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Abstract

histology.

Background: Several epidemiological and laboratory studies have evidenced the fact that atmospheric particulate
matter (PM) increases the risk of respiratory morbidity. It is well known that the smallest fraction of PM (PM1 -
particulate matter having a diameter below 1 um) penetrates the deepest into the airways. The ratio of the different
size fractions in PM is highly variable, but in industrial areas PM1 can be significant. Despite these facts, the health
effects of PM1 have been poorly investigated and air quality standards are based on PM10 and PM2.5 (PM having
diameters below 10 um and 2.5 um, respectively) concentrations. Therefore, this study aimed at determining whether
exposure to ambient PM1 at a near alert threshold level for PM10 has respiratory consequences in rats.

Methods: Rats were either exposed for 6 weeks to 100 pg/m? (alert threshold level for PM10 in Hungary) urban
submicron aerosol, or were kept in room air. End-expiratory lung volume, airway resistance (R,,,) and respiratory
tissue mechanics were measured. Respiratory mechanics were measured under baseline conditions and following
intravenous methacholine challenges to characterize the development of airway hyperresponsiveness (AH).
Bronchoalveolar lavage fluid (BALF) was analyzed and lung histology was performed.

Results: No significant differences were detected in lung volume and mechanical parameters at baseline. However,
the exposed rats exhibited significantly greater MCh-induced responses in R.,,, demonstrating the progression of AH.
The associated bronchial inflammation was evidenced by the accumulation of inflammatory cells in BALF and by lung

Conclusions: Our findings suggest that exposure to concentrated ambient PM1 (mass concentration at the threshold
level for PM10) leads to the development of mild respiratory symptoms in healthy adult rats, which may suggest a
need for the reconsideration of threshold limits for airborne PM1.
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Background

Epidemiologic studies have observed associations be-
tween short-term increases in ambient particulate matter
(PM) concentrations and increases in respiratory mor-
bidity [1]. Atmospheric aerosol is a complex mixture of
gases, solid and liquid particles. The diameter of these
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particles (Dp) varies in five orders of magnitude (1 nm —
100 pm). It has been well established that the particle
size significantly determines how deep the particles can
penetrate into the lung compartments. Particles with di-
ameters between 2.5 and 10 pm (usually defined as
PM2.5 and PM10) deposit mainly in the upper airways
and can be cleared by the mucociliary system. PM2.5 de-
posit in the tracheobronchial region, whereas PM1 (par-
ticles with diameters of less than 1 um) can reach the
lung periphery, i.e. the alveolar region [2]. Although in
urban PM mass PM10 is dominant, in industrial areas
the PM1/PM10 mass ratio can exceed 0.5 [3]. Such a
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high mass ratio expressed in particle number (i.e. nPM1/
nPM10) means at least 3 orders of magnitude. Several
studies have demonstrated that low emission zones
(LEZ) have a far greater positive effect on public health
than one would expect from PM10 data [4]. The reason
for this benefit is that LEZ are effective in decreasing the
number of small particles, but not the mass concentra-
tion of any size fraction of PM. Because of these evi-
dences, in the last decade the scientific interest has
shifted from PM10 and PM2.5 to PM1 [5], even though
air quality standards related to PM1 are still nonexistent.

The chemical composition of PM particles and their ad-
verse health effects vary greatly according to their emis-
sion sources. The pulmonary effects of specific, potentially
harmful constituents of PM, such as iron [6], elemental
carbon [7] or combustion-derived nanoparticles [8] have
been investigated. However, it is questionable whether
these findings can be generalized to humans exposed to
PM because of the complexity of real atmospheric aerosol
[9]. The few earlier studies assessing the respiratory conse-
quences of complex atmospheric aerosols in animal
models were limited to exposures to particle concentra-
tions at least five times higher than the alert level [10-13].
Thus, the development of adverse pulmonary symptoms
including bronchial inflammation and airway hyperre-
sponsiveness could be anticipated [14]. Consequently, it is
not known whether complex urban aerosols in the PM1
fraction with concentrations around the current threshold
level for PM10 cause pulmonary symptoms in healthy
adult individuals. Therefore, the present study aims to es-
tablish whether the prolonged (6 weeks) inhalation of
urban PM1 in concentrations at the current alert PM10-
related threshold level has pulmonary effects on healthy
adult rats.

Methods

Ethical approval for this study (no. I-74-50/2012) was pro-
vided by the Experimental Ethics Committee of the Uni-
versity of Szeged, Szeged, Hungary (Chairperson Prof. Gy.
Szabd) on 7 December 2012, and by the local office of the
Hungarian Animal Health and Welfare Directorate (no.
XIV/152/2013, Chairperson Cs. Farle) on 9 January 2013.
The work was carried out in accordance with EU Directive
2010/63/EU relating to animal experiments.

Exposure to PM1

Atmospheric aerosol samples were collected for a period
of 5 years continuously in the Combined Cycle Power
Plant of Debrecen, the second largest city in Hungary.
The filtration system of the power plant operates 5,000 h
per year and extracts approximately 580,000 m? air in an
hour. Particle removal is achieved in three steps. As
many as 180 pieces of coarse filters are responsible for
the removal of particles above 63 pm, and the same
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number of glass fiber filters for the removal of particles
between 63 and 1 um. The remaining small particles are
removed from the air of the turbine areas by washing
with water. The filtration properties of the filters de-
pend strongly on the actual filter loading. In the initial
phase, particles are caught between the fibers, but as the
filter becomes more loaded, particles deposit on the top
of the filter. As the particles occlude the routes within
the filter, the position of the deposition efficiency mini-
mum on the particle size axis shifts towards the smaller
sizes. A complete characterization of the sample can be
found in a previous study, which demonstrated that
88 % of the particles collected from the coarse filters
were below 63 pm [14]. In the present study we used
particles collected from the glass fiber filters. To be able
to collect submicron particles without any extraction we
aspirated the particles from the surface of the glass fiber
filters with a special hoover. Additional size selection
was done during the resuspension process.

The main air pollution sources at the sampling point
were associated with the busy roads nearby, a residential
area and the central railway station. Because of the long
sampling period, dust composition can be interpreted as
typical urban PM in any Central European city [15]. In
order to achieve a more physiological deposition, we
opted to choose aerosolized particle exposition, rather
than intratracheal instillation. The aim of our study was
to approach the ambient exposure as much as possible;
hence we selected whole body exposure. The PM1 test
atmosphere was created inside an exposure chamber.
The total volume of the exposure chamber was 60 1, and
the animal load (i.e. the total body volume of the ani-
mals) at the end of the experiment was 3.8 %. That ratio
meets Silver’s recommendation [16] to minimize effects
on exposure concentration related to animal surface
area. Re-suspension of the dust was achieved by using a
PALAS RGB1000 disperser (Fig. 1) with a Type C disper-
sion cover (7 mm diameter powder reservoir), which
uses a rotating brush to channel the particles into the
dispersion airflow. The characteristics of the aerosol in-
side the chamber were evaluated at multiple points of
the chamber before the study and continuously moni-
tored during the 6-week-long exposure procedure. The
mass concentration of the generated aerosol (p) was
measured with a tapered element oscillating microbal-
ance (TEOM) instrument (Series 1400a, Rupprecht and
Patashnick Co. Inc., Albany, NY, USA) and particle num-
ber size distribution (dN/dlogDp) with an optical particle
counter (OPC, Model 1.109, Grimm Aerosol Technik,
Ainring, Germany). Black carbon content was also con-
tinuously measured by a photoacoustic spectroscopy
(PAS) based instrument (courtesy of Hilase Ltd.). The
characteristics of the achieved atmosphere were controlled
by the settings of the disperser (feed rate of the
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transportation piston holding the particle sample, speed of
the rotating brush and flowrate of dispersion air) and by
using an in-house developed PM1 impactor in front of the
exposure chamber. The cut-off diameter of the im-
pactor at the applied flowrate was previously modeled
and bench tested. In our case the flowrate of disper-
sion air was set to 8.3 1/min, which satisfied both the
needs of the animals and the connected instruments
(sample flow of TEOM, OPC and PAS was 3, 1.5 and
1.5 1/min, respectively). The feed rate was 20 mm/h
and the speed of the brush rotation was 600 min ",
The applied flowrate ensured more than eight total
volume changes per hour. The applied maximum ani-
mal load (3.8 %) and eight volume changes per hour
lead to less than 3 ppm ammonia concentration in
the chamber at the end of an exposure period (6 h)
according to Dorato and Wolf [17]. Atmospheric
pressure in the chamber was maintained through an
open line (via a disposable particle filter, in order to
avoid contamination of the air in the room). Relative
humidity in the chamber was controlled by using
zeolite.

Two groups of male Wistar rats were studied (weight
range 350-455 g, 380+ 36 g in the exposed group and
405 £ 27 g in the control group). The animals were main-
tained at a 12 h day/night cycle. The animals in the ex-
posed group were exposed to PMI1 in the exposure
chamber for 6 h a day (09:00-17:00), 5 days a week, for
6 weeks (n=6). The animals in the control group were
kept in another chamber with identical dimensions. They
underwent the same procedure except that they were
allowed to breathe particle-free room air (# = 6). The rats
in both groups had access to food and water ad libitum
throughout the entire exposure period. Both groups were
examined following this 6-week-long exposure.

PM1 mass concentration

To verify the stability of the target 100 pg/m> mass con-
centration of PM1 inside the chamber, a TEOM was used.
This instrument allows the quasi-continuous monitoring
of the mass of PM accumulating on a filter mounted on an
oscillating microbalance inside the measurement appar-
atus [18]. Changes in the frequency of oscillation, which
reflect the mass of material accumulating on the filter, are
detected in quasi-realtime and are converted by a micro-
processor into an equivalent PM mass concentration every
few seconds with a 10 min running average. The TEOM
air stream was heated to 40 °C to prevent the condensa-
tion of water vapor on the collected samples and to keep
the non-water semi-volatile mass loss at minimum [19].

PM1 particle number size distribution

OPC that was used for the real-time characterization of
the particle number size distribution [20] detects light
scattering on an individual particle passing through a
laser beam. This device uses a 683 nm laser diode to il-
luminate the beam containing the particles, and a wide-
angle collector optic is used to detect the subsequent
light pulses with a photodiode. By knowing the geometry
and flow parameters, the optical diameter, the size distri-
bution and the total concentration of particles can be
calculated from the intensity of scattered light.

Chemical composition of PM1

The elemental composition of the sample was measured
with a RIGAKU Supermini WD-XRF (Pd X-ray source,
50 kV excitation voltage, 40 mA anode current) based on
the emission of characteristic “secondary” (or fluorescent)
X-rays (XRF) from a material that has been excited
through bombardment with high-energy X-rays or gamma
rays. Even though XRF is one of the most reliable methods
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for elemental composition measurement, quantification of
the carbon content is not possible. Therefore, we mea-
sured the total carbon (TC) and the black carbon (BC)
content of the aerosol separately.

The total carbon (TC) content of the sample was mea-
sured with the catalytic oxidation method (Elementar
Analysensysteme GmbH), which achieves total combus-
tion of samples by heating them to 1200 °C in an
oxygen-rich environment inside the TC combustion
tubes filled with a platinum catalyst. The carbon dioxide
generated by oxidation was detected using a nondisper-
sive infrared sensor (NDIR).

The black carbon (BC) content of PM1 was measured
real-time with a photoacoustic spectroscopy (PAS) based
instrument (courtesy of Hilase Ltd.) using a 680 nm laser
diode. This method is based on the formation of sound
waves following light absorption in a material sample [21].
PAS is the only method that is able to detect the optical
absorption of particles in their natural airborne state.

Lung volume measurements

End-expiratory lung volume (EELV) was measured in
both groups by using a body plethysmograph as detailed
earlier [22], following tracheostomy but preceding vessel
preparations. Briefly, the trachea was occluded at end-
expiration until 3 or 4 spontaneous inspiratory efforts
had been generated by the animal in the closed box. The
changes in tracheal pressure and plethysmograph box
pressure during these maneuvers were recorded, and
Boyle’s law was applied to calculate EELV from the rela-
tionship between the tracheal pressure and the box pres-
sure after correction for the box impedance [23]. To
minimize the biasing effects of the different breathing
frequencies during the inspiratory efforts, the box pres-
sure data were corrected for the thermal characteristics
of the plethysmograph.

Measurement of airway and respiratory tissue mechanics

The input impedance of the respiratory system (Z,) was
measured by applying the forced oscillation technique in
short (6 s) end-expiratory pauses interposed in the mech-
anical ventilation, as detailed previously [24]. Briefly, the
ventilation was stopped at end-expiration and the tracheal
cannula was connected to a loudspeaker-in-box system
instead of the ventilator circuit, delivering a computer-
generated small-amplitude (<1 c¢cmH,0) pseudorandom
signal (23 non-integer multiples between 0.5 and
20.75 Hz) through a 100 cm long, 2 mm internal diameter
polyethylene tube into the tracheal cannula. Lateral pres-
sures were measured by using two identical pressure trans-
ducers (model 33NA002D, ICSensors, Milpitas, CA, USA)
at the loudspeaker end (P;) and at the tracheal end (P,) of
the wave-tube. The signals P; and P, were low-pass fil-
tered (5th order Butterworth, 25 Hz corner frequency),
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and sampled with the analogue-digital board of a micro-
computer at a rate of 256 Hz. Fast Fourier transformation
with 4 s time windows and 95 % overlapping was used to
assess the pressure transfer functions (P;/P,) from the 6 s
recordings collected during apnoea. Zrs was calculated as
the load impedance of the wave-tube using Eq. 1 [25]:

_ Zy-sinh (yL)

er
% —cosh (yL)

(1)

where Z, is the characteristic impedance and vy is the
complex propagation wave number. These parameters
were determined based on the geometrical data and the
material constants of the wave-tube and the air.

The input impedances of the tracheal cannula and the
connections were also measured, and subtracted from
each Z, spectrum.

A model described by Eq. 2, containing a frequency-
independent resistance (R,,,) and inertance (I,,) and a
tissue damping (G) and elastance (H) of a constant-
phase tissue compartment [26] was fitted to the Z
spectra by minimizing the weighted difference between
the measured and the modelled impedance data.

G-j-H
wa

er = Ruy +j‘w’1aw + (2)
where o is equal to (2/m)atan(H/G), w is the angular
frequency and j is the imaginary unit.

The tissue parameters G and H are attributed to the
damping (resistive) and elastic properties of the respira-
tory system. R,,, and L,,, represent primarily the resistance
and inertance of the airways, since the contribution of the
chest wall to these parameters in rats is minor [27].

Animal preparations

Anesthesia was induced with an intraperitoneal injection of
sodium pentobarbital (45 mg/kg) in adult male Wistar rats
(393.3 g, 340—450 g). A polyethylene cannula (16 gauge, B.
Braun Melsungen AG, Melsungen, Germany) was initiated
through tracheostomy after subcutaneous administration of
local anasthetics (lidocaine, 2—4 mg/kg) to ensure adequate
analgesia around the surgical wound. The rats were then
placed on a heating pad in a supine position with the tra-
cheal tube connected to a small animal ventilator (Model
683, Harvard Apparatus, South Natick, MA, USA), to allow
mechanical ventilation with room air (70 breaths/min, tidal
volume 7 ml/kg). Then a femoral vein was cannulated
(Abocath 22 G) for drug delivery. Anesthesia was also
maintained through this iv line by regular injections of so-
dium pentobartibal (12 mg/kg, every 30 min). A femoral ar-
tery was also catheterized (Abocath 22 G) and attached to a
pressure transducer (Model TSD104A, Biopac, Santa
Barbara, CA, USA) for continuous systemic blood pressure
monitoring to assess mean arterial pressure. The arterial
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blood pressure, ECG and heart rate were monitored
continuously with a data collection and acquisition
system (Biopac, Santa Barbara, CA, USA). Body
temperature was kept in the 37 + 0.5 °C range by using
the heating pad. Muscle relaxation was achieved by re-
peated iv administration of pipecuronium (0.1 mg/kg,
every 30 min, Arduan, Richter-Gedeon, Budapest,
Hungary).

Experimental protocol

Both groups underwent the same experimental procedure.
Following the tracheostomy the animals were placed in
the plethysmograph box, and 3 to 4 EELV recordings were
performed as detailed above. Mechanical ventilation was
then maintained during the surgical preparations. After
the animals had reached a steady-state condition, the vol-
ume history was standardized by performing lung hyper-
inflation by occluding the expiratory port of the ventilator.
Baseline (BL) respiratory mechanical properties were de-
termined by measuring 3 to 4 reproducible Z, data sets.
To assess the appearance of airway hyperresponsiveness
subsequent to the exposures, continuous iv infusions of
methacholine (MCh) were administered with increasing
doses (4, 8 and 16 pg/kg/min). A set of Z, data including
3 to 4 recordings was recorded 5 min after the onset of
the infusion at each dose. Following the last dose, MCh
infusion was stopped and after a 30 min recovery period,
another set of Z; data was collected as previously. At the
end of the protocol, bronchoalveolar lavage was per-
formed on the left lung, as detailed below. The right lung
was fixed and excised for histological analyses.

Bronchoalveolar lavage

To assess pulmonary inflammatory cell counts, broncho-
alveolar lavage of the left lung was performed. Following
the euthanasia of the animals with an overdose of so-
dium pentobarbital, a mid-line thoracotomy was per-
formed and the right bronchus was localized and
clamped. Then 4 ml of pre-warmed (37 °C) normal sa-
line was injected into the tracheal tube and the animal
was re-connected to the ventilator for 1 min and the
bronchoalveolar lavage fluid (BALF) was suctioned. Fol-
lowing the suctioning the clamp on the right bronchus
was released. The samples were centrifuged onto a slide
using a cytocentrifuge and following overnight drying,
they were stained with haematoxylin-eosin and manually
counted under a light microscope from 20 randomly se-
lected non-overlapping fields of vision. The average
number of specific cell types and the average total cell
count were calculated.

Lung histopathological examinations
The right lungs, which had not been lavaged previously,
were used for these analyses. The lungs were filled with
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4 % buffered formalin by applying a hydrostatic pressure
of 20 cmH,0. The lungs and heart were then removed
en bloc and placed into 4 % buffered formalin until
processing.

Light microscopy After complete fixation, transhilar
horizontal sections (perpendicular to the longitudinal
axis of the lung from the hilum) were embedded in par-
affin. Two 5 pm sections were prepared in each lung
specimen and were stained with haematoxylin-eosin.

Electron microscopy For transmission electron micros-
copy, the formalin fixed, paraffin embedded specimens
were re-embedded into plastic (Embed812, EMS, USA),
and 70 nm thick sections were cut and placed on oval
slot copper grids. They were analyzed under a transmis-
sion electron microscope (Philips CM10, 100 KV).

Statistical analyses

The scatters in the parameters were expressed as SE
values. The Kolmogorov-Smirnov test was used to test
data for normality. Two-way repeated measures of ana-
lysis of variances (ANOVA) with the factors assessment
time and group allocation were used to assess the effects
of fine particles on the respiratory mechanical parame-
ters. The Holm-Sidak multiple comparison procedure
was applied to compare the different experimental con-
ditions (for repeated measures) or groups (for independ-
ent groups). Differences of EELV, baseline mechanical
parameters and BALF cell counts were detected by Stu-
dent’s t-test. Statistical tests were carried out with the
SigmaPlot software package (version 12.5, Systat Soft-
ware, Inc., CA, USA) with a significance level of p < 0.05.

Results

The average PM1 concentration during the exposure pe-
riods was 101.7 + 29.4 ug/m>. The particle number size
distribution in the exposure chamber was unimodal. The
geometric mean diameter was calculated by Gaussian fit,
and was found to be 391.2 + 21.3 nm (Fig. 2). The geomet-
ric mean diameter based on particle mass size distribution
(assuming a constant density) was found to be 2859.8 +
139.7 nm. The fact that the ratio of particles having diam-
eter larger than 1 pm was 4.87 % (in number concentra-
tion) clearly shows that particle mass size distribution can
be misleading in case of dominating small particles.

The analysis of the chemical composition of the PM1
samples revealed the predominance of carbon (TC = 33.4 %
containing BC = 6.38 %). Among the remaining chemical
elements, silica was present in the greatest quantity
(Si=17.6 %), followed by iron (Fe=11.4 %), calcium
(Ca=8.46 %) and aluminum (Al=5.12 %). Lesser, but
still noticeable amounts of sulfur (S=2.32 %) and
chlorine (Cl=1.9 %) were found. Other metals were
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present in the samples in trace amounts (Ti=0.67 %,
Cu=0.14 %, Zn =0.29 %, Pb=0.07 %).

There was no detectable difference between the two
groups in terms of body weight (p = 0.235). The baseline
values of EELV and respiratory mechanical parameters
are displayed in Table 1. No statistically significant dif-
ference was detected between the control and exposed
groups in any of these parameters.

Figure 3 depicts the effects of MCh provocation on
the respiratory mechanical parameters. All parameters
exhibited elevations relative to the baseline in a dose-
dependent manner. However, the animals in the exposed

group exhibited significantly greater responses to 8 pg/
kg/min MCh in H (p=0.011), and to 16 pg/kg/min
MCh in R, (p=0.005) and H (p = 0.006). MCh-induced
changes in G did not differ between the groups through-
out the study. All parameters returned to their baseline
values after the 30 min recovery period (BL2).

For the parameter R,, provocative dose (PDsg raw)
was calculated via linear interpolation, representing
the dose of MCh associated with a 50 % increase in
Raw- PDso.raw was significantly lower in the exposed
group (4.299 +0.509 pg/kg/min vs. 5.88 £0.513 pg/
kg/min).

Table 1 Baseline values of end-expiratory lung volume (EELV) and respiratory mechanical parameters (airway resistance, R,,,; tissue

damping, G and tissue elastance, H)

EELV (ml/kg) Raw (€cmH>0.5/1) G (cmH,0O/N) H (cmH,O/1)
Control Group 11.2+£05 480+24 955.7 +26.2 37500 + 140.6
Exposed Group 11.7£05 477 +2.7 9523 +51.1 36435+ 1795
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Total and differential cell counts assessed from BALF
are demonstrated in Fig. 4. Samples obtained from the
exposed group had elevated numbers of total cell count,
macrophages, lymphocytes and basophils (p <0.05 for
all) compared to those obtained in the control group.
Phagocytized dust particles were observed in 64.9+2 %
of the macrophages in the exposed group. Eosinophil
and neutrophil numbers exhibited no statistically signifi-
cant differences.

In the light microscopy samples obtained from the ani-
mals in the exposed group, free dust particles were ob-
served on the bronchial epithelium (Fig. 5a), and
phagocytized dust particles were embedded in the
alveolar septa (Fig. 5b). Electron microscopy also re-
vealed the appearance of dust particles in the alveolar
macrophages in the animals in the exposed group
(Fig. 5¢). All these findings were absent in the lungs ob-
tained from the rats in the control group (Fig. 5d).
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Fig. 5 Light (a, b, d) and electron microscopic (c) images of the lungs. a: Section of a bronchus in a representative animal in the exposed group.
Arrow indicates an aggregate of free dust particles inside the bronchial lumen. b: Section of the alveolar space in a representative animal in the
exposed group. Arrows indicate macrophages with phagocytosed dust particles. ¢: Transmission electron microscopic section of a representative
animal in the exposed group. Arrows indicate embedded dust particles. d: Alveolar section of a representative animal in the control group

Discussion

This study evidenced that a 6-week-long exposure to
PM1 at a near-threshold level from a Central Euro-
pean city causes mild airway hyperresponsiveness in
healthy adult rats. The respiratory symptoms are not
manifested in any adverse changes in the baseline
values of the parameters reflecting static lung volume,
or airway or respiratory tissue mechanics. However,
the presence of mild airway hyperresponsiveness fol-
lowing urban PM1 inhalation suggests the develop-
ment of airway susceptibilities. To our knowledge,
this is the first study to address the pulmonary effects
of the continuous inhalation of PM1 at a near-
threshold level (concerning to PM10).

Physical properties and chemical composition of the
inhaled PM1

Since the exposure of the rats to PM1 was performed
under laboratory conditions, characteristics of the gener-
ated aerosol were essential. Mass concentration and par-
ticle number size distribution were stable and fulfilled the
requirements of the planned protocol (Dp<1 um, p~
100 pg/m?) during the exposure periods. As Salma et al.
demonstrated by model calculations, the particle diameter
applied in this study (391 +21 nm) belongs to the most
inhalable fraction of the whole size range of atmospheric
aerosol [28].

Since the re-suspension of particles was achieved by par-
ticle free ambient air, the gaseous composition of inhaled
air was identical in case of the exposed and the control an-
imals. Based on the chemical composition of the gener-
ated aerosol main emission sources (at the sampling
point) were identified. The ratio of BC (indicator of traffic)
compared to PM1 mass concentration (BC =6.38 %) in
this study agrees with the findings of other measurements
in pedestrian zones in European city centers [29]. Kertész
et al. used absolute principal component analysis for
source apportionment at the same sampling point as used
in this study [30]. According to their results and the iden-
tified elements in this study, four sources dominate in the
city center of Debrecen: soil (Al, Si, Ca, Fe, Ti), traffic (Cu,
Zn, Pb), combustion of oil and coal (S) and a mixed source
of power generation and chemical industry (Cl). Since all
the identified emission sources are typical of European cit-
ies, the findings of this study can be generalized.

Effects of PM1 on basal respiratory function

To characterize the functional changes in the respiratory
system, static lung volume measurements were performed
together with an assessment of airway and respiratory
tissue mechanics by using the forced oscillation technique.
This well-validated technique provides information about
the flow resistance of the bronchi (R,,,) with a detailed de-
scription of the respiratory tissue viscoelasticity (G and
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H). Parameter G reflects the dissipative (damping or re-
sistive) properties of the respiratory tissues, while H is re-
lated to the respiratory tissue stiffness (elastance). The
baseline values of the EELV [22] and the respiratory
mechanical parameters [31, 32] exhibit excellent agree-
ment with those reported previously in rats by using simi-
lar experimental methodologies.

Following a 6-week exposure to PM1 at a near-
threshold level, no difference was found in the baseline
properties of the respiratory system (EELV and mechan-
ical parameters) despite the histological evidence of par-
ticles deposited in the acinar and alveolar epithelium.
This finding is in concordance with previous results
reporting a less than 1 % change in the resistive param-
eter peak expiratory flow in healthy humans following
exposure to diesel exhaust [33], and the lack of change
in the forced expiratory lung volumes following ex-
posure to traffic related ambient particles in non-
asthmatic subjects [34]. As a mild inflammation of
the airways is not associated with a major deterior-
ation of baseline lung function [35], the lack of sig-
nificant changes in static lung volume, as well as
airway and respiratory tissue mechanical parameters
is consistent with earlier results, despite the presence
of a mild inflammation.

Airway inflammation and responsiveness following PM1
inhalation

We observed significantly higher increases in R,, and
significantly lower PDsg ., values in rats exposed to
nonspecific cholinergic constrictor stimuli, which dem-
onstrated the development of airway hyperresponsive-
ness. The constriction of the central conducting airways
(R,y) seems to be unlimited and highly dose-dependent,
whereas the lung peripheral response (H) to a choliner-
gic challenge is restricted. The most plausible explan-
ation for the latter phenomenon may be related to the
smaller density of cholinergic receptors [36] on the lung
periphery, resulting in their potential saturation by the
agonist. The functional abnormality associated with air-
way hyperresponsiveness was consistent with the devel-
opment of mild airway inflammation, which was
evidenced by the accumulation of macrophages, lympho-
cytes and basophils in the BALF. We found no evidence
for a statistically significant change in the neutrophil cell
count in the exposed rats, while exposure to similar
nanoparticles led to elevations in neutrophils in earlier
studies [37, 38]. This discrepancy can be explained by
the larger particle size (391 nm) in our study compared
to those ultrafine particles applied previously (25 nm)
[38]. Furthermore, the acute phase was investigated in
these previous studies, where the innate immunity domi-
nates the inflammatory response, resulting in an eleva-
tion of neutrophil count. However, when the exposure is
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chronic, innate immunity is overpowered by adaptive
immunity, resulting in a number of neutrophils around
the baseline with elevated lymphocytes.

Histological analyses also confirmed the presence of
particles deposited in the bronchial epithelium and
phagocytized particles in the alveolar space. Since in-
flammatory mediators released by these cells were shown
to contribute greatly to the development of airway hyper-
responsiveness [39], this mechanism provides a plausible
explanation to our functional findings. However, the pos-
sible involvement of other pathologic processes, such as
elevated levels of reactive oxygen species (ROS) and/or
oxidative stress can also be anticipated [6, 40, 41].

Due to its technical simplicity, the vast majority of
previous studies applied intratracheal instillation of fine
and ultrafine particles despite its un-physiological deposition
[42]. The few previous studies assessing the respiratory
consequences of aerosolized ambient particles demon-
strated the appearance of bronchial inflammation [43] and
the associated airway hyperresponsiveness [44, 45], similar
to our findings. However, these former investigations ap-
plied either substantially higher concentrations (3 mg/m?)
[44], allergen sensitization [43] or short-term (20 min for
7 days) exposure of neonatal subjects [45]. Our findings
add to these results the important information that mild
airway symptoms may develop at near-threshold concen-
trations even in a young healthy adult lung.

Methodological aspects

It must be kept in mind that young healthy adult rats
were involved in these investigations. Previous studies
report an increased effect of PM in subjects with pre-
existing respiratory disorders, such as humans with
asthma [34, 46, 47] mice with allergen sensitization [7]
or viral infections [37], or in neonatal [45, 48] and aged
[38] rat populations.

An important methodological feature of this study is
the use of the low-frequency forced oscillation technique
to characterize the airway and respiratory tissue me-
chanics, because it provides the most specific informa-
tion about the mechanical properties of the different
lung compartments. This feature is favorable over meth-
odologies that were applied previously following ambient
aerosol exposures, and that supplied either global lung
functional indices, such as spirometry [33, 34] or total
lung resistance [43, 44], or only qualitative information
about the change in the ventilation pattern [14, 35, 37,
43]. However, it is noteworthy that model parameters
derived from Z, data include noticeable components
from the chest wall [24, 49]. This suggests that following
aerosol exposures the presumably constant chest wall
parameters somewhat diminish the real pulmonary
changes, particularly in G and H, where the influence of
the chest wall is substantial.
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Conclusions

We examined the effects of the 6-week-long inhalation
of PM1 from urban aerosol samples on the pulmonary
system by performing basal lung function measurements,
with the assessment of changes in lung responsiveness
and also histopathological analyses. The chemical com-
position of the generated aerosol was typical of Central
European cities, and contained no highly toxic com-
pounds such as heavy metals. Mass concentration was
stable during the 6-week-long exposure and never
exceeded the current PM10-related alert threshold level
by more than 10 %. Following the exposure, hyperre-
sponsiveness and mild airway inflammation were de-
tected in healthy adult rats. Our findings were confirmed
by forced oscillatory measurements, cell counts assessed
from BALF and histopathological examinations. Former
studies of larger particle sizes (PM2.5 or PM10) revealed
similar respiratory consequences in case of minimum
five times higher mass concentrations. These results sug-
gest that particle size significantly determines the con-
comitant respiratory responses. Effective prevention
could be achieved by taking particle size into consider-
ation when defining air quality standards.
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