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PURPOSE. To discuss the potential contribution of rod and cone synapses to the loss of
visual function in retinal injury and disease.

METHODS. The published literature and the authors’ own work were reviewed.

RESULTS. Retinal detachment is used as a case study of rod spherule and cone pedicle
plasticity after injury. Both rod and cone photoreceptors terminals are damaged after
detachment although the structural changes observed are only partially overlapping. For
second-order neurons, only those associated with rod spherules respond consistently
to injury by remodeling. Examination of signaling pathways involved in plasticity of
conventional synapses and in neural development has been and may continue to be
productive in discovering novel therapeutic targets. Rho kinase (ROCK) inhibition is an
example of therapy that may reduce synaptic damage by preserving normal synaptic
structure of rod and cone cells.

CONCLUSIONS. We hypothesize that synaptic damage contributes to poor visual restoration
after otherwise successful anatomical repair of retinal detachment. A similar situation may
exist for patients with degenerative retinal disease. Thus, synaptic structure and function
should be routinely studied, as this information may disclose therapeutic strategies to
mitigate visual loss.

Keywords: photoreceptor morphology, plasticity, RhoA-ROCK, synapse, retinal detach-
ment

S ensory receptors, and photoreceptors in particular, are
exquisitely complex cells. At one end, a photosensitive

organelle, the outer segment, which transduces energy from
visible light into a membrane potential change, connected
by a modified cilium, which helps create the membranous
outer segment, to an inner segment where metabolic needs
are met and proteins synthesized, then the cell body with
the nucleus, and a fiber that is both axon- and dendrite-like
extends to the final compartment, a presynaptic terminal.
But not a conventional terminal; it is a ribbon synapse highly
specialized to deliver glutamate in ever changing amounts,
in response to light levels, to multiple postsynaptic cells.
However, when describing the effects of disease or injury
on this complex receptor, reports most often focus on the
changes in the outer segment: are the membranous disks
disorganized, how many are gone, and has the length of the
outer segment returned to normal? We would like instead to
turn the spotlight to the synaptic terminal, the first synapse
in the visual pathway without which no sensation of light
would occur.

ROD SPHERULES

More than 30 years ago, in a cat model of retinal detachment,
changes in the first synapse were noted in response to the
detachment injury.1,2 Because of the ease of immunocyto-

chemical detection, more is known about rod synapses after
detachment: in contrast to cone terminals, rod presynap-
tic terminals retain their characteristic proteins and synaptic
markers while undergoing dramatic movements in response
to injury, uncoupling from their postsynaptic partners and
withdrawing into the outer nuclear layer (ONL).3 After
retraction of the spherule, the rod cell’s postsynaptic part-
ners react; rod bipolar dendrites sprout, extending into the
outer nuclear layer, and horizontal cell axons grow exten-
sively in the outer and inner retina.2,5 Surprisingly, and in
contrast to the regeneration of outer segments, reattachment
of the retina does not restore the outer plexiform layer. In
fact, rod terminals continue to exist in the outer nuclear
layer weeks after reattachment.5 In addition, new structural
plasticities occur. At rod terminals, neuritic sprouts, visi-
ble because of the abnormal diffusion of opsin through-
out the rod cell plasma membrane, extend into the inner
nuclear layer and develop presynaptic varicosities. Although
some normal synaptic structures, like ribbons, have been
described in the varicosities along the rod sprouts, normal
synaptic contacts with other retinal neurons do not form.5

In our more recent studies on retinal detachment using
a pig model, we also observed many of these synaptic
changes (Fig. 1). Our work has looked at shorter time-
frames and therefore has added new information: retrac-
tion of the rod presynaptic terminal occurs within hours of
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FIGURE 1. Injury-induced synaptic disjunction.A.Diagram of normal retina, modified from Dowling and Boycott 1966.86 B. After detachment,
rod axons and terminals retract from the outer plexiform layer and cone terminals round up (red arrows). C. Detached retina labeled for
synaptic proteins (SV2, green) and nuclei (red). Top, within hours after detachment rod (blue arrowheads) and cone (blue arrows) become
rounded in shape. D. 24 hours later retracted rod spherules are present in the outer nuclear layer while pedicles appear flattened. Scale bar,
10 μm. C-D. Porcine retina maintained in vitro, modified from Fontainhas and Townes-Anderson 2011.40

detachment, in other words, very quickly,6 and rod synap-
tic reactions occur in many places throughout the retina
including more than a centimeter away from the detach-
ment in areas that remain attached.6–8 It appears that there
is a wave of change across most of the retina in response
to the local injury. Two to seven days later, when the retina
has spontaneously reattached, rod terminals remain in the
outer nuclear layer, although in reduced numbers compared
to two hours after detachment8 (unpublished data, 2020).
Bipolar cell sprouting in our model begins about two days
after detachment/reattachment.8

Both the previous retinal detachment studies and
our own suggest that continued disruption of synapses
contribute to the visual disturbances, including lower acuity,
consistently observed after anatomically successful reat-
tachment surgery.9–16 Indeed, we saw a high correlation
between the amount of rod synaptic retraction, deter-
mined by misplaced synaptic vesicle labeling, and the
reduction in scotopic responses two days after detach-
ment/reattachment.8 In other words, in addition to damaged
outer and inner segments, loss of synapses due to synaptic
remodeling can contribute to the lack of physiological recov-
ery after retinal detachment.

Genetic Retinal Degeneration

Are rod synaptic changes unique to retinal detachment
injury? Published descriptions of synaptic injury in retinal
degeneration are now quite common. Retracted rod presy-
naptic terminals are found in the outer nuclear layer in
human retinitis pigmentosa (RP),17 in models of congen-
ital stationary blindness,18 glaucoma,19 retinal degenera-
tion (autosomal recessive RP,20 X-linked RP21,22), oxygen-
induced retinopathy (OIR),23 retinoschisis,24 and in human

and animal models of normal aging and age-related macular
degeneration (AMD).25–28 Bipolar and horizontal cell sprout-
ing has been described in human RP,17 AMD and aging,25,26

and models of RP,21,22 congenital stationary night blind-
ness,18 and AMD.27,28 Finally, rod neuritic sprouts in the
inner retina have been found in multiple subtypes of human
RP,17,29,30 in animal models of RP,31–33 in AMD,34 in rod/cone
dysplasia,35 and after laser damage.36 Thus, we should add
rod synaptic change and loss to the set of problems to
be considered and addressed in new therapies for retinal
disease.

Sequence of Synaptic Change

If one examines the list of observations for rod terminal
retraction, sprouting by bipolar and horizontal postsynap-
tic partners, and rod neuritic sprouting, it is evident that
these phenomena frequently occur in the same injury or
disease, suggesting that the neurons involved in the first
synapse of the visual system work as a functional unit not
only in normal physiology but also in pathology with a
stereotypical response. We have reported that rod termi-
nal retraction occurs first6 in response to detachment. In
retinal disease some have suggested that the entire synap-
tic complex is retracted into the ONL.18 However, examina-
tion of the very early events, which might show that retrac-
tion of the spherule occurs first, is often absent. Alterna-
tively, the nature or the magnitude of the perturbation in the
circuitry could induce different reactions. Sprouting of post-
synaptic cells may be sequential. In a mouse retina, mutant
for the presynaptic scaffolding protein bassoon, horizontal
cell sprouting occurs before rod bipolar neuritic growth.37

Finally, it seems that rod neuritic sprouting into the inner
retina occurs after sprouting of the secondary neurons as
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it is a phenomenon seen after retinal reattachment, long
after detachment-associated changes have occurred. In the
mouse, rod cell sprouting does not occur, perhaps because
of rapid rod cell death in most mouse retinal degenera-
tions.29 With this scenario in mind, it is tantalizing to think
that if rod terminal retraction is blocked, no further remodel-
ing and synaptic disruption would occur in the rod pathway.

CONE PEDICLES

In human cone cell disease, not all functional visual loss
correlates with degenerative outer/inner segment changes:
in human X-linked RP (XLRP) with mutations in the RP-
GTPase regulator gene (RPGR), loss of retinal sensitivity
to 543 nm light compared with cone inner segment thick-
ness and cell density reductions as seen with high resolu-
tion microperimetry, was greater than expected.38 Recently,
in the rd9 mouse, a model for XLRP, rod cell spherule retrac-
tion and postsynaptic cell sprouting were described, and,
despite the normalcy of cone cell morphology, reduction in
photopic b-wave responses was reported.21 Similarly, in two
canine models of RP with RPGR mutations, substantial rod
circuitry remodeling was reported, which caused reduced
retinal function, although no cone synaptic changes were
observed.22 Again, studies of retinal detachment may lead
the way to an enhanced understanding of photoreceptor
degeneration.

More than a decade ago, changes in cone cell synapses
after detachment were described in a feline model of reti-
nal detachment. They included rounding or flattening of the
cone pedicles, loss of synaptic invaginations, and reduction
in number and size of ribbons.5 In our pig model, reduction
of ribbon length and loss of invaginations occur within hours
after detachment along with shape changes to the pedicles
(Fig. 1).39,40 It should be noted that rod terminals also exhibit
shallow invaginations and some reduction in ribbon size
after detachment, but these changes are less dramatic than
the retraction of the spherule resulting in synaptic disjunc-
tion. In contrast, cone synapses show no patent synaptic
disjunction. However, the cone axons can appear tortuous,
perhaps due to movement of the cone cell body inwards
into the outer plexiform layer.5 Changes at the molecular
level accompany the pedicles’ morphological changes. In
contrast to rod cells, most molecular markers specific to
cone cells disappear after three to seven days of detach-
ment (i.e., cone opsins, calbindin D, GCAP-1).4 Although
cone opsin mRNA expression returns after reattachment,41

the structural integrity of cone synapses after reattachment
is unknown. If rod synapses are a guide, it is likely that some
changes in cone synapses remain after reattachment. Consis-
tent with this hypothesis, patients with retinal detachments
present with reduced photopic b-wave responses months
after anatomically successful reattachments.42–45 More work
is needed to understand cone synaptic plasticity during
detachment and disease and the role of rod and cone synap-
tic changes among patients with persistent visual loss after
outer and inner segment regeneration, whether arising from
RP-like disease, retinal detachment, or blunt trauma.

MECHANISMS OF SYNAPTIC PLASTICITY

What might be the mechanisms and therefore possible ther-
apeutic targets for control of photoreceptor synaptic plas-
ticity after injury and during disease? We speculated that

much could be learned from previous work on the plastic-
ity of conventional synapses during learning and memory,
where signaling pathways are well known.46 Glutamate,
calcium, and the cyclic nucleotides, cAMP and cGMP, are
among the main actors. Since photoreceptors have no gluta-
mate NMDA receptors, we assessed calcium and cyclic
nucleotides. Calcium plays a role in detachment-induced rod
synaptic retraction in vitro and blocking L-type channels
reduced rod cell plasticity of isolated rod cells47,48 and intact
neural retina in culture.40 Cyclic AMP via phosphorylation
of the transcription factor cAMP response-element binding
protein (CREB, another player in activity-dependent synap-
tic plasticity46) also prevents retraction and can stimulate
rod sprouting in intact neural retina in vitro.49,50 We have
suggested that activation of rod opsin that diffuses along
the inner segment cell membrane in injury and disease,
known as mislocalized opsin, is able to stimulate adenylyl
cyclase to increase cAMP and CREB activity.50,51 For cone
cells, blocking their cGMP-gated calcium channels prevented
the formation of presynaptic varicosities in isolated cone
cells whereas addition of the channel agonist 8-bromo-cGMP
increased varicosity formation.48 Although there is currently
no evidence of new cone synapse formation after detach-
ment or reattachment, remodeling, including development
of a small number of synaptic structures, has been observed
in mouse cones after partial loss of cone cells by diphtheria
toxin.52 Furthermore, activation of soluble guanylyl cyclase,
to increase cGMP, stimulated neuritic sprouting of isolated
cone cells53 suggesting an explanation for the unusual cone
cell sprouting observed in an autosomal recessive form of RP
characterized by high cGMP levels in the outer retina.54,55

Development of neural connections may additionally
serve as a guide to mechanisms of injury. Guidance cues
are critical to pathfinding by axonal growth cones as well as
synaptogenesis.56 Some of the signaling pathways activated
by these factors are well known. Somewhat surprisingly
many of these factors have been shown to increase after reti-
nal injury and disease. For instance, semaphorin 3A (Sema
3A) increases in the retina after retinal detachment,57,58 optic
nerve axotomy,59 diabetic retinopathy,60 OIR,61 and glau-
coma;62 netrin-1 is upregulated in OIR and diabetic retinopa-
thy;63–66 eph/ephrin signaling is involved in OIR and diabetic
retinopathy67–69 and increases in glaucoma.70–73 In contrast,
ROBO1, a receptor for the repulsive guidance cue slit, and
normally present in photoreceptor terminals, decreases in
disease.22 These changes in guidance factors have been
observed in both animal models and patients. Additionally,
dramatic upregulation of genes for canonical pathways of
axon guidance, including for ephrin and semaphorin, is
reported in a CNGA3/CNGB1 double mutant mouse that
displays extensive horizontal and bipolar cell sprouting.
Since guidance cues can promote both axonal and dendritic
growth,74,75 retinal cell sprouting by secondary neurons may
be influenced by these factors. In cultures of adult amphib-
ian rod and cone photoreceptors, we found that guidance
factors modulate synaptic plasticity. Sema 3A reduced rod
neuritic sprouting58 whereas netrin-1 promoted presynaptic
varicosity formation in rod but not cone cells (Fig. 2).

Signaling Pathways

The chemorepulsive factor Sema 3A works through recep-
tors that activate RhoA. We reported that not only did
Sema 3A and its receptor neuropilin-1, present on most
retinal neurons, increase after injury,58 so did activated
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FIGURE 2. Netrin increases the formation of presynaptic varicosities in isolated rod cells. Data from adult salamander retinal cell cultures.
Netrin was added to the culture medium at indicated concentrations. After three days in culture, the higher doses of netrin-1 significantly
increase the production of varicosities by rod (B) but not cone (A) cells. Cultures were stained for rod opsin and synaptophysin to highlight
presynaptic formation. **P < 0.001, + SEM, n = 800 cells, 16 cultures from four animals (one-way ANOVA with Tukey’s post hoc test).

FIGURE 3. RhoA activation in porcine retina in vivo. A. Samples were taken from the detached (DD) and attached retina (DC) in the operated
right eye and from the same areas in the normal (unoperated) left eye (ND, NC). B, C. Two hours after detachment, active RhoA (RhoA-GTP
obtained with a pull-down assay) increases in DD and DC (*P < 0.05, n = 16 retinal samples, four pigs). D. RhoA activation remains above
control, but lower than at two hours, in the detached area after 24 hours (P = 0.07, n = four pigs). Although activation of RhoA protein
increased, total RhoA protein did not change (normalized with GAPDH). S, superior, I, inferior, N, nasal, T, temporal. *Location of cone rich
area centralis. Data expressed as mean + SD; normal eye, ND, normalized to 1, one-way ANOVA. Panels A–C modified from Wang et al.
2016.6

RhoA, spiking after detachment but frequently remaining
at above normal levels for at least 24 hours (Fig. 3). The
cause for RhoA activation after retinal injury could relate
to the presence of semaphorin, but additional triggers,
such as mechanotransduction at the membrane that acti-
vates RhoA-associated guanine nucleotide exchange factors
(GEFs)76 and/or injury-induced secretion of ATP, seen
after mechanical stimulation and detachment in retina,77,78

that increases Rho kinase (ROCK) activity by binding to
purinergic receptors,79 may also be involved. In culture,
isolated rod cells retract their axonal fiber more quickly
with added ATP whereas axon retraction is slowed by
suramin, a purinergic antagonist (Fig. 4). Mechanotransduc-
tion and ATP secretion, which respond to injury rapidly,
may be especially significant at the early times after
detachment.

We have reported experiments in which components of
the RhoA-Rho kinase (ROCK)-LIM kinase (LIMK) pathway
are blocked. In our injury models, both in vitro and in
vivo,6–8,40,49,80–82 anything that reduced the activity of RhoA
or its downstream targets reduced rod synaptic disjunc-
tion (Fig. 5). The effects of inhibitors are directly on the
photoreceptor themselves, as their terminals contain RhoA
and LIMK,80,82 although we do not rule out additional effects

on other neurons, epithelial cells, and vascular endothe-
lium. For cone cells we know that ROCK inhibition can also
modify synaptic structure. RhoA is present in the pedicles of
adult cone cells.80 In cultures of isolated salamander cones,
ROCK inhibition increased neuritic growth and the develop-
ment of synaptic varicosities. In our in vivo pig model, where
cone neuritic growth is not seen, preliminary data indicate
that ROCK inhibition prevents the reduction in size of cone
synaptic ribbons that occurs in response to a 2-hour retinal
detachment (unpublished data, 2021).

Signaling pathways in activity-dependent synaptic plas-
ticity and neural development thus provide a broad canvas
for experimentation on ways to preserve synaptic structure
at the first synapse. However, an additional consideration
could provide more focus in the search for therapeutics.
Some elements in these pathways appear almost uniquely
after injury. Activated RhoA, for instance, is at very low levels
in the retina under normal conditions.6 Sema 3A is absent in
the normal retina.58 The advantage of targets such as these is
that drugs or antibodies blocking their activity are less likely
to disrupt normal synaptic function. It can be likened to a
conditional gene knockout, a more precise therapeutic tool.
Our use of a ROCK inhibitor in retinal detachment seems to
be such a focused therapy. However, discovering the timing
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FIGURE 4. ATP promotes axon retraction in rod cells. Left, isolated rod cell in culture showing axon retraction over a six-hour period. Right,
ATP increases the amount of retraction; suramin, a purinergic receptor antagonist, reduces retraction. *P < 0.05, n = 100 cells per condition,
from five animals (one-way ANOVA with Tukey’s post hoc test).

FIGURE 5. Pathway that contributes to rod synaptic disjunction after detachment. Red arrows point to targets of blockers tested: CT-04 against
RhoA; Y27632, fasudil and AR13503 against Rho kinase (ROCK); IPA-3 against p21-activated kinase (PAK); BMS-5 against LIM kinase (LIMK);
nicardipine against L-type calcium channel. All blockers reduced rod spherule retraction. Data from Nachman-Clewner et al. 1999; Zhang &
Townes-Anderson 2002; Fontainhas & Townes-Anderson 2008, 2011; Wang & Townes-Anderson 2015; Wang et al. 2016; Townes-Anderson
et al. 2017; Wang et al. 2019; and Halasz et al. 2021.6–8,40,47,48,80–82

of the upregulation of these transitory injury-induced targets
will be a challenge.

CONCLUSIONS

Determining the role of retinal synapses in visual recovery
or the lack thereof clearly deserves more attention. Although
advances in our understanding may depend in part on the
development of new techniques to assess the structure and
function of ribbon synapses in disease and injury, much
can be learned by application of current high-resolution
microscopy and electrophysiology. In terms of treatment, we
know that the visual system can tolerate some loss of synap-
tic connections, perhaps, in part, because of built-in redun-
dancy: 40% or more of cone cells can die, and a patient can
retain normal visual acuity and foveal sensitivity.83,84 This
fact may be advantageous by providing time to introduce
compounds, such as ROCK inhibitors, to preserve the care-
fully choreographed synaptic circuitry that remains. More-
over, preservation of the outer retinal synaptic circuitry may
also benefit the inner retina, which is known to undergo
extensive remodeling after injury and during disease.5,85 As

part of the central nervous system, synaptic preservation in
the retina is especially critical as regeneration of appropriate
connections is poor.
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