results in a large MSE for the discovered model. For example, for the present framework, the average coefficient 
error was 2.23% with standard deviation of 0.14 for the highest noise instance corresponding to σ = 0.5 . The 
relative performance of our proposed approach clearly improves for increasing measurement noise across all 
dynamical system examples. While in some instances the proposed framework fails to discover the correct model 
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for large and small values of hyperparameter ψ , it consistently identifies the true dynamics for ψ ≈ 1 , which is 
an intuitive setting to distinguish between high and low variance coefficients (as was empirically demonstrated 
in Fig. 2C). Further, the high-order implicit dicretization in the proposed framework appears to be advantageous 
for dynamical systems where the order of magnitude of the coefficients is very different (e.g., Lotka Volterra), 
and for systems with stiff dynamics (e.g., van der Pol and Brusselator).

Validation using a non‑isothermal chemical reactor system with exogenous inputs.  To further 
demonstrate the advantages of the proposed framework relative to the previously considered sparse regression 
frameworks16,18,29,35, we consider a case study corresponding to a controlled non-isothermal continuously stirred 
tank reactor (CSTR) system. A similar non-isothermal case study was reported previously in45, where further 
details regarding the system can be found. We note that SINDy methods have been previously applied for infer-
ring chemical kinetics22,24 but, unlike the current case, only isothermal reaction conditions were considered. 
In particular, we show that our moving horizon nonlinear optimization scheme can recover governing equa-
tions that are of the form of �T�(x(t)T , u(t)T , c)T , with exogenous inputs u(t) ∈ R

nu (which can be used as an 
input signal to excite the dynamics or to drive the states of the system to a desired target value (setpoint)) and 
parametric basis functions. The governing dynamics of the CSTR are given by the coupled material and energy 
balance equations:

where CA(t) and T(t) are the system states x(t) and represent, respectively, the concentration of species A and 
the temperature. Further, ρ is the density of the liquid, C is its heat capacity, (�HR) is the heat of reaction, Ti is 
the temperature of the inlet stream, Tc is the temperature of the coolant, U is the overall heat transfer coefficient, 
A is the heat transfer area, k0 is the pre-exponential factor, Ea is the activation energy, and R is the universal gas 
constant. Differently from45, that considers q(t) as the manipulated input in the isothermal case, this example 
assumes Tc(t) to be the manipulated input in a non-isothermal setting in which the temperature dynamics in 
(7) must be accounted for. Further details regarding the case study parameters and hyperparameters used can 
be found in the Supporting Information.

(7)

dCA(t)

dt
=

q

V
(CA,i − CA(t))− k0e

−Ea/RT(t)CA(t)

dT(t)

dt
=

q

V
(Ti − T(t))+

(−�HR)

ρC
k0e

−Ea/RT(t)CA(t)+
UA

VρC
(Tc(t)− T(t))

Figure 3.   Benchmarking experiments of the proposed framework against the SINDy family of methods. The 
results shown correspond to the discovered model’s complexity (reflected in the number of terms) versus the 
model’s predictive ability (reflected in the mean squared error). Each marker corresponds to a specific instance 
of a given method for a given set of hyperparameters(see Supporting Information for associated values used). 
The dashed vertical line indicates the number of terms present in the true governing equation for each system.
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Results for the discovery of the CSTR governing mass and energy balances are shown in Fig. 4, corresponding 
to ten randomly generated data instances for which the true functional forms of the equations in (7) were identi-
fied. The discovered equations correctly capture the dynamics for both composition and temperature as shown in 
Fig. 4C, accurately reproducing the slow and fast frequency of the oscillations observed in the data. Nonetheless, 
similarly to chaotic systems (e.g., Lorenz oscillator in Fig. 2), it should be the noted that for stiff and multi-scale 
systems such as this CSTR example, even small parameter estimation errors as the ones observed in Fig. 4D can 
result in significant deviations from the true simulated trajectory. The plots in Fig. 4E show that as the algorithm 
proceeds and an increasing number of basis functions is pruned from the dictionary, the predictive capability 
(in terms of MSE) of the discovered model remains relatively constant, which is indicative of convergence to the 
most parsimonious governing equation.

Discussion
Limitations and directions of future work.  While the numerical experiments performed show that 
our proposed framework has multiple promising features and benefits relative to existing approaches, there are 
several future research questions to be addressed. For example, the open source code developed for the present 
framework is only capable of handling ODEs and in its current from cannot cope with systems governed by 
PDEs. Nonetheless, we note that the orthogonal collocation equations introduced in (5) and (6) readily general-
ize to differential operators other than time derivatives (e.g., spatial and higher order derivatives), such that the 
proposed scheme can be used to identify sparse PDEs. We believe that the implicit integration scheme embed-
ded in our proposed method would be advantageous for high-order PDE systems, for which estimation of high-
order derivatives from noisy measurement data is especially challenging29. Developing the associated code and 
performing validating experiments is a crucial next step.

An interesting potential extension to the present work is an adaptive thresholding tolerance ψ , whose value 
decreases with increasing number of iterations and basis functions pruned. This idea stems from the fact that, as 
fewer functions remain in the basis, the variability of the remaining inactive coefficients decreases making the 
thresholding step more challenging. This property can be observed from the results presented in Fig. 2B, where 
the first few thresholding steps eliminate a considerably larger number of basis functions than the later steps 
before convergence is established. For high noise environments, even the coefficient estimates of active basis 
functions are likely to have high variability and could be erroneously pruned if ψ is initially set to a low value 
when the library of basis functions is large.

Furthermore, for higher dimensional systems it is important to employ efficient large-scale nonlinear pro-
gramming strategies. Developing numerical solutions that exploit the (sparse) structure of the collocation 
equations and resulting optimization problem is a key step in discovering governing equations for systems 
of industrially-relevant dimensions46. In particular, decomposition and parallelization schemes are critical for 
considering larger data sets, while maintaining manageable computational complexity37. While for the present 
work local optimization algorithms were employed, to solve (4), we expect that using scalable global optimiza-
tion solvers could further improve the accuracy of the model coefficient estimates, and the overall performance 
of the proposed framework.

Figure 4.   Numerical experiments on CSTR case study with dynamics of the form of ẋ = �T�(xT , uT , c)T . 
(A) Schematic of CSTR system showing states, inputs, and key parameters. (B) Control input signal used to 
excite dynamics given by Tc(t) = 305× (1+ sin(π t/5)/125) . (C) State variable trajectories (composition 
(top) and temperature (bottom)) corresponding to: measurements with noise, true trajectory, and sample 
discovered trajectory. (D) Comparison of coefficient values of the true governing equation and that of the 
discovered dynamics (coefficient estimates were scaled to be of the same order of magnitude). (E) Average MSE 
as a function of the number of terms remaining in the dynamics throughout the iterations for ten randomly 
generated data sets (shaded area corresponds to two standard deviations from the mean). Dashed vertical line 
indicates the number of basis functions present in the true governing equations.
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Conclusions.  Data-driven discovery of governing equations is a promising avenue for advancing our under-
standing of and elucidating new phenomena across a wide range of disciplines. This new fundamental knowl-
edge can in turn be used to drive the development of new technologies to solve pressing scientific and societal 
challenges. In this paper, we introduced and validated a novel moving horizon-based, nonlinear dynamic opti-
mization framework for learning governing equations from noise-contaminated state measurements over time. 
The proposed framework benefits from the properties of weak (or integral) discovery methods by incorporat-
ing high order and stable numerical integration schemes to represent the system dynamics, thereby minimiz-
ing gradient approximation errors, and improving performance for stiff and multiscale nonlinear systems. The 
proposed moving horizon scheme not only improves computational tractability of the underlying optimization 
problem, but provides a systematic and statistically meaningful approach for thresholding basis functions by 
which the identified equations are generally of lower complexity than those resulting from sparse regression 
approaches proposed by other authors. The sequential coefficient estimates are aggregated once the structure of 
the discovered equations does not change, improving robustness to noisy measurements in a similar sense to 
previously reported ensemble approaches. Lastly, the nonlinear programming structure that lies at the core of 
the proposed methodology is capable of handling more complex dynamical systems by relaxing the assumption 
made in most prior works (i.e., that the dynamics are linear with respect to the unknown model parameters), as 
it was demonstrated empirically for a chemical reactor case study.

Methods
Pre‑processing: data smoothing.  The Savitzky-Golay filter (SVGF) in the SciPy package (https://​www.​
scipy.​org/) was employed, which is based on local least-squares regression polynomial approximations applied to 
the data on moving windows of a given size. An iterative scheme was developed to automatically determine the 
appropriate smoothing widow size, which consisted of smoothing the measured signal using increasing window 
size until the estimated noise component did not change significantly (given a specific tolerance). Further details 
are presented in Algorithm 1, and an illustration is shown in the Supplementary Fig. S.1.

Pre‑processing: statistical analysis.  The smoothed state measurements are arranged in the form of a data matrix 
X̃:

where t1 , t2 , . . . , tm are the time intervals at which the measurements were collected. The dictionary of candidate 
basis functions is then evaluated for every point in the data matrix, resulting in a structure such as the one below:

where X̃P2 denotes second order polynomials which may include interaction terms, e.g.:

(8)X̃ =







x̃T (t̂1)
...

x̂T (t̂m)






=







x̃1(t̂1) . . . x̂n(t̂1)
...

. . .
...

x̃1(t̂m) . . . x̂n(t̂m)







(9)

https://www.scipy.org/
https://www.scipy.org/


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11836  | https://doi.org/10.1038/s41598-022-13644-w

www.nature.com/scientificreports/

Evidently, the form of this structure will depend on the choice of basis functions. Using this form, Granger 
causality tests (based on F- and chi-squared distributions) were used to determine potential causality between 
�i(X̃j(t̂k−1)) and X̃j(t̂k) for all basis functions i ∈ {1, . . . , nθ } and states j ∈ {1, . . . , nx} . Basis functions i for which 
the null hypothesis (that �i(X̃j) does not Granger-cause X̃j ) could not be rejected with high significance, were 
eliminated from the library. Stationarity of the time series was checked using the Dickey-Fuller test and enforced 
by differencing as needed. The statsmodel (https://​www.​stats​models.​org/​stable/​index.​html) implementations 
of the Granger causality and Dickey-Fuller tests were used.

Next, the derivative of each state variable is approximated from the data by using central finite differences 
as follows:

and similar to (9) a data derivative matrix ˙̃X is formed. Other derivative approximation strategies (e.g.,47) can 
be used when there is significant noise in the data. Ordinary least squares (OLS) regression was used to obtain 
initial coefficient estimates for � in (4) as well as the associated upper and lower bounds ( �L and �U ). The linear 
system solved is given by:

This allows for performing preliminary variable selection by computing the F-statistic and p-value associated 
with each coefficient estimate, as well as for using the resulting confidence intervals (for a specified confidence 
level) to serve as ( �L and �U ) in (9). The statsmodel implementation of OLS was used to solve the regression 
problem (12), as well as to compute associated test statistics and confidence intervals.

Discretization of the candidate ordinary differential equations.  The collocation equations in (5) 
and (6) are represented in compact form as g(�(x(tij)

T , u(tij)
T ), c),�) = 0 in the DNLP in (4). We employ the 

pyomo.DAE (http://​www.​pyomo.​org/) modeling extension that enables automatic simultaneous discretization 
of ODEs, and leverages Gauss-Legendre and Gauss-Radau collocation schemes to determine the interpolating 
points in (5) and (6). It should be noted that the optimal choice of finite elements and collocation points may 
not align with the sample times t̂1, . . . , t̂m at which the data were originally collected, thus spline interpolation is 
required to approximate the data at the relevant time instants. We employ the SciPy package in Python using 
a cubic spline to estimate the state values at the collocation points.

Moving horizon optimization approach.  A detailed outline of the moving horizon algorithm is pre-
sented next in Algorithm  2 and an illustration is shown in Supplementary Fig.  S.2. In brief, the algorithm 
consists of solving (4) and performing parameter thresholding every ω iterations (the thresholding process is 
described separately in Algorithm 3). The algorithm terminates when the training data are exhausted or when 
convergence is established, that is when the number of basis functions remaining in the library, denoted as |�| , 
does not change after a number � of thresholding steps.

(10)X̃P2 =







x̃P2(t̂1)
...

x̃P2(t̂m)






=











x̃21(t̂1) x̃1(t̂1)x̃2(t̂1) · · · x̃22(t̂1) · · · x̃2n(t̂1)
x̃21(t̂2) x̃1(t̂2)x̃2(t̂2) · · · x̃22(t̂2) · · · x̃2n(t̂2)

...
...

. . .
...

. . .
...

x̃21(t̂m) x̃1(t̂m)x̃2(t̂m) · · · x̃22(t̂m) · · · x̃2n(t̂m)











(11)˙̃x(t̂k) =
x̃(t̂k+1)− x̃(t̂k−1)

t̂k+1 − t̂k−1

, k = 2, . . . ,m− 1

(12)˙̃X = �(X̃)�OLS

https://www.statsmodels.org/stable/index.html
http://www.pyomo.org/
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Evidently, the number of optimization problems to be solved depends directly on the choice of optimization 
horizon H. Nevertheless, the problems in the sequence are likely significantly more computationally tractable 
than solving (4) for the entire (large-scale) data set. It is worth mentioning that, to date, no analytical frameworks 
exist for determining the optimal choice of horizon H. The empirical consensus is that longer horizons yield 
better results (i.e., convergence of the estimates to the true values of the parameters), which intuitively comes at a 
computational cost38. For periodic systems, such as the Lotka–Volterra system shown in Supplementary Fig. S.2, 
an intuitive choice for H can be an integer multiple of the period corresponding to the fundamental oscillation 
frequency, which can be estimated from the data.

Thresholding algorithm.  The proposed thresholding approach is described in Algorithm 3, and is embedded 
within the moving horizon scheme introduced previously in Algorithm 2. The variability of the sequence of coef-
ficient estimates can be quantified statistically by computing the coefficient of variation (CV), defined as the ratio 
between the standard deviation and the mean. In our framework, the coefficient of variation is computed for the 
coefficients of all basis functions �θ ∀θ ∈ {1, . . . , |�|} , and for all state variables j ∈ {1, . . . , nx} . If the coefficient 
of variation CVθ ,j is greater than the specified variability threshold ψ , then the basis function is pruned and not 
considered in future iterations of the moving horizon scheme. Otherwise, the basis function �θ remains in the 
dictionary.
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Basis functions such as {111, x} ∈ � are particularly prone to contributing to overfitting noise components in 
the data, as well as to the differentiation error introduced when the dynamics are discretized (particularly in 
high noise environments and when the initial function library is larger). To prevent spurious thresholding for 
this type of basis functions, whose associated coefficients are likely so see greater variability across different data 
subsets, it is preferable to retain them in the basis for the first few thresholding steps regardless of their associated 
coefficients’ observed CV. After these initial iterations and when (potentially) some of the other inactive basis 
functions have been pruned, if basis functions like e.g. {111, x} are in fact active they are expected to experience 
less variability in their respective coefficients and remain in the basis when the algorithm converges.

Data availability
All data and code used in this analysis can be found at: https://​github.​com/​Baldea-​Group/​DySMHO.
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