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Simple Summary: With the continuous increase of intensive agriculture, the poultry industry has
developed rapidly. Concurrently, diseases such as avian influenza, salmonella, and Newcastle disease
have brought huge losses to the poultry industry. The traditional method of disease prevention and
treatment includes vaccinations, but these have been linked to concerns associated with expense
and meat safety. To solve these problems, genetic breeding methods can be used. In this paper, a
genome-wide association analysis was linked to heterophil/lymphocyte ratio disease-resistance traits
as a means through which disease damage can be mitigated.

Abstract: Presently, the heterophil-to-lymphocyte (H/L) ratio is being studied extensively as a disease
resistance trait. Through intricate mechanisms to identify and destroy pathogenic microorganisms,
heterophils play a pivotal role in the immune defense systems of avian species. To reveal the genetic
basis and molecular mechanisms affecting the H/L ratio, phenotypic and H/L data from 1650 white
feather chicken broilers were used in performing a genome-wide association study. A self-developed,
chicken-specific 55K chip was used for heterophils, lymphocytes, and H/L classification, according to
individual genomic DNA profiles. We identified five significant single nucleotide polymorphisms
(SNPs) when the genome-wide significance threshold was set to 5% (p < 2.42 × 10−6). A total of
15 SNPs obtained seemingly significant levels (p < 4.84 × 10−5). Gene annotation indicated that
CARD11 (Caspase recruitment domain family member 11), BRIX1 (Biogenesis of ribosomes BRX1), and
BANP (BTG3 associated nuclear protein) play a role in H/L-associated cell regulation and potentially
constitute candidate gene regions for cellular functions dependent on H/L ratios. These results lay the
foundation for revealing the genetic basis of disease resistance and future marker-assisted selection
for disease resistance.
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1. Introduction

With the continuous expansion of the poultry industry, production continues to be plagued
with problems associated with disease. Although vaccination programs have dramatically reduced
the incidence of many diseases and controlled the most prominent acute infections, they have not
adequately addressed all infectious diseases [1]. Through systematic efforts, the combined impact of
vaccination strategies, optimal nutrition, and genetic improvement, impressive increases in disease
protection have been achieved. However, excessive use of vaccination and drugs in production is
expensive and raises concerns for meat safety. Further improvement in the intrinsic resistance to
disease, obtainable through the application of genetic principles and techniques, is desirable.
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Avian heterophils, which are widely present in the peripheral blood of poultry, are equivalent to
mammalian neutrophils in their defense-associated role against external pathogenic microorganisms [2].
Although avian heterophils are synonymous with animal neutrophils in their purpose, heterophils
and neutrophils function in significantly differently ways [3,4]. Firstly, as heterophils do not secrete
peroxidase and alkaline phosphatase, their antibacterial action is exerted through a non-oxidative
deamination mechanism with selective cytokine activation [5]. Secondly, heterophils are capable of
cell degranulation, oxidative burst, and phagocytosis. Pattern recognition receptors on the surface of
heterophils interact with pathogens, recognize and exert phagocytosis, and secrete a large number of
cytokines, such as beta defense molecules and leukotriene B4, and chemokines. This activates other
immune defense pathways, thereby exerting immunity against disease [6–8].

Disease resistance in chicken can be improved through genetic selection for immunocompetence [9].
Generalized resistance to disease in birds is influenced by genetic and environmental factors, and
involves both innate and acquired immunity; the latter being influenced by environmental factors
to a greater degree. Lymphocytes are involved in acquired immunity [10]. As a simple index, the
heterophil/lymphocyte (H/L) ratio in blood reflects immune system status [11]. Antibody titers [12]
and circulating lymphocyte and macrophage numbers decrease, while the heterophil concentration
increases in response to immunological challenges when low H/L ratios are observed [13].

Cell counts from blood smears have long been used to evaluate health parameters in animals. In
most studies using leukocyte profiles, the focus was on the H/L ratio because this index reflects the
dynamic between the main cell types [14]. The H/L ratio was initially suggested to be an indicator
of stress [2], since this ratio is seen to increase when chickens are stressed. The increase in the H/L
ratio has been shown to be more striking in response to the first, rather than a second, imposed
stress [2]. The H/L ratio has also been used as a selection criterion for response to the Newcastle
disease vaccine and general resistance to heat stress [15]. In addition, since the H/L ratio changes
with different environments [16] and is associated with baseline corticosterone levels in adult birds,
it is recognized as an indicator of animal welfare [17]. Consequently, following stress on the body,
the change in the H/L ratio can be used as a stress index, since it is associated with body strength
and stress resistance [18]. The current study is based on white feather broiler chickens farmed at the
Foshan Gaoming District Xinguang Agriculture and Animal Husbandry Co., Ltd. (Foshan, China).
General disease resistance mechanisms associated with the H/L ratio are poorly understood. Therefore,
in order to lay the foundation for further analysis into the molecular mechanisms of the H/L ratio
and subsequent molecular marker-assisted selection of breeding pairs, genomic DNA typing was
achieved using a self-developed 55K single nucleotide polymorphism (SNP) chip (Beijing Compass
Biotechnology Co., Ltd., Beijing, China) and a genome-wide association study (GWAS) performed in
white feather broiler chicken. In performing the GWAS, monocyte, lymphocyte, heterophil, and H/L
ratio data were used to identify quantitative trait loci or functional genes that affect each cell type.

2. Materials and Method

2.1. Experimental Animals

The work was approved by the Animal Management Committee of the Institute of Animal
Sciences, Chinese Academy of Agricultural Sciences (IAS-CAAS, Beijing, China). Ethical approval
on animal survival was given by the animal ethics committee of IAS-CAAS (approval number:
IASCAAS-AE20140615).

The experimental cluster is represented by the white feather broiler B line ancestral chicken of
the Guangdong Foshan Xinguang Agriculture and Animal Husbandry Co., Ltd. Raised at the same
facility, the resource groups were used for breeding purposes.

The chickens were reared in a fully enclosed, shaded chicken house. The house temperature was
34 to 35 ◦C the first day. The difference between day and night temperatures did not exceed 1 ◦C. The
temperature was decreased by 1 ◦C every three days and 2 ◦C per week until room temperature was
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achieved. The chickens were exposed to 24 hours of light for three days, 23 hours of light on the fourth
day, and a 1 hour decrease in light every two days until natural lighting was achieved. Humidity in
the chicken house was maintained at 70–80%. Floor space available was 1 m2 per 3 chickens. Using
corn–soybean-type diets, the nutritional levels of each generation remained unchanged. Blood was
collected from the wing vein at 42 days of age with anticoagulation, achieved using anticoagulant
citrate dextrose 1.32% (M/V), sodium citrate (M/V), 0.48% (M/V) citric acid, and 1.47% (M/V) glucose.
Anticoagulated blood samples were stored at −20 ◦C for genomic DNA extraction. H/L traits were
individually measured at 42 days of age.

2.2. Phenotypic Measurement

At 42 days of age, two glass slides were each smeared on a single side with 10 µL of blood,
freshly obtained from the lower part of the chicken’s wing. Slides were air-dried and dyed with
May–Grunwald–Giemsa stain. One hundred leukocytes, including granular (heterophils) and
nongranular (lymphocytes and monocytes) components, were counted on one slide for each bird and
the heterophil-to-lymphocyte ratio calculated [19]. All statistics were performed using SAS 9.2 (SAS
Institute, Inc., Carly, NC, USA). Data that did not have a normal distribution underwent box–cox
transformation [20].

2.3. Genotyping and Quality Control

Blood samples were obtained using standard venipuncture techniques. Genomic DNA was
extracted from blood samples, using a standard phenol/chloroform method and genotyped with a
55K Affymetrix Axiom Chicken Genotyping Array (Affymetrix, Inc. Santa Clara, CA, USA). Genotype
quality control was performed with PLINK 1.9 [21]. Samples and SNPs with call rates lower than 90%
were excluded. SNP data quality indicators included the exclusion of individuals with a genotype
deletion greater than 10% and SNPs with a minimum allele frequency of less than 1%. SNPs were also
excluded when the deletion rates in the case and control groups were significantly different (p < 10%).
High quality, raw genotypic data are critical to the success of a GWAS analysis. The effectiveness of the
research is greatly reduced if even typing errors are as low as 1%.

2.4. Genome-Wide Association Analysis

Because false associations may be due to the presence of cryptographic correlations or hidden
population stratification, a simple method was used to correct the number of multiple tests needed to
determine the threshold for the whole genome significant/implicit association. Prior to the GWAS,
principle component analysis (PCA) was performed in PLINK 1.07 [22]. Using this approach, we
obtained 20,668 recommended independent tests. The genome-wide and implied p values were 2.42 ×
10−6 and 4.84 × 10−4, respectively.

We initially performed a univariate GWAS by applying a linear mixed model to account for
associations between H/L and effective SNPs, using GEMMA [23]. The statistical model applied in this
study is as follows:

y = Wα + xβ + u + ε

In this expression, y denotes the phenotypic values of n samples, while W refers to a covariance
matrix used to control population structure, α denotes a vector of corresponding effects that comprise
the intercept, x denotes the marker genotypes, β refers to the effects of the corresponding markers, u is
a vector of random polygenic effects, and ε is a vector of random residuals.

2.5. Gene Identification and Annotation

Annotated genes and associated SNPs whose p values were found to be significant by GWAS
analysis following correction were identified as candidate genes [24]. BioMart was used to detect genes
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in specific genomic regions [25]. This software has the Gallus genome version, which is supported by
the Ensemble box NCBI [26].

3. Results

3.1. Phenotypic Description and Genetic Parameters

Means and standard deviations for H/L, monocytes, heterophils, and lymphocytes are presented
in Table 1. Data that did not have a normal distribution underwent box–cox transformation.

Table 1. Descriptive statistics of phenotypic data.

Traits Mean SD Deviation Min Max CV1 (%)

Monocytes (M, n) 3 3 7 0 17 87
Heterophils (H, n) 27 9 88 2 64 34

Lymphocytes (L, n) 73 18 333 21 88 25
H /L (H/L, %) 40 20 0 0 1.7 50

Abbreviations: Mean = arithmetic mean; SD = standard deviation; Min = minimum; Max = maximum; CV =
coefficient of variation.

3.2. Population Structure

Since GEMMA (v. 0.98, University of Michigan, Ann Arbor, Michigan, USA) is based on the
hybrid model and cannot avoid the group stratification problem, it is necessary to conduct stratified
tests on the test population. Q–Q plots performed on the three traits indicated that the χ2 distribution
calculated by SNP correlation analysis did not deviate from the null hypothesis test distribution. The
χ2 value of the significant SNP locus observations is above the expected χ2 value. This showed that
there was no group stratification in the population under study and that the correlation analysis results
of this analytical method were reliable (Figures 1–4).
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3.3. H/L Ratio

It was found that two SNPs were significantly associated with the H/L ratio. The most significant
of these is located on chromosome 14 and associated with CARD11 (Caspase recruitment domain family
member 11). A second SNP is presumably associated with the H/L ratio. Specific details concerning
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SNPs identified as being linked to the H/L ratio and their associated genes are shown in Table 2. The
Manhattan plot for the H/L ratio is shown in Figure 5.

Table 2. Single nucleotide polymorphisms (SNPs) with genome-wide significance for H/L traits.

Traits Chromosome SNP ID Position 1 (BP) p_Wald Nearest Gene Distance 2

H/L 14 rs15005639 3332117 1.55 × 10−9 CARD11 D103.6
H/L Z rs314642216 10570600 1.59 × 10−9 BRIX1 D3.4
H/L 11 rs14028611 18280341 2.27 × 10−5 BANP within
H/L 12 New 12911436 4.16 × 10−5 PTPRG within
H/L 7 rs312628231 15894092 4.32 × 10−5 NFE2L2 D10.6
1 SNP positions are obtained from ENSEMBLE. 2 U = upstream, D = downstream. The unit of the distance is kb.
CARD11 = Caspase recruitment domain family member 11). BRIX1 = Biogenesis of ribosomes. BANP = BTG3
associated nuclear protein. PTPRG = Protein tyrosine phosphatase receptor type G. NFE2L2 = Nuclear factor,
erythroid 2 like 2.
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3.4. Heterophils and LYMPHOCYTES

After quality control, a total of 1500 42-day-old broiler chickens were analyzed. Manhattan
mapping revealed one SNP on chromosome 2 and one SNP on chromosome 3 that were significantly
associated with heterophils. A further three SNPs were located on chromosomes 14, Z, and 11.
Two heterophil-associated genes were found. Located on chromosome 1 and the Z chromosome,
respectively, two novel SNPs were significantly associated with lymphocytes. Two SNPs located on
chromosomes 14 and 21 appeared to be associated with lymphocytes. Specific details are shown in
Table 3. Manhattan plots for heterophils and lymphocytes are shown in Figures 6 and 7, respectively.
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Table 3. SNPs with genome-wide significance for heterophil and lymphocyte traits.

Traits Chromosome SNP ID Position 1 (BP) p_Wald Nearest Gene Distance 2

Heterophils 14 rs15005639 3332117 2.54 × 10−9 CARD11 D103.6
Heterophils Z rs314642216 10570600 8.06 × 10−9 BRIX1 D3.4
Heterophils 11 rs14028611 18280341 8.81 × 10−6 BANP within
Heterophils 3 rs316444238 3269267 3.13 × 10−5 PIK3CD U192.3
Heterophils 2 rs312628231 15894092 3.52 × 10−5 NFE2L2 D10.6

Lymphocytes Z rs314642216 10570600 5.88 × 10−6 BRIX1 U3.4
Lymphocytes 1 New 1.02E+08 9.87 × 10−6 C1H21ORF91 U2524.9
Lymphocytes 14 rs15005639 3332117 2.14 × 10−5 CARD11 D103.6
Lymphocytes 21 New 12911436 4.30 × 10−5 PTPRG within

1 SNP positions are obtained from ENSEMBLE. 2 U = upstream, D = downstream. The unit of the distance is kb.
CARD11 = Caspase recruitment domain family member 11. BRIX1 = Biogenesis of ribosomes BRX1. BANP =
BTG3 associated nuclear protein. PIK3CD = Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta.
NFE2L2 = Nuclear factor, erythroid 2 like 2. BRIX1 = Biogenesis of ribosomes BRX1. C1H21ORF91 = Chromosome
21 open reading frame 91. CARD11 = Caspase recruitment domain family member 11. PTPRG = Protein tyrosine
phosphatase receptor type G.
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3.5. Monocytes

Two SNPs significantly associated with monocytes and two SNPs with suggestive associations to
monocytes were located on chromosomes 9, 6, and 5. SNPs on chromosome 6 were linked to multiple
loci, which included the TMEM26(Transmembrane protein 26) and RHOBTB1(Rho related BTB domain
containing 1). Specific details are shown in Table 4. The Manhattan plot for monocytes is shown in
Figure 8.

Table 4. SNPs with genome-wide significance for monocyte traits.

Traits Chromosome SNP ID Position 1 (BP) p_wald Nearest Gene Distance 2

Monocytes 9 New 7719173 8.62 × 10−7 EPHA4 within

Monocytes 6 rs313943680 8556872 7.59 × 10−6 TMEM26
RHOBTB1

within
U87.7

Monocytes 9 New 10113376 2.08 × 10−5 RASA2 U100.5
PID1 U189.3

Monocytes 9 New 8301605 3.42 × 10−5 WDFY1 within
Monocytes 5 rs313016555 44638604 4.01 × 10−5 CPSF2 within

1 SNP positions are obtained from ENSEMBLE. 2 U = upstream, D = downstream. The unit of the distance is kb.
EPHA4 = Ephrin type-A receptor 4. TMEM26 = Transmembrane protein 26. RHOBTB1 = Rho related BTB domain
containing 1. RASA2 = RAS P21 protein activator 2. PID1 = Phosphotyrosine interaction domain containing 1.
WDFY1 = WD repeat and FYVE domain containing 1. CPSF2 = Cleavage and polyadenylation specific factor 2.
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4. Discussion

The H/L ratio in chicken peripheral blood has been widely accepted as a reliable and accurate
physiological indicator of chicken stress response [15]. With high or low temperature, excessive NH3

exposure, bacterial infection, and other stress reactions, the number of lymphocytes decreases while the
number of heterophils increases [27,28]. The number and proportion of heterophils and lymphocytes
are highly heritable, with a heritability estimated to exceed 0.5 [29], indicating that these traits should
respond well to selection. In this study, one fairly correlated SNP and two significantly associated
SNPs were linked to the H/L ratio. The SNP with the most significant association to the H/L ratio is
located 103.4 kb downstream of the CARD11 gene on chromosome 14. The protein encoded by this
gene belongs to the membrane-associated guanylate kinase family, a class of proteins that are used as
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molecular scaffolds. Polyprotein complexes are assembled in specific regions of the plasma membrane.
This protein is likewise a member of the CARD protein family, as defined by carrying a characteristic
caspase-associated recruitment domain (CARD). This protein has a domain structure similar to the
CARD14 protein. The CARD domain of both proteins has been shown to specifically interact with
BCL10 [30], a protein that has been recognized for acting as a positive regulator of apoptosis and
NF-κB (Nuclear factor kappa B subunit 1) activation [31,32]. When expressed in cells, BCL10 activates
NF-κB and induces phosphorylation of BCL10 [30,33,34]. Siwekidentified CARD11 as a candidate gene
for the quantitative trait locus linked to the immune response in chicken [35]. Slawinska echoed this
finding [36].

Another significant site located 0.3 kb downstream of the BRIX1 (Biogenesis of ribosomes BRX1)
gene on the Z chromosome was found. BRIX1 (ribosomal biogenesis protein BRX1) is a protein-coding
gene associated with the gastric cancer network pathway and neural development of the chicken
brain [37].

There is also a suggestion that a heterophil-associated SNP is located in an intronic region of
the BANP gene on chromosome 11. This gene encodes a protein that binds to the matrix attachment
region to form a complex with p53. So doing, it negatively regulates p53 transcription and acts as a
tumor suppressor and cell cycle regulator. Binding to the scaffold/matrix attachment region β occurs
in an ATC-rich DNA sequence, located upstream of the T cell receptor β enhancer region. V(D)J
recombination during T cell development is controlled by inhibition of the T cell receptor β enhancer
function. By recruiting HDAC1(Histone deacetylase 1) to its promoter region, H3K9ac, H3S10ph, and
H4K8ac levels are reduced to inhibit cyclin D1 transcription. This promotes phosphorylation and
nuclear accumulation of TP53 Ser-15, leading to cell cycle arrest by similarity [38].

In addition, an SNP that was significantly associated with lymphocytes is located 252.4 kb
upstream of C1H21ORF91 on chromosome 1 and is involved in staphylococcal toxemia [39].

The nearest gene to one of the SNPs that is significantly associated with monocytes is EPHA4.
This gene belongs to the heparin receptor subfamily of the protein–tyrosine kinase family. EPH
receptor-associated molecules are involved in mediating developmental events, particularly in
the nervous system. Diseases associated with EPHA4 (Ephrin type-A receptor 4) include lung
mucoepidermoid carcinoma and Duane retraction syndrome [40].

TMEM26 (Transmembrane protein 26), which encodes a protein containing multiple
transmembrane helices, was also described as being linked to the SNP significantly associated
with monocytes. It is a selective surface protein marker for beige fat cells that can coexist with classical
brown fat cells in brown adipose tissue [41].

A third monocyte-associated SNP was located 10.0 kb upstream of RASA2 (RAS P21 protein
activator 2). The protein encoded by this gene is a member of the general amino-acid permease 1
family of GTP1 (Guanosine triphosphate1) activating proteins. This gene product stimulates GTPase
(Guanosine triphosphate enzyme) activity in normal RAS p21 molecules, but does not stimulate its
carcinogenic counterpart. As an inhibitor of RAS function, this protein enhances the weak intrinsic
GTPase activity of the RAS protein, resulting in an inactive GDP binding form of RAS, which controls
cell proliferation and differentiation [42].

On chromosome 6, TMEM26 and RHOBTB1 were identified as genes linked to the
monocyte-associated SNPs. While TMEM26 encodes proteins containing multiple transmembrane
helices, which act as selective surface protein markers for brown/beige fat cells that can coexist with
classical brown fat cells in brown adipose tissue [41,43,44], the protein encoded by RHOBTB1 belongs
to the Rho family of the small GTPase superfamily. It contains a GTPase domain, a proline-rich region,
a tandem of two BTB (wide complex, tram, and bric-a-brac) domains, and a conserved C-terminal
region. This protein plays a role in small GTPase-mediated signal transduction and organization of
the actin filament system [38]. In this region, these two genes appear frequently, and are reportedly
associated with genes linked to feed conversion rate and eggshell weight [45].
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The final SNP site under discussion is located 18.9 kb downstream of the PID1 (Phosphotyrosine
interaction domain containing 1) gene and is associated with an increased proliferation of pre-adipocytes
without affecting adipocyte differentiation [46].

5. Conclusions

In conclusion, considering their physical location and biological function, the four novel genes
identified in this study appear to be promising candidate genes for H/L-associated traits. Chromosome
6 may also be an important candidate region for monocytes. Due to its connection to desirable immune
traits, results from this study may be useful for subsequent studies to reveal the mechanism of action
associated with the H/L ratio. Since the measurement of the H/L ratio from blood smears is simple and
inexpensive, individuals with low H/L ratios can be readily identified for selection and, along with
other desirable traits, contribute to improved disease resistance. Future experiments should include
replicating the candidate genes identified in this study to provide transcriptomic data from artificial
infection experiments.
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