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Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restric-
tion factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host 
survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among 
humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, 
zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss 
recent progress in the field.

Introduction

Infections with seasonal influenza A viruses (IAV) are usu-
ally self-limiting, but in rare cases may become life-threaten-
ing or even fatal. The striking inter-individual variability in 
disease outcome is best explained by pre-existing immunity, 
co-morbidity, or age. In previously healthy non-vaccinated 
children and young adults, however, the cause for fatal influ-
enza pneumonia is less obvious. Recent studies revealed that 
alterations in genes controlling innate immunity are involved 
in such cases (Casanova and Abel 2018; Ciancanelli et al. 
2016; Zhang et al. 2019). Interestingly, genetic susceptibility 
to devastating influenza does not appear to be a polygenic 
trait, but is determined by defects in single genes that gov-
ern non-redundant pathways of type I (α/β) and type III (λ) 
interferon (IFN) responses. Critical genes identified so far 
are either involved in induction of type I and type III IFNs 
(TLR3, IRF7) (Ciancanelli et al. 2015; Lim et al. 2019), 
IFN production by plasmacytoid dendritic cells (GATA2) 
(Sologuren et al. 2018) or are part of the IFN signaling 
pathway required for antiviral action (IRF9) (Hernandez 

et al. 2018). Surprisingly, however, no clear defects have 
yet been found in type I and type III IFN-stimulated genes 
(ISGs). The only alterations in a gene associated with severe 
seasonal influenza in hospitalized patients were two single 
nucleotide polymorphisms (SNP) in IFITM3. One, rs12252, 
leads to a truncation (Everitt et al. 2012; Xuan et al. 2015; 
Zhang et al. 2013), and the other, rs34481144i, to dimin-
ished expression and impaired recruitment of immune CD8+ 
T cells into the infected airways (Allen et al. 2017). Still, 
the role of IFITM3 in human influenza infections remains 
controversial (Mills et al. 2014; Williams et al. 2014; Zani 
and Yount 2018).

Much experimental evidence indicates that the human 
MX1 gene may also play a critical role in the outcome of 
human IAV infections. MX1 is located on the long arm of 
chromosome 21 (map position 21q22.3) and contains 17 
exons extending over 33 kb (Horisberger et al. 1988; Tazi-
Ahnini et al. 2000). It encodes a large GTPase, MxA, which 
mediates broad resistance to influenza and other viruses 
both in cell culture (Aebi et al. 1989; Haller et al. 2015) and 
transgenic mice (Deeg et al. 2017; Hefti et al. 1999; Pav-
lovic et al. 1995). Interestingly, there are humans harboring 
allelic variants in MX1 (Duc et al. 2012; Graf et al. 2018; 
Tazi-Ahnini et al. 2000) in heterozygous or homozygous 
form, but none of these variants have so far been linked to 
enhanced influenza virus susceptibility (Ciancanelli et al. 
2016; Graf et al. 2018). Nevertheless, as outlined in this 
review, MX1 remains a strong candidate gene for controlling 
influenza virus susceptibility in humans.
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From Mx1‑positive mice to human MX1

Early studies on innate Mx-mediated resistance in mice 
paved the way for the characterization of the human MX1 
gene (Aebi et al. 1989). The discovery of the dominant 
antiviral resistance gene Mx (for “myxovirus resistance”) 
in a rare inbred mouse strain (A2G) has recently been 
described in detail (Haller et al. 2018). Mx1-bearing mice 
survive infection with mouse-adapted IAV at doses that 
are lethal for standard inbred strains. The Mx1 gene is 
located on chromosome 16 in a region that is syntenic 
with the long arm of human chromosome 21 (Reeves et al. 
1988). Mx1 is functional in wild mouse species (Haller 
et al. 1987) and wild mouse-derived strains (Ferris et al. 
2013; Jin et al. 1998; Maurizio et al. 2018; Nurnberger 
et al. 2016; Vanlaere et al. 2008) and may protect wild 
mice from infection with influenza-like viruses transmit-
ted by ticks (Haller et al. 1995) and possibly other patho-
gens. The Mx1 gene is defective in all standard laboratory 
mouse strains due to large deletions or nonsense mutations 
that destroy Mx1 protein function (Staeheli et al. 1988). 
Defective alleles also occur in wild mice (Haller et al. 
1987) and must have been introduced into laboratory mice 
during early inbreeding (Guenet and Bonhomme 2003). 
As a consequence, most studies on influenza viruses are 
inadvertently performed in Mx1-null mice that lack this 
essential component of innate immunity and may lead to 
wrong conclusions regarding influenza virus pathogenicity 
and the anti-influenza activity of IFNs (Haller et al. 2018; 
Iwasaki 2016).

It is now well established that the efficacy of both type 
I and type III IFNs against influenza viruses in mice rely 
on Mx1 and that Mx1-competent mice should be used to 
study antiviral responses (Bradley et al. 2019; Iwasaki 
2016; Klinkhammer et al. 2018; Mordstein et al. 2008; 
Nurnberger et al. 2016; Pillai et al. 2016; Tumpey et al. 
2007). The importance of the mouse Mx1 locus in con-
trolling IAV susceptibility has been verified in the unbi-
ased mouse collaborative cross project which displays the 
breadth of host responses found in outbred populations and 
best reflects the situation in humans in which a functional 
MX1 gene is present on an outbred genetic background 
(Ferris et al. 2013; Leist et al. 2016; Maurizio et al. 2018).

Genetic defects in IFN signaling and Mx gene 
expression

Mx genes possess IFN-responsive promoter regions 
(Asano et al. 2003; Gerardin et al. 2004; Hug et al. 1988) 
and are strongly expressed upon signaling by type I or type 

III IFNs. Type I IFNs signal through the heterodimeric 
type I IFN receptor (IFNAR1/IFNAR2), whereas type III 
IFNs use their cognate IFN-lambda receptor (IFNLR), 
composed of IFN-lambda receptor 1 and IL-10 receptor 
subunit-β. Upon ligand binding, both receptors activate 
the signal transducer and activator of transcription factors 
(STAT1 and STAT2) that together associate with inter-
feron regulatory factor 9 (IRF9) to form the interferon-
stimulated gene factor 3 (ISGF3) which is required for 
Mx gene expression (Schneider et al. 2014). Knockout 
mice lacking both functional IFN receptors fail to express 
MX1 protein despite carrying a functional Mx1 gene and 
exhibit greatly enhanced susceptibility even to normally 
non-pathogenic influenza virus variants (Mordstein et al. 
2008). Likewise, cells obtained from STAT1-deficient 
humans are unable to upregulate MX1 expression upon 
exposure to type I or type III IFNs (Holzinger et al. 2007). 
Hence, the few patients with STAT1 deficiencies would be 
expected to be hypersensitive to influenza virus infection, 
but they predominantly suffered from other severe infec-
tions (mostly by mycobacteria and herpes viruses) and 
not influenza, perhaps because they were never exposed to 
influenza viruses (Boisson-Dupuis et al. 2012).

Mouse Mx1‑ and human MX1‑transgenic 
mice

Transgenic technology was used to formally prove that Mx1 
was the missing defense gene against IAV in standard inbred 
mouse strains. Mice were generated that expressed the MX1 
protein under control of an IFN-responsive element, mim-
icking the situation in A2G or feral mice in which Mx1 gene 
expression is activated by virus-induced IFNs. Upon infec-
tion with IAV, the transgenic mice produced MX1 protein 
at the local sites of viral replication and survived pathogenic 
IAV infection. These findings illustrated the power of Mx1 
and demonstrated for the first time that the introduction of 
an IFN-regulated antiviral transgene into the genome of a 
susceptible host is sufficient to generate virus resistance 
(Arnheiter et al. 1990).

To demonstrate the key role of the human homolog MxA 
for host survival, two types of MX1-transgenic mice were gen-
erated. When expressed constitutively from an MX1 cDNA 
construct, mice showed some protection against IAV (Pav-
lovic et al. 1995) even when lacking a functional IFNAR 
(Hefti et al. 1999). Protection was not very pronounced likely 
because of low MxA expression levels. Nevertheless, these 
experiments revealed for the first time the autonomous antivi-
ral power of MxA in an otherwise type I IFN-nonresponsive 
host (Hefti et al. 1999). More recently, a transgenic mouse 
was produced that carries the entire human MX locus span-
ning approximately 150 kbp of chromosome 21 (Fig. 1). This 
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locus contains the two MX paralogs, MX1 (coding for MxA) 
and MX2 (coding for MxB), but MX2 was crippled in the trans-
genic mouse line due to an unintended deletion of the corre-
sponding exon 4 (Deeg et al. 2017). The MX1-transgenic mice 
readily expressed human MxA in response to IFN exposure 
in all major organs, including the respiratory tract, and they 
showed a high degree of resistance to pathogenic avian IAVs 
(Fig. 1). Interestingly, however, their resistance to seasonal 
IAV strains circulating in humans was moderate (Deeg et al. 
2017). This mouse represents the first small animal model that 
faithfully mimics an important facet of human innate immu-
nity toward influenza viruses and provides solid evidence that 
MxA is a key influenza restriction factor in experimental ani-
mals and most likely humans.

Fig. 1   MxA-transgenic mice resist lethal influenza virus infection. 
a Fragment of human chromosome 21 present in BAC clone Rp11-
120c17 (top) and transgenic mice (bottom). The transgenic MX2 gene 
carries a deletion of exon 4 and is non-functional. b MxA protein 
(red) is expressed in the cytoplasm of interferon-treated transgenic 
embryo fibroblasts, as revealed by immunofluorescence. c Resist-

ance of transgenic (hMx-tg+/−) versus susceptibility of non-trans-
genic (non-tg) mice to infection with a highly pathogenic avian IAV 
(H7N7). Survival (left panel) and virus load in infected lungs at day 
5 post-infection (right panel) are shown [reprinted from reference 
(Haller et al. 2018), with permission]

Fig. 2   Structure of MxA. a Linear representation of the MxA 
domains consisting of the G domain (orange), the stalk (green/blue) 
and the three helices of the bundle-signaling element, BSE (B, red). 
b Structure of an MxA monomer (colored as in a), with the unstruc-
tured loop L4 (L4S) in the stalk indicated by a dashed blue line. 
The three helices of the BSE are assembled to a connective element 
between G domain and stalk [adapted from reference (Gao et  al. 
2011), with permission]. The allelic variations discussed in the text 
are indicated
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How does the antiviral MxA protein inhibit 
influenza viruses?

MxA belongs to the dynamin superfamily of large GTPases 
(Jimah and Hinshaw 2019) and consists of a globular 
GTPase (G) domain that is connected via a flexible bundle-
signaling element (BSE) to an alpha helical stalk (Fig. 2) 
(Gao et al. 2010, 2011; Haller et al. 2015). GTPase activity 
and oligomerization (via stalk and additional interfaces) 
are both required for antiviral function (Dick et al. 2015; 
Gao et al. 2010, 2011; von der Malsburg et al. 2011). In 
particular, GTP hydrolysis and antiviral activity are stimu-
lated by intermolecular G–G domain interactions between 
MxA oligomers via a highly conserved G interface (Chen 
et al. 2017; Dick et al. 2015; Rennie et al. 2014). In fact, G 
domain mutations affecting GTP-binding and/or -hydroly-
sis and stalk interface mutations that eliminate dimer and 
oligomer formation abolish anti-IAV activity (Dick et al. 
2015; Gao et al. 2011). A disordered loop (L4) at the tip 
of the stalk determines antiviral specificity and provides 
a viral target interface (Mitchell et al. 2012; Patzina et al. 
2014) (Fig. 2). This loop binds to the viral nucleoprotein 
(NP), the major component of the viral ribonucleoprotein 
complex (vRNP) or nucleocapsid of IAV (Nigg and Pav-
lovic 2015). Hence, MxA recognizes incoming vRNPs as 
well as newly synthesized NP in the cytoplasm of infected 
cells and thus inhibits transport of vRNPs and NP into 
the nucleus, thereby blocking early steps in the viral life 
cycle (Haller et al. 2015; Kochs and Haller 1999; Pav-
lovic et al. 1990; Xiao et al. 2013). Despite considerable 
insights into the biochemistry and molecular biology of 
MxA, the precise mechanism by which the MxA GTPase 
inhibits IAV infection is presently not known. MxA forms 
large self-assemblies that condensate to granular and 
punctate structures in the cytosol (Haller et al. 2007; Pav-
lovic et al. 1990) and a fraction of MxA is also found 
associated with intracellular membranes (Accola et al. 
2002; Reichelt et al. 2004; Stertz et al. 2006), in agree-
ment with the propensity of purified MxA to bind to and 
tubulate lipid vesicles in vitro (Accola et al. 2002; von 
der Malsburg et al. 2011). A recent report demonstrates 
that cytoplasmic condensates of MxA are metastable and 
undergo rapid and reversible tonicity-driven phase transi-
tions (Davis et al. 2019). In cells infected with vesicular 
stomatitis virus (VSV), the viral nucleoprotein is recruited 
into these dot-like condensates (Davis et al. 2019), a pro-
cess that may contribute to the known anti-VSV effect of 
MxA (Pavlovic et al. 1990). Moreover, antivirally active 
wild-type MxA (but not an inactive MxA mutant) is able 
to sequester the nucleoprotein N of LaCrosse and other 
bunyaviruses into membrane-less perinuclear complexes, 
whereby wild-type but not mutant MxA is relocated from 

the characteristic cytoplasmic dots into the newly formed 
MxA/N assemblies surrounding the nucleus (Kochs et al. 
2002). At present, the relevance of these findings for the 
antiviral mechanism of MxA against influenza virus is not 
clear. Mouse Mx1 (the ortholog of human MxA) accumu-
lates in distinct dots close to PML bodies in the nucleus 
(Engelhardt et al. 2004), due to a nuclear localization sig-
nal (NLS) that is not present in MxA. When human MxA 
is equipped with a foreign NLS and forced to enter the 
nucleus, it forms comparable dots and inhibits primary 
transcription like mouse Mx1, suggesting a common mode 
of action (Engelhardt et al. 2004; Zurcher et al. 1992). 
Mouse Mx1 has been proposed to disrupt the interaction 
of the influenza viral polymerase subunit PB2 with NP 
leading to a block in viral transcription (Verhelst et al. 
2012), but experimental evidence for such a mechanism 
is missing for MxA. There is, however, good evidence that 
MxA relies on the help of other cellular factor(s) for its 
anti-influenza activity. Candidate proteins are the RNA 
helicase UAP 56 and URH49 which interact with NP and 
MxA (Wisskirchen et al. 2011a, b) or the SMARCA2 chro-
matin remodeling factor (Dornfeld et al. 2018). Moreover, 
cytoplasmic MxA appears to require additional, and as yet 
unknown, interferon-inducible factor(s) to prevent incom-
ing vRNPs from entering the nucleus (Xiao et al. 2013). It 
is conceivable that such cofactors are variably expressed in 
different tissues and govern the antiviral activity of MxA 
in an organ-specific way. Indeed, a recent report highlights 
a novel antiviral mechanism of human MxA in the res-
piratory epithelium. It demonstrates that MxA serves as 
an inflammasome sensor that recognizes NP of IAV in 
respiratory epithelial cells and triggers a rapid inflamma-
tory response contributing to the antiviral control (Lee 
et al. 2019).

MxA‑mediated IAV restriction and escape 
are dictated by a few critical amino acids 
in either MxA or the viral NP

MX genes in mammals are subject to both rapid evolution 
and recurrent gene conversion, as expected for antiviral 
genes engaged in a continuous battle with ever-changing 
pathogens (Mitchell et al. 2013, 2015; Qi et al. 2019). Com-
parisons of MxA sequences in primates identified loop L4 
as a “hotspot” of diversifying selection, in agreement with 
its function as an antiviral module (Mitchell et al. 2012; 
Patzina et al. 2014). Interestingly, human MxA inhibits a 
wide range of RNA and DNA viruses by targeting a diverse 
set of viral proteins (Haller et al. 2015), suggesting that in 
the past, MX1 evolved to directly combat multiple infec-
tions (Mitchell et al. 2013). The specificity of MxA for IAV 
and other orthomyxoviruses is largely determined by a few 
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amino acid residues (in particular F561) in L4 (Fig. 2b) that 
have repeatedly been mutated throughout primate MxA evo-
lution (Mitchell et al. 2012; Patzina et al. 2014). A recent 
approach using combinatorial mutagenesis of the positively 
selected L4 residues generated “super-restrictor” variants 
that showed increased binding to viral NP and heightened 
antiviral activity against Thogoto (THOV) orthomyxovirus. 
Interestingly, however, these “super-restrictors” for THOV 
showed reduced IAV restriction, suggesting a classical trade-
off between antiviral breadth and specificity (Colon-Thillet 
et al. 2019).

In contrast to L4, the sequences of the G domain, BSE, 
and stalk appear to be under purifying selection, indicating 
that changes affecting enzymatic or self-assembly proper-
ties of the GTPase are not tolerated (Mitchell et al. 2012). 
On the other hand, IAV have high mutation rates due to 
the infidelity of the viral RNA-dependent RNA polymer-
ase required for genome amplification. This mutational 
flexibility allows for occasional adaptation of the virus to 
new hosts and efficient immune evasion. Indeed, seasonal 
IAV circulating in the human population have acquired and 
maintained MxA escape mutations in NP and are less effi-
ciently controlled by MxA compared to avian IAV strains 
(Deeg et al. 2017; Dittmann et al. 2008; Zimmermann et al. 
2011). Selection for MxA escape does not occur in avian 

species, because avian MX proteins lack anti-IAV activ-
ity (Benfield et al. 2008; Bernasconi et al. 1995; Schusser 
et al. 2011). Interestingly, avian H7N9 viruses that emerged 
in 2013 in China (Gao et al. 2013) and have since caused 
severe human infections show reduced MxA sensitivity due 
to a single amino acid change (N52Y) in NP (Riegger et al. 
2015). Partial MxA escape might be acquired in pigs which 
serve as intermediate hosts and possess an antivirally active 
MX1 protein (Van Dam et al. 2019). In fact, the 2009 pan-
demic H1N1 virus features an MxA escape signature that 
is suggestive of porcine MX1 evasion (Manz et al. 2013). 
Recent phylogenetic analyses revealed that the viral NP of 
the Eurasian avian-like swine lineage successively gained 
MxA escape mutations that increase the zoonotic potential 
of these viruses (Dornfeld et al. 2019). It is conceivable that 
new MxA escape mutations in NP may arise in the future, 
be they located in the well-defined MxA sensitivity region 
(Manz et al. 2013) or at novel sites as recently suggested by a 
deep mutational scanning approach (Ashenberg et al. 2017). 
It has to be noted, however, that it is not easy for any IAV to 
overcome the MxA barrier, as acquisition of MxA escape 
mutations in NP leads to severely impaired viral growth both 
in human and avian cells. Indeed, restoration of viral fitness 
requires compensatory mutations in NP and perhaps other 
viral proteins (Gotz et al. 2016; Manz et al. 2013) (Fig. 3).

Fig. 3   From birds to humans. Avian IAV have to acquire MxA escape 
mutations in NP (upper panel, red) to propagate in humans. Accumu-
lation of escape mutations causes a loss in viral fitness (lower panel) 
that must be compensated by secondary stabilizing NP mutations 

(upper panel, blue) and gain of fitness mutations (upper panel, green) 
in additional viral genes [reprinted from (Gotz et al. 2016), with per-
mission]
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Allelic variations in the human MX1 gene

A search for human MX1 alleles in the Exome Aggregation 
Consortium (ExAC) database (Lek et al. 2016) revealed 
a small number of synonymous, missense and nonsense 
variants, in addition to a low frequency of alleles with 
in-frame deletions or alterations leading to frameshifts 
or aberrant splicing patterns (Duc et al. 2012; Graf et al. 
2018; Tazi-Ahnini et  al. 2000). These variations were 
located all over the coding sequence of MX1. Non-synony-
mous allelic variations at structurally interesting sites were 
further analyzed (Table 1; Fig. 2b). G316R was the most 
frequent G domain variant that was also found in homozy-
gous carriers, but did not affect antiviral activity in in vitro 
assays, as also V268 M (Graf et al. 2018). In contrast, 
G255E (Duc et al. 2012) and N220D both disturbed proper 
formation of the G–G interface and resulted in defective 
GTPase activity and antiviral action (Graf et al. 2018). 
These G–G interface variants were found in heterozygotes 
but had no dominant-negative effect on wild-type MxA. 
Four out of eleven variants (E394 K, R408Q, E419ter, and 
F454C) in the stalk caused a complete loss of antiviral 
activity. Except for E419ter, which truncates the stalk and 
hence renders the protein unable to oligomerize, the other 
inactive stalk alterations all showed dominant-negative 
activities against wild-type MxA (Graf et al. 2018), sug-
gesting that heterozygous carriers might have an impaired 
anti-influenza response. However, the infection history of 

such heterozygous carriers is not known. The stalk vari-
ant V379I that is widely distributed and shows the highest 
number of homozygous carriers (Table 1) was previously 
associated with severe respiratory syncytial virus infec-
tion (Ciencewicki et al. 2014). However, this variant had 
undisturbed wild-type activity against IAV and VSV (Graf 
et al. 2018). On the other hand, the F561L variation at the 
critical position 561 in loop L4 caused reduced antiviral 
activity against THOV and IAV though not against VSV, 
illustrating the flexibility of this antiviral module.

Much previous work has also been focused on non-
coding regions of MX1. Variations in the promoter region 
− 123(C/A) and − 88(G7T) affecting MxA expression lev-
els seem to influence disease outcomes of patients with 
hepatitis B and C as well as SARS and enterovirus 71 (Cao 
et al. 2009; Ching et al. 2010; Hamano et al. 2005; He 
et al. 2006; Hijikata et al. 2000; Knapp et al. 2003; Kong 
et al. 2007; Suzuki et al. 2004; Zhang et al. 2014). Fur-
thermore, an SNP in intron 3 was linked to increased risk 
for symptomatic West Nile virus infection (Bigham et al. 
2011). Presently, no information is available on the effect 
of these genetic variants on the outcome of IAV infec-
tions. Nevertheless, these recent findings underscore the 
importance of MX1 for antiviral host defense and hence 
call for an intensified search for the effects of MX1 variants 
on the individual course of severe influenza and possibly 
other viral infections.

Table 1   Selected allelic variations in the human MX1 gene

MX1 allelic variants that lead to alterations in functional regions of the G domain or the stalk of MxA were identified, using the ExAC database 
(Cambridge, MA) (http://exac.broad​insti​tute.org). Allele counts of the individual MX1 variations found in different ethnic groups as well as the 
number of homozygous carriers are indicated. [Adapted from reference (Graf et al. 2018)]

Variant Functional region African (10,406) Asian (25,166) Latino (11,578) European (66,740) Homozygotes

G domain
 N220D G interface – 7 – – –
 G255E G interface – 5 – – –
 V268 M G interface – 36 49 9 1
 G316R G domain 292 6 14 24 9

Stalk
 V379I α1Ns, IF1 4654 10,999 4341 38,759 16,893
 E394 K L1S, IF3 – 6 – – –
 R408Q α1CS, IF3 5 – 1 – –
 E419ter α1CS (stop) 31 – 2 – –
 Q423 K α1CS 8 – – – –
 F454C α2S – – – 4 –
 V470G α2S, BSE-stalk IF – – – – –
 E516del α3S (deletion) – 6 – – –
 F561L L4S – 1 – 4 –
 S566Y L4S – – 10 – –
 Q611H α4S, IF1 61 – 7 1 –

http://exac.broadinstitute.org
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Outlook

Single-gene errors of innate immunity can cause deadly 
influenza in humans. Most deficiencies implicate the type 
I and type III IFN pathways that may involve human MX1, 
but severe MX1 loss-of-function alterations have yet to be 
reported. Either severe MX1 defects are exceedingly rare 
and remain undetected or else they are fully compensated by 
other host defense mechanisms. Given the present evidence 
for a major protective role of human MxA in transgenic 
mice, we expect that deleterious mutations in MX1 pose a 
clear and discernible risk for severe influenza in humans. 
The MxA effect may be partly masked in seasonal epidem-
ics due to MxA escape mutations acquired by circulating 
IAV strains. We, therefore, anticipate that null or dominant-
negative alleles of MX1 will first be found in severely sick 
individuals exposed to avian IAV or other emerging zoonotic 
influenza viruses, or indeed other viral pathogens.
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