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Abstract: The T cells are key players of the response to checkpoint blockade immunotherapy (CBI)
and monitoring the strength and specificity of antitumor T-cell reactivity remains a crucial but elusive
component of precision immunotherapy. The entire assembly of T-cell receptor (TCR) sequences
accounts for antigen specificity and strength of the T-cell immune response. The TCR repertoire hence
represents a “footprint” of the conditions faced by T cells that dynamically evolves according to the
challenges that arise for the immune system, such as tumor neo-antigenic load. Hence, TCR repertoire
analysis is becoming increasingly important to comprehensively understand the nature of a successful
antitumor T-cell response, and to improve the success and safety of current CBI.
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1. Introduction

Checkpoints blockade immunotherapy (CBI) have demonstrated unprecedented therapeutic
benefits in a significant percentage of cancer patients [1,2]. CBI uses antibodies that block inhibitory
immune pathways that protects at least some cancers by helping to establish and maintain the
immunosuppressive microenvironment [3]. Despite demonstrated success, CBI shows major limitation,
including low response rate and drug resistance, and a major remaining challenge is identifying which
patients will respond to CBI and defining the reasons for success versus failure of the treatment [4].
Therefore, in clinical practice has arisen the need for biomarkers and methods that guide patient
selection, to provide early treatments indicators of response, and to predict therapeutic effects and
adverse events [3,5].

The T cells are key players of the response to CBI [3], and monitoring the strength and specificity
of antitumor T-cell reactivity remains a crucial but elusive component of precision immunotherapy.
The main molecular determinant of T cells, ensuring antigen specificity and strength of the immune
response, is the variable region of the T-cell receptor (TCR), the result of inherently stochastic genetic
recombination and diversification mechanisms occurring during T-cell development in thymus.
Starting from a large collection of gene segments, the rearrangement process ensures that each mature
and functional T cell is endowed with a unique TCR sequence. As a T cell is activated in periphery
and undergoes a clonal expansion, all the cells of the clonal lineage are equipped with an identical
TCR sequence.
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The entire assembly of TCR sequences in an individual, that is the combination of their identities
and distribution, is referred to as the TCR repertoire, the scale of which is enormous, estimated to be in
the range of about 1014-1019 different TCRs [6].

The TCR repertoire hence represents a “footprint” of the conditions faced by T cells that dynamically
evolves according to the challenges that arise for the immune system, such as tumor neo-antigenic load.
Moreover, TCR repertoire represents a source of potential high-dimensional biomarkers for tumor
development and personalized predictor of the efficacy of immunotherapies [7]. Hence, TCR repertoire
analysis is becoming increasingly important to comprehensively understand the nature of a successful
antitumor T-cell response, and to improve the success and safety of current CBI.

Assessing the TCR repertoire requires profiling highly heterogeneous T cell populations at the
single-cell level in a high-throughput manner, something that until recently was unthinkable to
pursue due to the strong technological limitations. The incredible advancement of high-throughput
sequencing (HTS) technologies now allows us to analyze the TCR repertoire at a deeper and finer
level than traditional assays such as flow cytometry and spectratyping [8]. By sequencing the variable
determinants of TCR, which represent an accurate identifier of the majority of T cells, these technologies
can provide the full representation of the TCR repertoire in a sample.

The exponential rise in TCR repertoire data has also catalyzed the field of computational and
systems immunology, leading to a large increase in the number of computational methods directed at
dissecting repertoire complexity [8]. Sequencing data can be used to assess the clonal richness and
diversity of lymphocyte populations; to track specific clonotypes over time, between tissues, and across
lymphocyte subsets; to detect clonal expansion; and to detect the recruitment of new clones into a tissue.
This review provides the general concept of CBI (Section 2) and T-cell immune repertoire (Section 3);
summarizes the methodologies and bioinformatics tools for TCR repertoire analysis (Sections 4 and 5);
and describes the current state of knowledge about the biological and clinical significance of the TCR
repertoire in the context of the CBI (Section 6).

2. Checkpoint Blockade Immunotherapy

T cells can identify and destroy nascent tumor cells by recognizing tumor-specific
antigens presented by the major histocompatibility complex (MHC), a process known as cancer
immunosurveillance [9]; in fact, evasion of immunosurveillance is considered a peculiar hallmark
of cancer [10]. The amplitude and quality of the T-cell response is regulated by a fine balance
between co-stimulatory and inhibitory signals, the last known as immune checkpoints [11]. The first
co-stimulatory signal confers specificity to the immune response, being accounted by the recognition
of antigenic peptide/HLA complexes on the surface of antigen presenting cells (APCs) by the
antigen-specific TCR. The second type of signal is supplied by the so called “immune checkpoint”
molecules, which dynamically regulate the magnitude of the response through co-stimulatory or
inhibitory signals (Figure 1).
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Figure 1. Interplay between co-stimulatory and inhibitory signals of a T-cell interacting with an antigen
presenting cell (APC) or a cancer cell. See text for details.

The CD28 co-stimulatory receptor, constitutively expressed in 80% of the CD4+ T cells and
in 50% of the cytotoxic CD8+ T cells, binds to cognate CD80 and CD86 ligands (also called
B7-1 and B7-2, respectively) expressed by APCs. This binding starts intracellular signals that
activate transcriptional factors such as NF-AT, AP-1, and NF-κB, which in turn determine the clonal
expansion of activated T cells and their differentiation into effector and memory T cells. In contrast,
the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a CD28 homologue with 31% sequence
identity, delivers inhibitory signals for down-regulation of immune responses [12] and binds with
much higher affinity to CD80/86 ligands as compared to CD28, thus competing the CD28-mediated
co-stimulatory signal. Furthermore, it is able to wipe out the two ligands via trans-endocytosis limiting
CD28-mediated activating signalling [13]. Another important antigen-independent co-inhibitory
receptor is the Programmed Death-1 (PD-1, also known as cluster of differentiation 279 (CD279)) [11].
The binding of PD-1 with either one of its two known ligands, programmed death-ligands 1 and 2
(PD-Ll or PD-L2), induces inhibitory signals reducing T-cell activity and proliferation, modulating the
production of IFN-γ, TNF-α, and IL-2, and increasing T-regulatory cells suppressive activity [14,15].
Beside these “first-generation” immune checkpoint pathways, an array of additional inhibitory or
co-stimulatory molecules populate the tumor microenvironment and are currently being investigated
as targets for new immune checkpoint blockade drugs [16].

Hence, the immune checkpoint molecules provide the optimal balance between immune responses
to antigens and maintenance of self-tolerance under normal physiological conditions. In pathological
conditions, the cascade of molecular signals operated by immune checkpoint molecules, are hijacked
by viruses, or tumor cells, to suppress the immunosurveillance. The immunological tolerance that
establishes within tumor microenvironment, driving the development of tumor towards the clinically
evident phases, brings significant benefits to the mechanisms that maintain the activation of the
inhibitory immune checkpoint pathways [11].

Since the discovery of immune checkpoint pathways in the last decade of the twentieth century,
and the knowledge of their role as a hinder to the ability of the immune system to fight cancer, it was
evident that blocking this negative regulation might restore immune surveillance and enhance the
immune system to attack tumors efficiently. In a seminal paper in 1996, Leach et al. showed for the first
time that antibodies against CTLA4 could help reject pre-established tumors in mice [17]. Since then,
immune checkpoints inhibitors have been considered as novel targets for cancer immunotherapy,
and several antibodies targeting CTLA4, PD-1, and PD-L1 are currently approved for use in a variety
of different cancers (reviewed in [18,19]). Several clinical trials have demonstrated that CBI improves
the overall survival and long-term safety in a number of different cancers, as well provoking fewer
metastases and adverse effects as compared with traditional cancer treatments such as chemotherapy
and radiation therapy [1,20–24]. Multiple additional trials using CBI drugs either as single agents or in
combination with other agents are ongoing to extend their indication areas [18,19].
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In choosing CBI over “conventional” treatments, the fundamental parameters for success of
therapy such as mutational load, the presence of lymphocytes within the tumor and the expression
levels of immune checkpoint molecules (e.g., PD-L1,) must always be taken into consideration [25–27].
Some limitation still have to be overcome in order to become the treatment of choice in the some
malignancies, such as the costs of production, conservation, stability, and immunogenicity [28].
Perhaps the biggest challenge among them is to pass the concept of resistance [29]. The resistance
develops in 50% of the patients treated with immunotherapy and consists of a very dynamic and
complex mechanism, such as the constitutive expression of PD-L1 on cancer cells, new tumor antigens
presentation, epigenetic modifications and modulation of the tumor microenvironment toward
a tolerogenic status [30,31]. Hence, a major remaining challenge is identifying which patients will
respond to CBI and defining the reasons for success versus failure of the treatment, contexts in which
the analysis of the TCR repertoire may provide a promising contribution.

3. The Immune Repertoire

The immune repertoire is a concept that peculiarly pertains to the acquired immune system, and is
grounded on the capability of T and B cells to potentially recognize any structural determinant of an
antigen. This possibly infinite potential pattern of recognition is accounted by mature and functional
cell surface TCR and B-cell receptor, which result from inherently stochastic combinatorial genomic
recombination and additional random diversification mechanisms. Hereafter, we focus only on the
TCR, the main subject of this review.

T cells express a heterodimeric TCR consisting of an alpha (α) chain and a beta (β) chain (TCRα/β,
about 95% of peripheral T cells), or gamma (γ) and delta (δ) chains (TCRγ/δ, about 5% of peripheral T
cells). The TCR chain loci are organized in a set of gene segment families: variable (V) and joining
(J) gene segments for α and γ chains, and additional D gene segments for β and δ chains. The β

and δ chains are assembled by means of the VDJ recombination that randomly combines V, D, and J,
whereas for α and γ chains only VJ recombination occurs (Figure 2).
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Figure 2. (a,b) The diversity of T-cell receptor (TCR)αβ is a result of genetic recombination and
diversification mechanisms occurring at the α and β TCR chain loci. Diversity is first created in
the germline via recombination of variable V, diversity D (for β chain), and joining J segments.
Further diversification occurs through imprecise junctions of these gene segments (addition of P- and
N-nucleotides adjacent to the D segment), and the combination of α and β chains.

During this process, the junctions between these segments are often modified by stochastic
deletions and insertions of random, untemplate nucleotides, a process that confers further diversity.
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This highly diverse junctional region of the TCR chain, also known as the complementarity-determining
region 3 (CDR3), is an important determinant of antigen recognition [32]. The aspect more strictly
concerning the subject of this review is that the CDR3 sequence is essentially unique for each newly
formed T cell, since it is highly unlikely that two T cells will express the same CDR3 nucleotide
sequence [33]. At the same time, when a T cell is activated and undergoes a clonal expansion, all the
cells of the clonal lineage are equipped with an identical CDR3, which therefore acts as a natural
identifier of the clonality of the lymphocytes [34]; the term “clonotype” refers to the characteristic TCR
sequence that identifies a T cell clone.

The human TCR repertoire refers to the whole range of different TCRs present in an organism.
The genetic diversification mechanisms acting on a small set of genes that encode the TCR
(recombination, random insertion, and deletion) have the potential to create 1014-1019 new genetic
configuration of TCRα/β, according to probabilistic models of TCR rearrangement, where diversity is
largely dominated by the CDR3 [6,35].

Despite the high theoretical diversification potential of the TCR, approximately 4×1011 T cells
circulate in the adult human body [36], with an estimated number of clonotypes ten times lower (about
1010) [37]. Various cellular selection mechanisms (e.g., thymic education or antigen specificity) reduce
the actual diversity of the TCR repertoire, including the not completely biased V-region usage during
V(D)J recombination and antigen selection [35].

The need for accurate methods for individual TCR repertoire is justified by the prevalent
representativeness of rare clones, and a minimal presence of TCRs that are common in the
general population (“public” clonotypes). Thus, for a reliable representation of TCR repertoire,
analytical methodologies should ensure an analytical accuracy that exceeds the molecular diversity,
or at least, the clonal diversity of the underlying sample [38].

4. Methodologies for TCR Repertoire Analysis

For many years the lack of reliable and robust high-throughput technologies has limited the study
of human TCR repertoires. In recent years, the incredible advancement of highly specific HTS methods
has facilitated the parallel analysis of millions of TCR sequences. Several sequencing platforms now
offers kits and service for TCR repertoire analysis (Table 1).

Table 1. Non-exhaustive list of companies providing immune repertoire products and services.

Company Kit/Service Starting
Material Library Preparation Chains Sequencing

Platform

ThermoFisher Sci. Oncomine TCR Beta DNA/RNA Multiplex PCR
primers FR1-C β Iontorrent

Takara SMARTer Human
TCRα/β Profiling Kit RNA 5′ RACE α/β ILLUMINA

Adaptive
Biotechnologies ImmunoSEQ DNA Multiplex-PCR

primers V-J α/β/δ/γ ILLUMINA

BGI (Copenhagen N,
Denmark) IR-SEQ RNA Multiplex PCR or 5′

RACE α/β ILLUMINA

CD Genomics (New
York, USA)

Immune Repertoire
Sequencing DNARNA Multiplex PCR or 5′

RACE α/β ILLUMINA

iRepertoire, Inc.
(Huntsville, USA) DNARNA Multiplex PCR

primers V-J or V-C α/β/δ/γ ILLUMINA

In its simplest form, they analysis comprise of three essential working steps: (i) PCR amplification
of V-D-J (for TCRβ) or V-J (for TCRα,) gene segments; (ii) massively parallel sequencing of the PCR
amplicons; and (iii) alignment of HTS reads by bioinformatics tools (Figure 3).
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Figure 3. General workflow for TCR repertoire sequencing and analysis. From bulk samples (tissues
or peripheral blood) or sorted cells, genomic DNA of mRNA templates are isolated and amplified
by polymerase chain reaction (PCR) with specific primers to generate to generate the TCR library.
High-throughput sequencing generate the TCR sequencing data that can be analyzed with bioinformatics
tools based on different research objectives.

However, at present it is still difficult to define a gold standard method, like all available the
method has its advantages and disadvantages. A detailed description of all the HTS methods available
today, their advantages and disadvantages, goes beyond the real topic of this review. In this regard,
we refer to recent and excellent reviews [39].

Several pitfalls in the experimental workflow can affect the biological conclusion of a study,
among which biological sampling and technological sampling have a more relevant impact [38].
In addition, limited sampling from peripheral blood or particular tissues/organs always raises the
problem of “unseen clones.” Furthermore, bulk methods are not able to exactly match the information
on the variable region that determine the specificity of the antigen of each clonotypes, a limitation that
can be overcome by the more expensive and laborious single cell approaches [40].

The biological sampling issue refers to the fact that repertoire diversity is substantially dependent
on the comprehensive sampling of the cell population studied, and that insufficient biological sampling
results in capturing only a portion of the TCR repertoire [41]. To limit the biological under-sampling it
is important that the cell population sampled must be an approximate representation of the cellular
compartment being investigated, which could be realized by using different samples of the same
underlying cell population (biological replicates) [41]. Also, real-world experiments will always exhibit
some degree of experimental error; indeed, the possibility of sequencing errors and amplification bias
is theoretically unavoidable because it is inherent in PCR-based HTS platforms and methods for library
preparation [38]. Other sources of error include annotation error introduced during data processing
(see below). So, measuring diversity accurately requires methods that address the experimental noise
as well. As a general indication, the experimental plan should ensure that the number of sequencing
reads exceeds the molecular diversity, or at least, the clonal diversity of the underlying sample.
To achieve this goal, it is important to perform replicate sequencing of the same immune repertoire
library, that is resequencing of the same library, sequencing separate library preparation of the same
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genetic material [42]. Thus, the diversity observed in an experimental sample (e.g., a tumor biopsy,
a peripheral blood drawn) does not reflect the actual diversity realized in the whole organism, due to
rare clonotypes, sequencing sensitivity, and accuracy, so that the biological conclusiveness of diversity
and clonality analysis will benefit from the implementation of biological and technological replicates.

The preferential target of many TCR repertoire studies is the CDR3, due to the high diversity of the
V(D)J recombination junctional site and its relevance for TCR peptide interaction. However, the sequence
of the entire TCR transcript, thus including CDR1 and CDR2, may be a great advantage for modelling
the TCR structure and its binding properties. In fact, even though CDR1 and CDR2 do not directly
interact with the antigen, they play an important role in making contact with the MHC molecule and
thus influence the sensitivity and affinity of the TCR binding [43,44]. Methods based multiplex-PCR,
which make use of many allele-specific primers annealing in different positions of the V genes,
are almost unable to also detect CDR1 and CDR2. This limitation can be overcome by methods based
on rapid amplification of 5′ complementary DNA ends (5′RACE) cDNA synthesis and nested PCR.
These approach allows the synthesis of cDNA strands containing the complete 5′ end of the mRNA,
independent of the carried V allele, thus enabling the capture of all TCR variants that include CDR1
and CDR2. The following PCR step may be carried out using a common adaptor as 5′ primer and
constant region primers for the 3′ end. The PCR products can be ligated to the appropriate sequencing
adaptors and used for HTS sequencing.

It is important to mention that every method based on PCR are subjected to amplification biases,
due to a preferential amplification of some alleles compared to others [45]. Moreover, the sequencing
process has an intrinsic error rate that is independent of the library preparation, but dependent on
sequencing depth of the choice platform. Since a specific TCR may differ from another by only
a single nucleotide, it is very challenging to distinguish among PCR errors, sequencing errors and low
frequency clonotypes [46,47]. So far, the main approach used to overcome these issues is the usage of
unique molecular identifiers (UMIs), introduced into each cDNA molecule, that enables the accurate
computational correction for sequencing and PCR errors and bias [48–51]. Specific algorithms are
applied for correction of this particular type of data [52].

Raw sequencing reads from HTS machine are first pre-processed for quality reads and filtering
(e.g., barcode demultiplexing and adapter trimming), and then subjected to alignment with a reference
database for annotation, the most important being the IMGT (International Immunogenetics Information
System), which are able to provide comprehensive information (e.g., germline gene usage, framework
regions, CDRs) [53]. So far, many bioinformatics framework are available for aligning TCRα/β

sequences and quantifying for downstream statistical analysis (Table 2) [54].

Table 2. Exemplary bioinformatics tools for TCR repertoire analysis.

Tools Data Format PCR/Sequencing Error
Correction Accessibility 1 Reference

IMGT/HighV-Quest FASTA NO Web [55]
MiXCR FASTA/FASTQ YES SA [56]
MiTCR FASTQ YES SA [57]
Vidjil FASTA/FASTQ YES Web/SA [58]

IMSEQ FASTA/FASTQ YES SA [59]
RTCR FASTQ YES SA [60]
TRIg FASTA NO SA [61]

1 Web-based or standalone (SA) version that can be implemented within a computer.

5. Analysis of Immune Repertoire

Major goals of the TCR repertoire analysis is the quantification of such a changes in repertoire
diversity, yielding information on the current status of an immune response. Data list of annotated
clonotypes are processed by additional software tools (e.g., immunarch [62], immunoMap [63],
VDJtools [64], and R LymphoSeq [65]), which will evaluate the characteristics of the various individual
repertoires, including diversity of repertoire, clonal size distribution, and use of specific gene
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segments (see below). Through this analysis, the complexity of the sequencing data is commonly
summarized in metrics of repertoire diversity and clonality that, in the context of a clinical study,
can easily be related to (i) prognostic factors; (ii) evolution of disease; and (iii) response to therapies.
Noteworthy, the mathematical foundations and terminology used for immune repertoire analysis
derive from ecology, where they are used to quantify species diversity and composition [66].

The diversity measurement relates to the number of species (clonotypes) present in a biological
entity. The simplest and most familiar diversity measure is the species richness, which reflects the
total number of species (for example, V-J rearrangements, CDR3 amino acid or nucleotide sequences).
However, species richness is that measure which more than others is affected by the biological under
sampling and technological issues. A strategy to avoid the impact of sequencing depth differences on
the quality of richness estimation, is to sort the reads by clone abundance and calculate the number
of unique clonotypes comprising the top part of cumulative reads (e.g., the top 25% percentile).
This metric is not strongly influenced by rare clonotypes, thus is amenable to comparisons between
experiments [41].

Another caveat of species richness is that it does not take into account the relative frequency
of each clonotypes, thus resulting in an inadequate description of the repertoire diversity; in fact,
two populations can have the same number of clonotypes (species richness), but each of them can be
present with a different frequency in the TCR repertoire. T-cell clonal space is defined as the summed
frequency of clones in the total TCR repertoire. T cell clones that have expanded following their
encounter with the cognate antigens will produce a bias in the clone size distribution, where a relatively
small number of clones will be more represented within the clonal space. Summarizing, the population
diversity of the TCR repertoire can be quantitatively expressed by two separate factors: richness (i.e.,
the number of unique elements in a population) and evenness (i.e., the frequency distribution of those
elements).

In order to measure diversity in a more complex way than using the simple number of species,
some diversity indices have been introduced that take into account both richness and evenness.
These indices are all related to the Rényi entropy, a family of diversity measures initially developed for
information theory, which quantifies the uncertainty in predicting the sequence identity of a random
sequence from a dataset [67]. When Rényi entropy function is applied to clonotype frequencies, it
gives rise to a number of parameterized indices, each capturing different part of the distribution of
clonotype frequencies data, i.e., some of them rely very strongly on correctly capturing the tail of
rare clonotypes, while other measures systematically down-weight or undercount rarer clones [67].
Therefore, these indices provide complementary information on the size-frequency distribution of
clonotypes in the population, and they can be selectively used depending on the biological demand
being addressed. For example, the Shannon diversity index (Shannon’s entropy) is defined as:

H = −
∑N

i=1
pi ln pi

where pi is the proportion of sequence i relative to the total N sequences. It accounts for both richness of
the sample (i.e., the number of unique TCR/CDR3 sequences) and relative abundance (evenness) [68,69].
A large Shannon diversity index reflects a more diverse distribution of the CDR3 sequences.

The comparison between different samples using the Shannon diversity index must be used with
caution, because it assumes that the distributions of the clonal frequencies of the samples are similar to
each other. The Pielou’s evenness index represents a normalization of the Shannon diversity index by
division of log 2 of the number of unique productive sequences:

J = H/ log(S)

where H is the Shannon index and S is the number of unique TCR/CDR3 sequences. The Pielou’s
evenness index thus allows for comparisons between samples differing in the total number of reads:
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high evenness (on a scale of 0 to 1) implies an almost uniform distribution, whereas low evenness is
indicative of population skewing due to the biased expansion of individual T cell clonotypes.

The Inverse Simpson index is the effective number of types that is obtained when the weighted
arithmetic mean is used to quantify average proportional abundance of types in the dataset of interest:
High values indicate even distribution of TCR clones, and low values indicate enrichment of T
cell clones.

Repertoire diversity can be also assessed using clonality scores, the simplest one being the clonal
proportion, that is the fractional (percentage) composition of an individual clonotype relative to the
total number of clonotypes. Most commonly, clonality scores are derived from Shannon’s entropy
clonality can be calculated from entropy of the clonotypes frequency distribution (Shannon’s entropy),
and the normalized by the log of richness. The inverted metric (1—normalized entropy) result in
a clonality value that ranges from 0 (the most diverse repertoire, or polyclonal repertoire, that is every
T-cell in a sample contains a unique TCR), to 1 (monoclonal distribution) [68,69]. Anyway, the meaning
of clonality statistics are just the inverse of the diversity statistics, such that higher clonality typically
means lower diversity.

Gini coefficient, commonly used as a measure of income inequality in economics, can be used to
assess the inequality of clonotype distribution within a repertoire [70] (Table 3).

Table 3. TCR repertoire metrics used as biomarkers in major checkpoint blockade
immunotherapy studies.

Reference Disease CBI TCR Repertoire Metrics

Robert, L. et al. [71] melanoma CTLA4 (tremelimumab) richness, Shannon diversity index, Pielou’s
evenness index

Cha, et al. [72] melanoma, prostate CTLA4 (ipilimumab) top 25th percentile clonotypes, Morisita’s
distance

Tumeh, P.C. et al. [73] melanoma PD-1 (pembrolizumab) Shannon entropy, 1-normalized entropy

Snyder, A. et al. [74] urothelial PD-L1 (atezolizumab) Shannon entropy, 1-normalized entropy

Forde, P.M. et al. [75] NSCLC1 PD-1 (nivolumab) 1-normalized entropy

Yusko, E. et al. [76] melanoma PD-1/CTLA4
(nivo/ipilimumab) 1-normalized entropy

Postow, M.A. et al. [77] melanoma CTLA4 (ipilimumab) richness, evenness index

Hogan, S.A. et al. [78] melanoma PD-1/CTLA4 diversity evenness score (DE50)

Hopkins, A. et al. [79] pancreatic ductal
adenocarcinoma CTLA4 (ipilimumab) Morisita’s distance, (1-normalized entropy)

Roh, W. et al. [80] melanoma PD-1/CTLA4
(nivo/ipilimumab)

Shannon
entropy, TCR clonality

Subudhi, S.H et al. [81] prostate CTLA4 (ipilimumab) Shannon entropy, 1-normalized entropy

Han, J. et al. [82] NSCLS PD-1/PD-L1 Shannon entropy, 1-normalized entropy

Khunger, A. et al. [83] melanoma CTLA (tremelimumab) 1- Pielou’s Evenness, Morisita’s distance

Looney, T.J. et al. [84] Clear cells, melanoma,
prostate CTLA Shannon entropy, TCR Convergence

1 NSCLC, non–small-cell lung cancer; SSC, squamous cell carcinoma.

Repertoire overlap is the most common approach to measure repertoire similarity. It is achieved by
computation of specific statistics on clonotypes shared between given repertoires, also called “public”
clonotypes. The repertoire overlap can be used to measure the change between sequential experiments.
A therapeutic effect on the TCR repertoire would result in a lower degree of repertoires overlap before
and after therapy, as compared to the higher overlap expected for repertoires not impacted by the
therapy. The Morisita’s distance to clone count distributions is often used to quantity the overlap
between two populations; precisely, Morisita’s distance is an inverse measure of overlap so that two
population with the greatest overlap will have a minimal Morisita’s distance, while two very different
repertoires will show the maximum Morisita’s distance [38]. This index has been frequently used to
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quantify the repertoire change between sequential experiments, e.g., the repertoire of a patient before
and after treatment [72].

The uniqueness of the CDR3 TCR sequences enable tracking of clonal expansion or contraction in
serially sampled tumors. Clonotype tracking is popular approach to monitor changes in frequency of
clonotypes of interest. For example, a specific clonotype can be tracked across different time points
in pre- and post-treatment repertoires. The most frequent and feasible way for tracking clones in
peripheral blood is to focus on the most abundant clonotypes (e.g., 25%) [71,85], thus avoiding the
noise from the most infrequent clones. Another strategy for TCR clonotype dynamics during CBI
is to focus on peripheral TCR clones that show a differential abundance between baseline and the
defined time point (e.g., after each dose of drug, or objective clinical responses) [81]. The analysis
can be refined by considering the peripheral TCR clones also found in the tumor [86]. The average
productive frequency of these differentially abundant clones can be used as a metric of TCR dynamics
during therapy [86]. The main TCR repertoire metrics used as biomarkers in major CBI studies are
summarized in Table 3.

A further level of analysis of the repertoire regards the search TCR sequences with specific
antigenicity known, or the predictive analysis of TCR antigen specificity according to their
sequence [87,88]. The prediction of the TCR antigen specificity based on the TCR amino-acid sequence
alone is extremely challenging. This issue has been recently addressed by generating a large database
of antigen-specific TCR sequences and elaborating algorithms that accurately identify the patterns of
sequence motifs that correlated with antigen specificity [89]. By this approach, it has been possible to
identify neoantigen-specific T-cell clones in the neoadjuvant setting and to track neoantigen-specific
T-cell clones in blood upon anti-PD-1 therapy [75]. In this regard, it is important to emphasize that
most of these studies are based on an approach that focuses attention on the T-cell response towards
tumor neoantigens arising from non-synonymous mutations. In this regard, the analysis of the TCR
repertoire can allow the quantification of convergent TCRs, that is TCRs endowed with a shared
CDR3, and thus antigen specificity, but different nucleotide sequences [84]. The phenomenon of TCR
convergence arises from chronic antigen stimulation that results is a spectrum of T cells with different
TCR sequences but the same antigen specificity; thus, quantification of convergent has been used to
infer the presence of tumor antigen specific T-cell, beyond those directed against non-synonymous
mutations [84]. TCR convergence can be calculated as the aggregate frequency of clone with unique
TCRβ nucleotide sequences sharing a variable gene and CDR3 amino acid sequence with at least one
other identified clone.

Finally, it is important to mention that the diversity of TCR repertoire can be analyzed by
considering either the VJ cassette combination, or the amino acid CDR3 sequences encoded by each VJ
cassette combination. These two possibilities should not be considered redundant because they express
two distinct components of the total diversity of the repertoire: (i) VJ-dependent component, which is
strongly influenced by developmental and lineage restriction, and (ii) VJ-independent component,
which includes selection for the antigen-binding affinity of the CDR3 sequence [90].

6. The Impact of CBI on TCR Repertoire

6.1. Metastatic Melanoma

The first reports on TCR repertoire analysis in the settings of CBI focused on the peripheral
TCR diversity and clonality in metastatic melanoma patients [71]. By using TCRβ HTS in blood of
patients treated with an anti-CTLA4 antibody, Robert, L. et al. demonstrated a remarkable effect
of this therapy expanding the number of TCRβ in blood. In particular, the anti-CTLA4 resulted in
increased diversity indices (richness and Shannon diversity index) upon treatment, and the higher
diversity indices correlated with clinically observed toxicities but not with clinical response [71].
A similar lack of association between baseline peripheral TCR repertoire diversity and response was
recently observed in patients treated with combination therapy of anti-CTLA4 and interferon-α [83].
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An opposite findings was obtained by Postow et al., who reported that patients who had clinical
benefit had a higher degree of richness and evenness in their peripheral baseline TCR repertoires
than patients who did not have clinical benefit [77]. Although these studies utilized different CTLA-4
blocking antibodies (tremelimumab in [71,83] and ipilimumab in [77]) a more plausible explanation for
the discrepant results would be due to the different methodologies they used, thus underlining even
more the need to optimize and validate the methodology for the analysis of the T cell repertoire.

Cha et al. focused on the 25% most abundant clonotypes in pre-treatment peripheral sample,
and determined the fold changes for paired pre- and posttreatment patient samples, as well as
untreated control samples, separated by the same time interval [72]. They observed that ICB treated
patients showed a greater extent of fluctuation in clonotype abundance (either increase, or decrease)
after one cycle of anti–CTLA-4 treatment than untreated control subjects, and that a reduced loss of
clonotypes was associated with the improved clinical outcomes. These results indicate that maintaining
high-frequency TCR clonotypes during treatment would have a positive impact on the clinical course
of the disease [72].

Beside diversity and clonality, TCR convergence in pre-treatment peripheral has been used
as a predictive biomarker for response to CTLA-4 blockade in a cohort that included melanoma
patients, demonstrating a good diagnostic specify and sensitivity in discriminating responders from
non-responders [84].

When focusing on intratumor TCR clonality, Roh et al. did not observed any difference when
comparing responders to non-responders in the context of CTLA-4 blockade at the pre-treatment and
on-treatment time points [80]. However, when they compared clonality in patient-matched sequential
tumor samples, an increase in clonality was noted in a subset of patients who subsequently responded
to anti-PD1 therapy [80].

A more clonal and less diverse intratumor TCR repertoire was found in responding patients
treated with anti-PD-1 [73,80]. Biopsies from patients that experienced radiographic response to
therapy showed an enriched population of T-cells with unique specificities [73]. When TCR clonality
(1—Pielou’s eveness) was assessed at baseline and post-dosing biopsies, responder patients showed
more than ten times as many clones expanded than progressors [73].

The most frequent tumor-infiltrating clonotypes were readily identifiable in the blood and after
anti-PD1 CBI, regardless of clinical response [91]; some of them showed a Ki67+ (HLA-DR+CD38+) T
exhausted phenotype, supporting the notion that T exhausted cells in the blood are reinvigorated by
anti-PD-1 therapy and contain T-cell clones that are also present in the tumor [91].

Previous reports indicate that a high tumor mutation load may increase the probability
of generating immunogenic neoantigens, which elicit effective immune responses [92–94].
Indeed, in melanoma patients neoantigens T cells have been identified in the circulating PD-1+/CD8+

T-cell population that matched with tumor-resident PD-1+/CD8+ T-cell [91].
A recent clinical study has made it possible to evaluate the association between the diversity of

the T-cell repertoire and the response to nivolumab in two groups of patients: those who relapsed from
ipilimumab (anti-CTLA4) treatment (ipi-P), and those who were treatment free (ipi-N). The analysis of
TCR repertoires suggested that anti-PD-1 response is associated with different patterns of T cell diversity
dynamics in Ipi-N versus Ipi-P patients. Pre-therapy diversity indices (richness and evenness) were not
different between the two groups, neither among response status to nivolumab. However, the median
fold change in the number of unique CDR3 sequences (richness) was significantly associated with
benefit upon therapy (complete/partial response or stable disease) in ipi-P patients, but in not in ipi-N
patients. In contrast, the median change in T cell evenness on-therapy was associated with benefit in
Ipi-N but not Ipi-P patients.

6.2. Lung Cancer

The first conflicting results on the prognostic and predictive significance of peripheral TCR
diversity and clonality in metastatic melanoma may be due to the existence in the whole TCR repertoire
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of a large number of non-tumor specific TCRs that dilute tumor neoantigen specific TCRs. Starting from
this assumption, Han J. et al. thought to focus on PD-1+/CD8+ exhausted T cells [82], since this cell
subset seems to include the highest number of cytotoxic T cells specific for neoantigen [95]. They found
that pretreatment TCR diversity of sorted peripheral PD-1+/CD8+ T cells predicted clinical response to
anti PD-1/PD-L1 CBI in non-small cell lung cancer (NSCLC), since patients with a higher diversity
had a significantly longer progression-free and overall survival than those with lower diversity.
Therefore, a greater diversity of exhausted T cells, which probably have a high frequency of tumor
neoantigen specific T-cells, is indicative of a higher probability that these tumor neoantigen specific
T-cells can be reinvigorated by the CBI, experiencing clonal expansion and leading to an improved
immune response. This interpretation is supported by the dynamics of peripheral PD-1+/CD8+ TCR
repertoire during treatment. In fact, the authors found that TCR clonality of sorted PD-1+/CD8+ T cells
positively associated with survival outcomes, that is patients with increased clonality had improved
survival outcomes as compared to those with decreased TCR clonality [82]. Overall this study point to
the PD-1+/CD8+ T cells as source of predictive biomarkers with clinical utility.

An initial analysis of TCR repertoires in sorted cell from tumor and matched normal lung tissues
in a cohort of 47 NSCLC patients, has allowed to elucidate the association between TCR diversity
and the prognosis of lung cancer patients [96,97]. Most T cell clones had extremely low frequencies,
with a similar distribution between cancer tissues and normal lung tissues; even though only a small
proportion of T cell clones were highly expanded clones (frequency > 0.1%), their rates were higher in
normal lung tissues than in tumor tissues. The diversity of intratumor T-cell clone, expressed as inverse
Simpson’s diversity index, was higher in tumor tissues than in normal tissues, but no significant
differences were observed regarding the associations of the TCR diversity with tumor stage and
differentiation stage [97].

The most relevant knowledge on the biological significance and clinical utility of T-cell repertoire
analysis is emerging from the study on the safety and feasibility of neoadjuvant anti-PD-1 therapy in
early stage (stage I, II, or IIIA) NSCLC (NCT02259621) [75]. The neoadjuvant setting, whereby CBI
blockade is given before surgical resections, has provided the unique opportunity to monitor the
TCR repertoire across time (in serial peripheral blood draws) and space (across different biological
compartments) according to pathologic response. The authors used matched tumor, normal lung
tissue, and longitudinal peripheral blood samples to compare the quantitative and qualitative changes
in the T cell repertoire of responders versus non-responder, by using the TCR as a molecular barcode.
The treatment led to peripheral expansion of multiple T-cell clones that were also found in the tumor
at the time of resection. Many of these clones were not detected in the peripheral blood before
treatment. Then, the authors addressed the hypothesis that a substantial component of antitumor
immunity after PD-1 blockade is directed toward mutation-associated neoantigens. To this end,
they used a web-based bioinformatics platform that identify mutation-associated neoantigen-specific
T-cell clones [89], and demonstrated that in a patient showing a complete pathological response,
T-cell clones specific for mutation-associated neoantigens were rapidly expanded in peripheral blood
after neoadjuvant PD-1 blockade [73].

The continuation of this study presented a more exhaustive characterization of the dynamics of
the repertoire in relation to neoadjuvant PD-1 blockade [98]. Tumor clonality positively correlated
with tumor mutational burden, and inversely associated with residual tumors, thus supporting the
hypothesis that a high tumor mutational burden increases the likelihood that neoantigens can drive
a clonally skewed intratumor T cell repertoire leading to tumor pathological regression. Then the
authors showed that the top 1% most frequent intratumor clonotypes in responder patients were
also significantly present in the matched blood and normal lung tissue, while this association was
not significant in non-responder patients. This finding indicating that more migratory T cell clones
correlated with antitumor response. Finally, the authors found a significant association between
the increased number of tumor-infiltrating lymphocytes and the dynamic changes in frequency of
peripheral clonotypes shared with the tumor, a findings suggestive of an active compartmental exchange



Int. J. Mol. Sci. 2020, 21, 2378 13 of 19

of intratumor clonotypes induced by neoadjuvant PD-1 blockade. Notably, peripheral T cell clonotypic
expansion between weeks 2-4 after neoadjuvant anti-PD1 treatment initiation correlated with greater
intratumoral clonotype accumulation for patients with response. On the contrary, non-responder
tumors did not successfully traffic top 1% intratumor clonotypes to the tumor bed, possibly due to an
intrinsically more exhausted, less migratory T cell repertoire. This phenomenon supports the idea that
the formation of T-cell clones committed against the tumor can expand to other tissues in order to fight
micrometastasis, thereby providing a justification for the use of immune checkpoint inhibitors prior to
surgery [75,98].

6.3. Squamous Cell Carcinoma

A biological question that is particularly suitable to be explained by immune repertoire analysis
is whether the T cell response to checkpoint blockade relies on reinvigoration of pre-existing
tumor-infiltrating lymphocytes or on recruitment of novel T cells. This question has been elegantly
addressed by Yost K.E. et al. [99], through paired single-cell RNA and TCR sequencing on cells
from site-matched tumors from patients with basal or squamous cell carcinoma before and after
anti-PD-1 therapy. This methodological approach allowed the author to observe that anti-PD-1
treatment resulted in an increased frequency of activated and exhausted CD8+ T cells in tumors,
supporting the notion that PD-1 blockade primarily affects CD8+ T cells. Clonality analysis revealed
that exhausted CD8+ T cells had the highest levels of clonality compared with all other CD8+ T
cells (naive, memory, effector memory, activated, chronically activated/exhausted, and intermediate
exhausted/activated). Moreover, clonally expanded T cells shared a common exhausted phenotype
that correlated with antigen specificity, that maintained stable in response to anti-PD1. Most of
these exhausted clones detected after anti-PD1 treatment were derived from clones that had not been
detected before treatment. Of note, one-third of the novel exhausted clonotypes were detected in
peripheral blood, indicating a possible approach to monitor tumor-specific T cell responses to anti-PD1
treatment [99].

6.4. Prostate and Urothelial Cancers

The T-cell clonality (1—Pielou’s eveness) in pretreatment blood samples did not correlate
with clinical benefit or toxicity outcomes upon CTL4A treatment of metastatic prostate cancer [23].
However, an increase of clonality, underlying an expansion of a mono- or oligo-clonal population, has
been shown to precede immune-related adverse events.

In metastatic urothelial cancer, TCR clonality below the median in the peripheral blood prior to
treatment, and expansion of tumor-associated TCR in the periphery 3 weeks after initiating treatment,
are all associated with clinical benefit [74]. The authors speculated that low clonality of TCR in the
blood prior to treatment may increase the likelihood that a patient will host one or more clones capable
of recognizing the tumor. The expansion of peripheral blood tumor-associated TCRs highlights the
continuity of the blood compartments and tumor tissue, and suggests that PD-L1 block activity may
involve circulating T cells more than previously thought [74].

7. Conclusions

The extraordinary success of anticancer immunotherapies targeting the immune checkpoint
molecules, CTLA-4, PD-1 and PD-L1 has strengthened awareness of the essential role of the immune
system in eradicating tumors. The ability to predict whether a patient will respond or become resistant
to immunotherapy is increasingly benefiting from biomarkers that reflect the state of the T cell repertoire.
Key factors that may contribute to a better understanding of the impact of immunotherapies on the
patient adaptive immune system appears to be TCR diversity and clonality. At present, the major
weakness of these biomarkers is the lack of rigorous procedures for their calculation, mainly due to the
different methodologies used for the analysis of the T cell repertoire, further emphasizing the need for
their optimization and validation. As many new combination therapies are developing, TCR repertoire
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analysis should be studied, alone or in combination with other immune parameters, as source of
biomarkers of response, and to further elucidate the mechanisms of successful treatment.

Author Contributions: Writing—review and editing, I.A., D.M., G.F., C.P.; supervision, C.P.; All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We are grateful to the Department of Experimental and Clinical Medicine, University “Magna
Græcia” of Catanzaro, Italy, for paying the publication fees.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

APC Antigen presenting cell
CBI checkpoints blockade immunotherapy
CDR3 complementarity-determining region 3
HTS high-throughput sequencing
MHC major histocompatibility complex
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