
F1000Research

Open Peer Review

, University of Oxford UKPaul Vauterin

, Heidelberg Institute ofWolfgang Mueller

Theoretical Studies gGmbH Germany

Discuss this article

 (0)Comments

2

1

METHOD ARTICLE

Developing sustainable software solutions for bioinformatics by
 the “ ” paradigmButterfly [v2; ref status: indexed,

http://f1000r.es/40q]
Zeeshan Ahmed , Saman Zeeshan , Thomas Dandekar3

Department of Neurobiology and Genetics, Biocenter, University of Wuerzburg, Wuerzburg, 97074, Germany
Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, 97074, Germany
EMBL, Structural and Computational Biology Unit, Heidelberg, 69117, Germany

Abstract
Software design and sustainable software engineering are essential for the
long-term development of bioinformatics software. Typical challenges in an
academic environment are short-term contracts, island solutions, pragmatic
approaches and loose documentation. Upcoming new challenges are big data,
complex data sets, software compatibility and rapid changes in data
representation. Our approach to cope with these challenges consists of
iterative intertwined cycles of development (“ ” paradigm) for key stepsButterfly
in scientific software engineering. User feedback is valued as well as software
planning in a sustainable and interoperable way. Tool usage should be easy
and intuitive. A middleware supports a user-friendly Graphical User Interface
(GUI) as well as a database/tool development independently. We validated the
approach of our own software development and compared the different design
paradigms in various software solutions.

1,2 2 3

1

2

3

 Referee Status:

 Invited Referees

version 2
published
01 Aug 2014

version 1
published
13 Mar 2014

 1 2

report report

 13 Mar 2014, :71 (doi:)First published: 3 10.12688/f1000research.3681.1
 01 Aug 2014, :71 (doi:)Latest published: 3 10.12688/f1000research.3681.2

v2

Page 1 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://f1000r.es/40q
http://f1000research.com/articles/3-71/v2
http://f1000research.com/articles/3-71/v1
http://dx.doi.org/10.12688/f1000research.3681.1
http://dx.doi.org/10.12688/f1000research.3681.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.3681.2&domain=pdf&date_stamp=2014-08-01

F1000Research

 Zeeshan Ahmed (), Thomas Dandekar ()Corresponding authors: zeeshan.ahmed@uni-wuerzburg.de dandekar@biozentrum.uni-wuerzburg.de
 Ahmed Z, Zeeshan S and Dandekar T. How to cite this article: Developing sustainable software solutions for bioinformatics by the “

 2014, :71 (doi:)” paradigm [v2; ref status: indexed,]Butterfly http://f1000r.es/40q F1000Research 3 10.12688/f1000research.3681.2
 © 2014 Ahmed Z . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 Funding was provided by the German Research Foundation (DFG), collaborative research center SFB 1047 "Insect timing",Grant information:
Project Z, to Zeeshan Ahmed. Thomas Dandekar and Saman Zeeshan were supported by the German Research Foundation (DFG), TR 34/Z.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The authors declare no conflict of interest.

 13 Mar 2014, :71 (doi:) First published: 3 10.12688/f1000research.3681.1
 28 Oct 2014, :71 (doi:)First indexed: 3 10.12688/f1000research.3681.2

Page 2 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://f1000r.es/40q
http://dx.doi.org/10.12688/f1000research.3681.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.3681.1
http://dx.doi.org/10.12688/f1000research.3681.2

Introduction
Typical challenges in bioinformatics in an academic environment
include “ad hoc” programming. No maintenance is really possible
as scientists such as PhD students and post-doctoral scholars leave
after their thesis is completed or after their post-doc contract. These
scientists may also have no formal computer science training, and
often there is no structured programming1 and solutions might not
be compatible with each other. Furthermore, in an academic envi-
ronment there are a number of inherent pressures to develop prag-
matic and fast (“quick and dirty”) software solutions2.

In addition, there are some new and “modern” challenges, which
become more and more pressing simply as the technology pro-
gresses: big data3, the wave of “omics” data to process, and the
problem of interoperability of software tools4. Well-known recent
solutions for this challenge are Taverna5 and Galaxy6,7. The latter in
particular is well suited to dealing with large quantities of data such
as new large-scale sequencing data.

Another issue is that the data should be accessible, with uniform
syntax and rich semantics for integration. Furthermore, data schemes
are prone for change due to rapid advances in the field, so a schema-
free representation of data is increasingly important (for scientific
data). The UniProt Consortium8 for instance has recently shifted
from the use of relational databases to the semantic web for flexible
data management.

To counter these older and general as well as new challenges, we
have now developed a solution of iterative and intertwined develop-
ment cycles (Butterfly model), which improves the typical aspects
of long-term sustainability and maintenance. Furthermore, it fea-
tures detailed user-requirement analysis, good graphical and simple
user interfaces (optimized human-computer interface, HCI) and
intuitive software use that also exploits natural language process-
ing. Our model tackles current challenges: first, the interoperabil-
ity of the software takes into account middleware solutions, so that
both database and user interfaces can be used flexibly. Second, the
Butterfly approach improves the meticulous database engineering
required to build large-scale and “omics” databases.

The Butterfly development cycle is different from previous
approaches9–12. It requires some additional time investment at the
start for design and implementation, but this pays off later. The
Butterfly model worked well in our hands regarding the above chal-
lenges (section: Real time examples using Butterfly). In the follow-
ing we confirm this by describing concrete software development.

The basic concept is really simple: plan ahead, back-check the
critical development steps by a separate sub-cycle and talk with the

user. It is important to spend more time on requirement analysis,
as well as to invest well in interoperability and maintenance. We
do not claim that these problems have not been recognized before
nor that no alternative solutions for this are available2,6–8, but we are
confident that with our approach it will be possible to obtain par-
ticularly well optimized and high quality bioinformatics software
solutions in an academic environment. The initial time investment
in the Butterfly paradigm helps to save time later due to the interop-
erability and easy maintenance of the software solutions achieved.

This paper is organized as follows: this section sets the stage for
our agenda (section 1); Current Software Engineering and Develop-
ment (section 2) highlights the modular phases of software devel-
opment processes and compares several typical software strategies
highlighting the novelty of our approach; next, the Butterfly work
flow is explained (section 3), and software examples using the
Butterfly approach (section 4) validate the Butterfly design principle
by providing concrete examples of software projects from own work.
Moreover we discuss some bioinformatics tools based on their type,
methodology and usage.

Current Software Engineering and Development
Software Engineering (SE)9 is one of the most recognized fields
in computer science as it matures and expedites the processes of
software development. In particular, it allows a focus on the life
cycle of software and sustainable development as an improvement
to pragmatic short-lived implementations. SE has introduced many
process improvement models and techniques10–12, and Software Devel-
opment Life Cycle (SDLC) models13, with some variabilities14 and
commonalties15–19. In general, depending upon the observed com-
monalties, we state

“Software Engineering is an integrated, cyclic and product line
combination of following independent modular approaches: require-
ments engineering20–22, design modeling23–25,27–35 programming, testing
and deployment”.

The five modular SE approaches remain the same when it comes to
the software engineering of the scientific software solution devel-
opment (Figure 1). However, in contrast to a pragmatic and maybe
traditional software application development in an academic set-
ting (Figure 2), a major change is the inconsistency in all phases
of the SDLC. In the requirement engineering phase (Figure 2; tra-
ditional software solution development), all requirements should
be provided before the start of design. This is not the case when
dealing with most of the scientific software applications, and the
requirements continuously change with the passage of time (we
have proposed an updated SSE SDLC Model, Figure 1; scientific
software solution development). Ultimately, this complicates the
process of analysis and filters out functionals. Programming struc-
tures become complex (Figure 1), as the possibilities of error prone-
ness (both logical and syntax errors) increase due to the continuous
increment of variabilities in the pre-processed source code15–19.

Testing of integrated and individual modules becomes time con-
suming (Figure 1), as new test cases have to be continuously rewrit-
ten and their application often leads to ‘ripple effects’29: these are
unidentified logical or syntax errors in the system which arise while

 Amendments from Version 1

We thank the reviewers for recommending publication of the
manuscript as well as their helpful additional comments. We
incorporated all points made by the reviewers so that the
manuscript should now be in an optimal state. The article type has
been changed from Research Article to Method Article.

See referee reports

REVISED

Page 3 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

Figure 1. Scientific Software Engineering (SSE). SSE integrates and combines in a development cycle the following independent main
modular approaches: requirements engineering, design modeling, programming, testing and deployment. Each approach consists of its
own sub-modular, integrated and cyclic combination of internal phases: requirement engineering consists of specification, functionals, non-
functionals, and analysis; design modeling consists of use cases, system flows, data flow and source code; programming consists of
languages, tools and technologies, development, and debugging; testing consists of test cases, modular, integrated and quality; finally,
deployment consists of installation, configuration, training, feedback. Iterative cycles lead to continuous improvement. Achievements translate
the goals in good software.

Figure 2. Traditional Software Development consisting of integrated and cyclic combination of the following independent modular
approaches: requirements engineering, design modeling, programming, testing and deployment.

Page 4 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

fixing the errors36,37. Depending upon the nature of the system,
many approaches have been proposed to improve software qual-
ity control processes38–50 which improve standard software devel-
opment and are important in scientific software quality assurance
and improvement. Furthermore if the system keeps changing and is
inconsistent, then the deployment procedures can also be complex
and time consuming, especially for large applications with multiple

interfaces and controls providing numerous individual and inte-
grated functionalities.

To further help (SSE, non-computer scientist Bioinformaticians
etc.) in expediting the processes of adopting the concepts of SDLC,
we provide a tabular comparison between different SDLCs, based
on their commonalities and variabilities (Table 1). This comparison

Table 1. Comparative feature based analysis between different software development life cycle models: Waterfall
Model, V-Model, Spiral Model, Iterative and Incremental Model, Rapid Prototype Model, Extreme Programming
Model, Evolutionary Model, Agile Development Model, Code and Fix Model.

Features/SDLCs Waterfall V Spiral Extreme
Prog. Iterative Rapid

Prototype Evolutionary Agile
Dev.

Code
& Fix

Software Engineering
Approach Yes Yes Yes Yes Yes Yes Yes Yes Yes

Initial, Developmental
Plan No No No No Yes No No Yes No

Software
Requirements
Engineering

Yes Yes Yes Yes Yes Yes Yes Yes No

In Depth
Requirements
Analysis

Yes Yes Yes No No No No No No

Requirement
Validation,
Functionals

No No Yes No No No No No No

Risk Analysis No No Yes No No No No No No

Software Design Yes Yes Yes No Yes Yes Yes Yes No

Software
Architecture Design Yes Yes Yes No No No No No No

In Depth Software
Design modeling Yes Yes No No No No No No No

Reusable Designing No No Yes Yes Yes No Yes No No

Developmental Plan No No Yes No No No No No No
Tools and
Technology Selection
and Analysis

No No No No No No No No No

Graphical User
Interface Design No No No No No No No No No

Preprocessed Source
Code Writing Yes Yes Yes Yes Yes Yes Yes Yes Yes

Integrated
Programming No Yes No No No No No Yes No

Software Testing Yes Yes Yes Yes Yes No Yes Yes Yes
In Depth Software
Testing No Yes Yes No No No No No No

Customer’s
Evaluation No No No No No Yes No No Yes

Deployment
Procedures No No No No Yes No Yes Yes No

Maintenance Yes No No No No No No No Yes
Software
Re-Engineering Yes No Yes Yes Yes No Yes No No

Cyclic or Repetitive No No Yes Yes Yes No Yes No Yes

Easy to learn and
Use Yes Yes No No Yes No Yes Yes Yes

User Training No No No No No No No Yes No

Page 5 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

is based on following twenty four defined comparative SDLC
(authors’ initiated) measures: Software Engineering Approach9,
Initial, Developmental Plan, Software Requirements Engineering, In
Depth Requirements Analysis51, Requirement Validation, Function-
als, Risk Analysis, Software Design, Software Architecture Design,
In Depth Software Design Modelling, Reusable Designing, Develop-
mental Plan, Tools and Technology Selection and Analysis, Graphi-
cal User Interface Design, Preprocessed Source Code Writing15–18,
Integrated Programming, Software Testing, In Depth Software Test-
ing, Customer’s Evaluation, Deployment Procedures, Maintenance,
Software Re-Engineering52, Cyclic or Repetitive, Easy to learn and Use,
and User Training.

We applied these measures to nine different software development
life cycle models: Waterfall Model53, V-Model54, Spiral Model55,
Iterative and Incremental Model56, Rapid Prototype Model57, Agile
Development Model58, Extreme Programming Model58, Evolution-
ary Model59, Code and Fix Model60. From this comparative analysis
we conclude that there is no such one specific SDLC which can be
helpful in all required phases of scientific software solution devel-
opment, but some which might be more useful: Spiral, Waterfall
and V-Model. Moreover the SDLCs famous for the quick develop-
ment (Rapid Prototype Model, Agile Development Model, Extreme
Programming Model, Evolutionary Model, Code and Fix Model)
are very helpful in script writing and fast prototype production;
however full sustainability remains nevertheless a challenge.

As this is a general and open comparison, depending on the nature
of the scientific software application, one can further analyze and
pick that which suits best. Furthermore, we considered only the
typical effort and strengths for each of these software development
paradigms. A meticulous developer can of course take special care
and spend more time on any of the features not typically covered
by the software paradigm he follows, and turn the “no” for this fea-
ture into a “yes” simply by this additional effort during SDLC (for
instance, regarding agile programming – for that matter, extreme
programming can also be considered as a type of agile develop-
ment). The goal for our “Butterfly” paradigm is a SDLC paradigm
that fulfils all of the features regarding life cycle management of the
resulting software.

Butterfly in scientific academia
If we search for “bioinformatics tools” over the web, thousands of
entries can be found at one hit. But how many of those are fully
designed, developed and tested solutions, used and maintained for a
number of years and still in functional use?

At the beginning of a software project in academia, scientific solution
development seems very interesting, fascinating and exciting. But
with the passage of time, when the levels of complexities increase
(due not only to the lack of developmental skills but also to the
unavailability of proper designs), the work starts becoming tedious and
unfruitful. This causes a lack of interest in software solution devel-
opment and leads to a preference for wrapping up the work with a
working script or small application, which can be published later on.

Here we propose a new science-oriented model (Figure 3), which
can help the scientific software solution developers as well as the

scientists/end users by generalizing the use of major developmental
aspects correlating to the important scientific needs of the target
system. The name of our new model is “Butterfly”.

In accordance with the name of the model, the “Butterfly” represents
sustainable and continuous improvements from goals to achieve-
ment as the central backbone of development. For larger projects
this is further improved by using middleware between user inter-
faces and accessing the various data and databases involved. This
also has the advantage that natural language processing needs to be
implemented only once in the middleware and all the other modules
have access to it. Finally, the backbone arrangement with a powerful
middleware as well as all development elsewhere in the “Butterfly”
stresses the interoperability of the software. It is developed by using
well-defined and compatible output formats. Furthermore, below
the middleware, well adapted, interoperable data schemes boost
sustainable development of database structures, including efforts for
scheme-less databases and other semantic web developments. The
four continuously moving wings (Figure 3) represent the change in
the requirements. The upper left wing of the model represents the
scientific software engineering principles, and the lower left wing
represents the HCI. The upper right wing represents the implemen-
tation of the specific methodology (focused on lowering the risk of
development ripples) and the lower right wing represents the target
scientific application producing the required results.

Scientific Software Engineering and Scientific Methodology
SSE is the most important phase of the Butterfly model, which pro-
motes the usage of any earlier mentioned SDLC involving require-
ments analysis, design modeling, programming and testing of the
scientific software solution. It correlates with the phase Scientific
Methodology; the finalized functional requirements are based on the
desired system output, and the system should be modeled accord-
ing to the defined logics and mathematics (individual as well as
the sequence of algorithms if there are more than one). The most
suitable, advanced, recent, economically affordable, transferable,
flexible and reliable developmental technologies should be chosen
considering the use and availability of the data (large, small, com-
plex, shared via intranet or internet).

Meanwhile, programming and processing of the complex and large
data should be undertaken in order to have efficient data analysis,
management and visualization. During the testing procedure of the
developed system, all modules should be properly tested by the
developer, by testing experts - if available -, and by the appropri-
ate users. While testing the newly developed scientific system, the
system should not be considered ready or functioning straight away.
No real experiments should be performed prior to through testing
to avoid any loss of data or waste of any scientific research/bio-
logical material or living beings (especially in case of behavioral
research and analysis). Only after successful deployment the real
time results should be evaluated.

For instance, if the target scientific software solution is a data-
base manipulation and management system, then it will require to
properly model the database schema (entity relationship model),
by reducing the levels of data redundancy and dependency, via
data normalization. There are five data normalization forms: 1NF,

Page 6 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

2NF, 3NF, 4NF and 5NF, which include conceptual procedures for
comprehensive database designing61. These data normalizations
help in shaping the data types (1NF), developing the relationships
between non-key and key fields (2NF, 3NF)62,63, and dealing with
multi-valued facts which correspond to many relationships (4NF
and 5NF)64,65. Structured data are more helpful in case of search and
indexing operations than simple databases with entities but without
hierarchal relationships. Moreover, if the experimental data are well
normalized, then in case of large datasets, they will expedite the
processing speed and reduce time in searching and analyzing the
elements.

Human computer interaction and scientific applications
The lower left wing of the Butterfly (Figure 3) is the HCI, known
as Human Machine Interaction (HMI)66–68. This interacts with the
lower right wing i.e. Scientific Application. HCI defines the imple-
mentation of the mechanisms that establish the efficient communi-
cation protocols between human and machines. These protocols are
based on the textual, visual, sensory, video, audio and event based
information, provided by both the user and the machine (computer).
The backbone of the Butterfly allows by its middleware to rapidly
exchange GUI applications and accessed databases if there is a need
for it, considering the rapid developments in bioinformatics or if a
user wishes to use GUIs or databases from comprehensive software
environments, for instance regarding large-scale sequencing from
Taverna5 or Galaxy6,7.

Unfortunately HCI was the most ignored and unattended phase of
scientific software solution development. This starts not to represent
the state of the art any more as the awareness on HCI is increasing85,
for instance EBI has specialized UX personnel who can be engaged
in projects. Nevertheless, often developers do not give priorities
to the GUI design and implementation. The reasons for this neg-
ligence could be the pressure due to time limits for development,
rapid functionality addition during development, excessive itera-
tions, less field knowledge, lack of awareness about the importance
of HCI, competitive general purpose software and human behavior
analysis etc.66. In principle and practice, with respect to the user’s
point of view, HCI is one of the most important parts of the software
development. If the HCI is bad and the software is not easy to use,
why use the software at all? Below we will present a particularly
well-engineered solution in this respect, the ant database, focusing
on a really easy user database access by smart phone.

During the scientific solution deployment and usage, the end user
is probably a scientist without strong informatics background. To
run and execute a script, first the compiler and the editor need to
be installed, then depending upon the needed external libraries, the
necessary libraries will need to be identified and used. This might
be a very hectic task, especially for a person with no informatics
background. In most of the cases, the result-producing applications
cannot be used because of difficulties in deployment and execution
procedures. Moreover, most of the time, many scientific software

Figure 3. Butterfly model. It consists of four wings: Scientific Software Engineering (upper left), Human Computer Interaction (lower left),
Scientific Methodology (upper right) and Scientific Application (lower right). Moreover it leads to continuous improvement (in yellow). The
achievements translate the goals into software.

Page 7 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

applications are not well documented, which also increases the
level of complexities at the user end.

If the application is configured and is executed successfully, then
the next task is to use it. If the application has been developed with
an unfriendly GUI or a command line interface, it might be a prob-
lem for the user scientist, as to how to use it. If the application is not
easily deployable and useable, then in most of the cases it can only
lead to the loss of developer’s efforts.

To avoid such problems, the following aspects should be considered:
user psychology, scientific domain, working environment and HCI
design patterns (Window Per Task, Interaction Style, Explorable
Interface, Conversational Text, Selection, Form, Direct Manipulation,
Limited Selection Size, Ephemeral Feedback, Disabled Irrelevant
Things, Supplementary Windows and Step-by-Step Instructions). It
is very important to understand the common psychology of the users
of the applications e.g. if they are the laboratory scientists, they will
be happy to have user friendly graphical interface and easy deploy-
ment procedure (e.g. small setup which runs and automatically con-
figures all the required settings in the user’s system), so that they do
not have to spend additional time on the configuration.

Scientific domain and working environments are two more impor-
tant aspects to be considered while designing the graphical interface.
These are particularly important especially when developing real
time systems e.g. embedded, robotic, mobile applications. Moreover,
it is important to consider that the use of HCI patterns and principles
(Cooperation, Experimentation, Contextualization and Iteration) have
a reliable HCI communication protocol implementation.

In general, non-functional requirements specify the overall objec-
tives of the system together with the information about quality

attributes (e.g. Performance, Operating, Platform, Modifiability,
Portability, Reliability, Security, Usability etc.), and functional
requirements explain the sets of input, output and behavior of the
system. Here, we are somewhat extending these general concepts:
the functional requirements can also be those which can be imple-
mented (based on existing resources, time, budget, labor, tools,
technologies and methodologies), and non-functional requirements
can also be those which cannot be implemented but which are
qualitatively helpful in defining the system and its usability. It is
very important to iteratively clarify with the users what will be the
expected end-product because it is possible that the user may not
like the output of the system after development cycles. If the end
product is unsatisfactory in this respect, all the efforts will have
been in vain.

After designing an interface, one of the important tasks is to evalu-
ate its effectiveness and potential. One general and effective way is
to engage the users and consider their feedback at every step. The
technical approach is to use the HCI design principles: Experimen-
tation, Contextualization, Iteration and Empirical Measurement67.
Another beneficial method is to adopt and use the HCI design pat-
terns: Window Per Task, Direct Manipulation, Conversational Text,
Selection, Form, Limited Selection Size, Ephemeral Feedback,
Disabled Irrelevant Things, Supplementary Window and Step-by-
Step Instructions67.

Butterfly workflow designs
The Butterfly model implementation mechanism has a three-layered
architecture: Gray, Yellow and Green (Figure 4).

Gray layer
The gray layer represents the most important phase of scientific
software solution development, which involves software designers,

Figure 4. Butterfly three layer model. Shown in gray is the abstract layer, in yellow is the basis for design and development, and in green
the implementation and testing by the user. The software is released including installation and training.

Page 8 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

running related systems based information etc.) and classify the
information in functional and non-functional categories. Here,
function requirements are those which can be implemented (based
on existing resources, time, budget, labor, tools, technologies and
methodologies), and non-functional requirements are those which
cannot be implemented. It is very important to clarify with the users
what will be the expected end-product because it is possible that the
user may not like the output of the system after development. In this
case, all the efforts will have been in vain.

The third phase is the conceptual software design and modeling
(Figure 7). This is particularly important when there is a team of
software developers. Before moving ahead, one should go for some
abstract designs based on functional requirements and discuss these
with the team. It is crucial to estimate the expected workflow, data
sources and data flow in the system. If possible, the abstract design
should be discussed with the users as well.

The last phase of the gray layer concerns the design of a user-
friendly GUI (Figure 8). First, some mock-ups should be made

developers, testers, graphical interface designers and, most impor-
tantly, the users. It consists of four phases: scientific software solu-
tion planning, requirements engineering and analysis, conceptual
software design and modeling, and user friendly graphical inter-
face. The layer has been named ‘Gray’ because at the beginning of a
new scientific software solution development, most of the informa-
tion seems uncertain.

Scientific software solution planning (Figure 5) is the first step
towards a new scientific application development, which requires
the introduction to the field itself (e.g. biochemistry, neurobiology,
genetics, metabolomics, proteomics etc.) and project related infor-
mation (e.g. what could be the end product, input to the system,
expected output from the system, methodology, ideas, opinions
etc.). It is important to know about the user’s information IT back-
ground and existing already available (old and recently developed)
scientific solutions to the problem. The next important phase is to
perform requirements engineering and analysis (Figure 6). During
this phase, the most important tasks are to gather the requirements
from users (e.g. interviews, brainstorming, documents, publications,

Figure 8. User Friendly Graphical Interface Designing. This is the
final step of the top, abstract layer (gray) of the three layers in the
butterfly design.

Figure 5. Scientific software solution planning. Abstract planning
is the first step of the top, abstract layer (gray, Figure 4) of the
Butterfly design, key steps are indicated.

Figure 6. Requirements engineering and analysis. This is the
2nd step of the top layer (gray layer) of the three layer model in the
Butterfly design. Key tasks are indicated.

Figure 7. Conceptual software design and modeling. This is the
3rd step of the top layer in the butterfly model.

Page 9 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

(hand-made on papers or better to use white board with color mark-
ers and later make pictures of finalized GUI designs), then these
should be discussed with users in a brain storming session. Finally,
based on the perceived designs, the abstract GUI (GUI with no run-
ning functionalities) should be created using HCI design patterns.

Case study. We have successfully applied the Butterfly model in the
implementation of newly proposed applications i.e. DroLIGHT71–73,
scientific computational solution towards neurobiology and photo-
biology (Figure 10). The engineering processes started with the
initial scientific software solution planning, the involvement of
the members of a scientific group (Department of Neurobiology
and Genetics, Biocenter, University of Wuerzburg, Germany). The
desired end product was a system towards the behavioral biology
of the fruit fly. The overall requirements were about to implement a
domain specific, intelligent, distributed, real time, embedded, data
management system capable of controlling hardware devices, pro-
ficient in producing different colors of lights and monitoring the
movements of Drosophila melanogaster. Moreover, it should be
capable of generating circadian and diurnal rhythms, experimental
data management system and visualize experimentation’s output in
two and three dimensional graphics formats.

We analyzed and distinguished between functional and non-
functional requirements to draw the conceptual models of the
proposed system. Furthermore, we involved the scientific team
members in different brain storming session and drawn mockups
with the implementation of following design patterns: window per
task, direct manipulation, conversational text, ephemeral feedback
and step-by-step instructions. The designed mockup was provid-
ing multiple instances, allowing users to directly interact with the
system using provided controls, offering the textual command line
instruction mode for human machine interactions, status updates
and tools tips71–73.

Yellow layer
The yellow layer involves designers and developers. It consists of
four phases: design, modeling and analysis, tools and technology
selection, design implementation, and GUI implementation.

During design modeling and analysis, the important task is to cre-
ate different implantable designs e.g. UML models (use case, class,
system sequence, activity, component etc.) and database schemas
(in case it’s a database management system). Here, we strongly
recommend the use of Product Line architecture design modeling,
where the whole software is divided into sets of modules, which
work individually as well as together. This will customize pro-
ject development and reduce error proneness during development.
Moreover it will increase the concepts of modular reusability.

The next step involves the choice of available tools, technolo-
gies and programming languages that will be implemented in the
designed models. The last step focuses on adding functionalities to
the designed GUI.

Case study. Meeting the scientific objectives of understanding the
light-evoked behaviors of D. melanogaster, especially the synchro-
nization of its endogenous clock to light-dark cycles and following

the implemented conceptual design and mockups (Gray layer),
we constructed the implementable designs of DroLIGHT71–73. We
implemented UML principles and notations for Meta model soft-
ware designs with abstraction and modification techniques. The
designed UML diagrams of DroLIGHT71–73 described the appli-
cation’s functionalities, user access, internal work flow, system
sequence, pre-processed source code structure, compilation, execu-
tion and integration with involved other components71–73.

We invested time in searching the recent available and reliable tech-
nologies, which could be used for the design and development of
newly proposed system. We used Astah modeling tool to construct
the different UML diagrams and focusing on the functional require-
ments, we developed DroLIGHT71–73 (front end and back end) in
managed code using C# (object oriented programming language),
within Microsoft Visual Studio (Dot Net 2012).

Green layer
The green layer describes the final in house testing and debugging by
the developers and tester. Some scientific software applications are
developed to process the raw data using mathematical algorithms
(e.g. processing GC-MS, LC-MS, NMR data), whereas some appli-
cations are implemented to perform different kind of experiments,
which in return produce experimental data e.g. towards behavioral
research on animals and insects etc.

Processing raw data is safe even if there are still some problems
(e.g. minor calculation mistakes due to the different levels of frac-
tional values or wrong implementation of mathematical algorithms,
or some software developmental issues, which could be ‘ripple
effects’, or some logical bugs) after testing. However, when applied
in real time experimentation, if the software does not work as
expected, it could be very expensive and dangerous (e.g. if there is
a software to control the temperature and light during experiments
on insects or animals, and there are problems during experimenta-
tion leading to changes of the normal or expected temperature and
light to some extreme positive or negative values, then this could
not only effect the system’s hardware but can also threaten the life
of animals or insects).

In order to avoid such problems, we enforce test trails by different
users before making the software available for installation and
training in the public domains.

Case study. The implemented version of DroLIGHT (sections:
Gray layer and Yellow layer) was tested in the development lab and
applied Black box testing, White box testing, Unit testing, Integra-
tion testing, Functional testing, System testing, End-to-end testing,
Load testing, Stress testing, Performance testing, Usability testing,
Install/uninstall testing, Compatibility testing and Comparison test-
ing strategies. Based on the observed problems (errors, bugs, rip-
ples etc.) we produced different versions, and kept on testing until a
reliable version was achieved. As in agile development, refactoring
(improving code quality without changing its semantic meaning) is
seen as an effort that copes with ripples and accompanies develop-
ment. DroLIGHT improvement was achieved efficiently here using
windows XP. Using again the Butterfly paradigm, similar results
should be obtainable focusing on scrum techniques and iterative

Page 10 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/

lean development with sprint backlogs, but this was not tested by
us. Later after training the scientists about to how to use and con-
figure the application, reliable release was shared and tested in the
scientific labs.

Constant improvement is further boosted by sustainable data struc-
tures and engineered robustness of the application. Furthermore,
sustainable development and interoperability are considered from
the start, support the rapid further development/improvement of
software to study and manipulate circadian rhythm by different
light cycles and test environments in D. melanogaster.

Real Life Examples using Butterfly
A number of new scientific software applications based on the con-
cepts of the Butterfly model have already been proposed, designed,
implemented, tested and are currently in use. Some of them have
been published and some remain unpublished. These applications
are: Least Square MIDA (LS-MIDA), DroLIGHT, Isotopo, Lipid-
Pro and App Ant Database.

LS-MIDA69,70 (Figure 9) is an own published scientific software
(Department of Bioinformatics, Biocenter, University of Wuerzburg
Germany) which estimates mass isotopomer distribution from the

spectral data by analyzing each peak of given mass and each mass
atom fragment. It implements a chain of mathematical and statisti-
cal algorithms, provides graphical interfaces to help users analyze
experimental data and visualize the results, and provides a third
party independent experimental data management system. For the
most parts the requirement engineering and software design steps
are followed until the final solution presented (Figure 9), and details
on tested earlier solutions or specific requirements are available
from the authors.

DroLIGHT71–73 (Figure 10) is an earlier described (section: Butterfly
workflow designs) scientific solution to control the irradiance and
wavelength of light designed for the photo-receptor system of the
fruit fly.

Isotopo software74,83 (Figure 11) is a published scientific software
(Department of Bioinformatics, Biocenter, University of Wuerzburg,
Germany), a bioinformatics solution with the ability of perform-
ing quantitative mass spectrometry in isotope labeling experiments.
It is an extended version of the earlier software LS-MIDA with a
well-optimized mathematics implementation. It not only provides
the graphical interfaces for gas chromatography-mass spectrometry
(GC-MS) experimental data analysis, visualization and management,

Figure 9. Least Square Mass Isotopomers Distribution Analysis’s (LS-MIDA) main graphical user interface. Scientific software solution
towards bioinformatics and biochemistry which estimates mass isotopomers distribution from spectral data by analyzing each peak of given
mass and each mass atom fragment. (http://www.tr34.uni-wuerzburg.de/computations/ls_mida/).

Page 11 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.tr34.uni-wuerzburg.de/computations/ls_mida/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/
http://spp1316.uni-wuerzburg.de/bioinformatics/isotopo/
http://www.tr34.uni-wuerzburg.de/computations/ls_mida/

Figure 10. DroLIGHT’s main graphical user interface. It is a scientific software solution towards neurobiology and photobiology, capable
of controlling and automating the hardware that produces different colors of lights via Light Emitting Diodes (LEDs). It provides experimental
data management system, circadian and diurnal rhythm generation, 3D visualization of system’s performance and experimentation details
(http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/).

but also provides an intelligent data parser to automatically trans-
form the machine’s pre-processed data into the processable format
of the Isotopo software (reducing both time and labor). It also pro-
vides a complete database management system as a simple, well
sustainable version of a middleware between data storage and GUIs.

Lipid-Pro (Figure 12) is a scientific software (computational) solu-
tion towards lipidomics and pharmaceutical biology (Department
of Pharmaceutical Biology Department of Neurobiology and
Genetics and Department of Bioinformatics, Biocenter, University
of Wuerzburg, Germany). It is a new solution towards the lipidome
analysis including retention time (RT), mass to charge ratio values
(m/z) of precursor and fragment ions, chemical compositions and
peak intensities. Moreover, it provides comprehensive spectral data
management, sharing and integration features.

App Ant Database84 (Figure 13) is a scientific software solution,
featuring a distributed and embedded database system in the form
of a smart phone, tablet and desktop application towards experi-
mental data management and approximate solar estimations dur-
ing experimentation on different insects (Department of Behavioral
Physiology and Sociobiology, Biocenter, University of Wuerzburg,
Germany). It is unique and the first bioinformatics smart phone

application to be used in the deserts for the behavioral experiments.
After extensive requirement engineering, we established an extremely
easy to use graphical interface. Furthermore, after studying the user
requirements in monitoring desert ant movement and orientation in
the desert, the application not only automatically records ant move-
ments, but also estimates and calculates automatically all additional
variables required for the project such as azimuth, solar time, equa-
tion of the time, time offset, hour angle, altitude, sunrise, sunset
and solar noon using astronomical algorithms, recommended by the
National Oceanic and Atmospheric Administration (NOAA).

Regardless of the individual specifications, development details,
technologies used and usage perspectives, the key principles of the
Butterfly model were applied in the design of these software solu-
tions. Although the requirements for each of these were not fixed in
the beginning, comprehensive requirements gathering and analysis
operations were performed using brain storming and interviewing
methods. Based on filtered out the functional requirements, the
most suitable SDLCs (V-Model54 and Spiral55) were applied and
the software applications were designed using UML (including
use cases, class diagrams, sequence diagrams, work flows, activ-
ity flows, components diagrams, data flow diagrams etc.). Of those
SDLC’s used in scientific software solution development, the Spiral

Page 12 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/drolight/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/lipidpro/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/ant_app_db/

Figure 11. Isotopo Data Analyzer’s main graphical user interface. Scientific software solution towards bioinformatics and biochemistry,
with the ability of performing quantitative mass spectrometry to mixtures of materials labeled with stable isotopes. It provides internal
database management system, third party independent file based experimental data management system and intelligent data format parser
for data extraction and conversion of different data formats. (http://spp1316.uni-wuerzburg.de/bioinformatics/isotopo/).

Model proved most helpful and best suited due to its four main
pillars: determine objectives, identify and resolve risk, develop-
ment and test, and plan the next iteration. Another advantage of the
spiral model is its risk driven approach, incorporating many useful
features and refinements of other software development life cycle
models54,72.

Using the HCI design patterns and principles, the graphical user
interfaces of all these applications were designed considering the
psychology, scientific and informatics backgrounds of the end users
and the deployment environments.

All these applications are easy to deploy and use. We found that
users did not require training to install, run and use the applications.
As scientific research is a never ending process, these applications

are still in development and will be continuously improved with
respect to the methods, features, performance and technologies.

Comparing bioinformatics tools
We have performed a short comparative analysis of some bioinfor-
matics software applications (C1375, Metatool76, BioOpt77, FiatFlux78,
ReMatch79, Biolayout80, LS-MIDA69,70, DroLIGHT71–73, Isotopo74,83),
describing their type, methodology, implementation, user friendli-
ness, configuration etc., based on the provided, published informa-
tion (Table 2).

For our comparison, we chose software applications from fields
we are familiar with, yet tried to cover a broad range of different
applications and compared Metabolic Flux Analysis (MFA) as
well as software metabolic network analysis81,82, Mass Isotopomers

Page 13 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://spp1316.uni-wuerzburg.de/bioinformatics/isotopo/

Figure 12. Lipid-Pro’s main graphical user interface. Scientific software solution towards lipidomics and pharmaceutical biology (http://
www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/lipidpro/).

Figure 13. App Ant Database’s smart phone graphical user
interface. Scientifc software solution towards the experiment data
management during experimentation on desert ants. It offers
user friendly graphical interfaces for the experimental data entrance,
manipulation, management and sharing (http://www.
biozentrum.uni-wuerzburg.de/en/project/services/ant_app_db/).

Distribution Analysis (MIDA) including GC-MS data analysis69,70,
and neurobiology applications for behavioral analysis of insects
such as desert ants and fly71–73.

We used the following parameters to classify the chosen bioinfor-
matics software application: SSE type, data management, script or
prototype, algorithm type, algorithm/methodology, running mode,
publishing, licensing, SDLC information, HCI information, user
friendly, easy to configure, easy to train, software re-engineering,
cyclic or repetitive, easy to learn and use user training.

From the observed results (Table 2) we conclude that almost all of
the applications have good implementations of their methodology
(algorithms etc.) but often lack in usage point of views (user inter-
face, documentation etc.), or long term sustainable development of
the software (at least regarding the organization of future further
developments). These shortcomings are prevented when following
the “Butterfly” paradigm.

Conclusions
In the earlier sections of this paper we presented the concepts of
usage of the existing scientific software solution design, modeling,
implementation, testing and deployment. This helps in resolving
conflicts and highlighting valuable differences between the tradi-
tional (professional) and scientific applications. This paper also
proposes a new approach towards user friendly scientific software
solution development, with emphases on the use of proper SDLC,
HCI and technologies. The successful implementation of the five
applications discussed strongly validates the potential of the Butterfly
model. We have tried to present a strong case for our Butterfly model

neurogenetics.

Page 14 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/lipidpro/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/lipidpro/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/ant_app_db/
http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/ant_app_db/

Table 2. Comparative analysis of different scientific software applications. SSE=Scientific Software Application; App.=Application;
DB=Database; DM=Data Management; Sys.=System; SDLC=Software Development Life Cycle.

Applications/
Comparative
Measures

C13 Metatool BioOpt Fiatlux ReMatch Biolayout LS-MIDA Dro-LIGHT Isotopo

SSE? Yes Yes Yes Yes Yes Yes Yes Yes Yes

App. Type Desktop Desktop Desktop Desktop Web Desktop Desktop Desktop Desktop

Data
Management

No DM
Sys.

No DM
Sys.

No DM
Sys.

No DM
Sys. DB No DM

Sys. File based File based File based
and DB

Script or
Prototype Script Script Prototype Script Prototype Prototype Prototype Prototype Prototype

Algorithm
Type Parallel Sequential Sequential Parallel Sequential Parallel Sequential Parallel Sequential

Algorithm/
Methodology

Isotopic
Labelling

Schuster
Algorithm

Mass
Balance
Equation

Isotopic
Labelling

Carbon
Mapping

Markov
Clustering

Least
Square

Circadian
Rhythms

Partial Least
Square

Running
Mode Interactive Interactive Batch Interactive Interactive Interactive Interactive Interactive Interactive

Publishing,
licensing

Published,
Free

Published,
Free

Published,
Free

Published,
Free

Published,
Free

Published,
Free

Published,
Free

Published,
Free

Published,
Free

SDLC
Information

Not
Provided

Not
Provided

Not
Provided

Not
Provided

Not
Provided

Not
Provided V-Model Spiral V-Model

HCI
Information

Not
Provided

Not
Provided

Not
Provided

Not
Provided

Not
Provided

Not
Provided

HCI Patterns
Implemented

HCI Patterns
Implemented

HCI Patterns
Implemented

User Friendly No No No No Yes Yes Yes Yes Yes

Easy to
configure No No No No Yes Yes Yes Yes Yes

Easy to train No No No No No No Yes Yes Yes

Software
Re-Engineering Yes No Yes Yes Yes No Yes No No

Cyclic or
Repetitive No No Yes Yes Yes No Yes No Yes

Easy to learn
and Use Yes Yes No No Yes No Yes Yes Yes

User Training No No No No No No No Yes No

but it is of course only our own approach to achieve sustainable
software development in an academic environment. We clearly see
from our development experience that the efforts in preparation and
implementing scientific software engineering for an application
pay off particularly well if there is a series of programs developed.
However, we claim also that one would think more often about
such a series of successive improved programs if there is the option
to easily implement such an effort, and again the Butterfly model
would help here.

In conclusion, although the adaptation of SSE principles to the But-
terfly model may seem to increase developmental work load in com-
parison to the current running programming method applications,
the Butterfly model will ultimately reduce the work by making the

scientific application well designed, flexible, structured, reusable,
developed according to a product line, as well as analytical and of
high quality. According to its design, the software developed using
the Butterfly paradigm is user friendly, easy to learn and deploy.

Author contributions
Zeeshan Ahmed has proposed the model Butterfly, and initiated
the topic of discussion. Saman Zeeshan assisted Zeeshan Ahmed
and Thomas Dandekar guided the study. All authors participated in
writing the manuscript.

Competing interests
The authors declare no conflict of interest.

Page 15 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

Acknowledgements
We would like to thank all our interested colleagues for critical
community input on the “Butterfly” approach.

We would like to thank Deutsche Forschungsgemeinschaft (DFG)
for funding and University of Wuerzburg Germany for the support.

We thank two anonymous reviewers for helpful comments on the
manuscript and the Land of Bavaria Germany.

Grant information
Funding was provided by the German Research Foundation (DFG),
collaborative research center SFB 1047 “Insect timing”, Project Z,
to Zeeshan Ahmed. Thomas Dandekar and Saman Zeeshan were
supported by the German Research Foundation (DFG), TR 34/Z.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

References

1. de Champeaux D, Constantine L, Jacobson I, et al.: Structured analysis and
object oriented analysis. In OOPSLA/ECOOP ‘90 Proceedings of the European
conference on object-oriented programming on Object-oriented programming
systems, languages, and applications. 1990.
Reference Source

2. Abrahamsson P, Salo O, Ronkainen J, et al.: Agile software development
methods - Review and analysis. VTT Pub. 2002; 478.
Reference Source

3. Manyika J, Chui M, Brown B, et al.: Big data: The next frontier for innovation,
competition, and productivity. McKinsey Global Institute. 2011.
Reference Source

4. Sergio C, Luciano F, Massimo B: Software Interoperability in consequence
assessment: results of a feasibility study. Chem Eng Trans. 2010; 19: 341–346.
Publisher Full Text

5. Belhajjame K, Wolstencroft K, Corcho O, et al.: Metadata Management in
the Taverna Workflow System. In IEEE International Symposium on Cluster
Computing and the Grid. 2008.
Publisher Full Text

6. Penn State, Eberly College of Science. Galaxy DNA-analysis software is now
available ‘in the cloud’. ScienceDaily, Online 15 November 2011.
Reference Source

7. Pabinger S, Dander A, Fischer M, et al.: A survey of tools for variant analysis of
next-generation genome sequencing data. Brief Bioinform. First published online:
January 21, 2013.
PubMed Abstract | Publisher Full Text

8. Magrane M, Consortium U: UniProt Knowledgebase: a hub of integrated protein
data. Database (Oxford). 2011; 2011: bar009.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Boehm B: Software Engineering. IEEE Trans On Computers. 1976; 25(12): 1226–1242.
Publisher Full Text

10. Rook P: Controlling software projects. Software Engin J. 1986; 1(1): 7–16.
Publisher Full Text

11. Mahmood S, Lai R: RE-UML: A Component-Based System Requirements
Analysis Language. Comput J. 2013; 56(7): 901–922.
Publisher Full Text

12. Szyperski C, Gruntz D, Murer S: Component Software: Beyond Object-Oriented
Programming. Addison-Wesley. 2002.
Reference Source

13. Benediktsson O, Dalcher D, Thorbergsson H: Comparison of software
development life cycles: a multiproject experiment. IEE Proceedings – Software.
2006; 153(3): 87–101.
Publisher Full Text

14. Munassar NMA, Govardhan A: A Comparison Between Five Models Of Software
Engineering. Int Jr Comp Sci. 2010; 7(5): 94–101.
Reference Source

15. Ahmed Z: Towards Performance Measurement and Metrics based Analysis of
PLA Applications. Int J Softw Engin App. 2010; 1(3): 66–80.
Publisher Full Text

16. Ahmed Z, Majeed S: Measurement, Analysis with Visualization for better
Reliability. In Artificial Intelligence and Hybrid Systems. C. Rocha, F. Akune,
A. El-Shafie, iConcept Press, 2013.
Reference Source

17. Ahmed Z, Majeed S: Towards Increase in Quality by Preprocessed Source Code
and Measurement Analysis of Software Applications. IST Tran Inf Tech Theo
App. 2010; 1(2): 8–13.
Reference Source

18. Ahmed Z: Measurement Analysis and Fault Proneness Indication in Product
Line Applications (PLA). In Sixth International Conference on New Software
Methodologies, Tools, and Techniques. Italy, 2007; 391–400.
Reference Source

19. Ahmed Z: Integration of variants handling in M-system NT. M.S. thesis, Blekinge
Institute of Technology, Karlskrona, Sweden. 2006; 65.
Reference Source

20. Lee J, Xue NL: Analyzing user requirements by use cases: a goal-driven
approach. IEEE Softw. 1999; 16(4): 92–101.
Publisher Full Text

21. Sommerville I: Integrated requirements engineering: a Tutorial. IEEE Softw.
2005; 22(1): 16–23.
Publisher Full Text

22. van Lamsweerde A, Darimont R, Letier E: Managing conflicts in goal-driven
requirements engineering. IEEE Trans Softw Eng. 1998; 24(11): 908–926.
Publisher Full Text

23. Kaur H, Singh P: UML (Unified Modeling Language): Standard Language for
Software Architecture Development. In International Symposium on Computing,
Communication, and Control. Singapore, 2011.
Reference Source

24. Garlan D, Shaw M: An introduction to software architecture. In Advances in
Software Engineering and Knowledge Engineering. V. Ambriola and G. Tortora:
World Scientific Publishing Company, 1993; 2: 1–39.
Reference Source

25. Garlan D: Formal Approaches to Software Architecture. In Workshop on Studies
of Software Design, UK. 1993; 64–76.
Reference Source

26. Garlan D, Notkin D: Formalizing design spaces: Implicit invocation mechanisms.
In 4th International Symposium of VDM Europe on Formal Software Development,
UK. 1991; 31–44.
Publisher Full Text

27. Dashofy EM, Hoek A, Taylor RN: An infrastructure for the rapid development of
XML-based architecture description languages. In Twenty Fourth International
Conference on Software Engineering, USA. 2002; 266–276.
Publisher Full Text

28. Egyed A, Kruchten PB: Rose/Architect: A Tool to Visualize Architecture. In Thirty
Second Annual Hawaii Conference on Systems Sciences USA. 1999; 8: 8066.
Publisher Full Text

29. Booch G, Rumbaugh J, Jacobson I: Unified Modeling Language User Guide, the
(2nd Edition). Addison-Wesley Professional. 2005.
Reference Source

30. Jacobson I, Christerson M, Jonsson P, et al.: Object-Oriented Software Engineering:
A Use Case Driven Approach. Reading, MA: Addison-Wesley, 1992.
Reference Source

31. Dumas M, ter-Hofstede AHM: UML Activity Diagrams as a Workflow Specification
Language. In Fourth International Conference on The Unified Modeling Language,
Modeling Languages. Concepts, and Tools, UK. 2001; 2185: 76–90.
Publisher Full Text

32. Bruza PD, van-der-Weide TP: The Semantics of Data Flow Diagrams. In
International Conference on Management of Data. 1993.
Reference Source

33. Latronico E, Koopman P: Representing Embedded System Sequence Diagrams
as a Formal Language. In Fourth International Conference on The Unified
Modeling Language. Canada, 2001; 2185: 302–316.
Publisher Full Text

34. Marilyn B: A guide for programmers. Prentice-Hall, 1978.
Reference Source

35. Berardi D, Calvanese D, Giacomo GE: Reasoning on UML class diagrams. Artif
Intell. 2005; 168(1–2): 70–118.
Publisher Full Text

36. Haney FM: Module connection analysis: a tool for scheduling of software
debugging activities. Proceedings of Fall Joint Computer Conference. 1972;
173–179.
Publisher Full Text

Page 16 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://dl.acm.org/citation.cfm?id=97962
http://www.bibsonomy.org/bibtex/2712c55d9effb282a021d9dd64b5cb5bb/mstrohm
http://www.citeulike.org/user/bartolialberto/article/9341321
http://dx.doi.org/10.3303/CET1019056
http://dx.doi.org/10.1109/CCGRID.2008.17
http://www.sciencedaily.com/releases/2011/11/111108201552.htm
http://www.ncbi.nlm.nih.gov/pubmed/23341494
http://dx.doi.org/10.1093/bib/bbs086
http://www.ncbi.nlm.nih.gov/pubmed/21447597
http://dx.doi.org/10.1093/database/bar009
http://www.ncbi.nlm.nih.gov/pmc/articles/3070428
http://dx.doi.org/10.1109/TC.1976.1674590
http://dx.doi.org/10.1049/sej.1986.0003
http://dx.doi.org/10.1093/comjnl/bxs089
http://books.google.co.in/books/about/Component_software.html?id=lK9QAAAAMAAJ&redir_esc=y
http://dx.doi.org/10.1049/ip-sen:20050061
http://connection.ebscohost.com/c/articles/54903877/comparison-between-five-models-software-engineering
http://dx.doi.org/10.5121/ijsea.2010.1305
http://www.iconceptpress.com/download/paper/11081022372567.pdf
http://arxiv.org/abs/1011.3256
http://dl.acm.org/citation.cfm?id=1567004
http://publica.fraunhofer.de/dokumente/N-51002.html
http://dx.doi.org/10.1109/52.776956
http://dx.doi.org/10.1109/MS.2005.13
http://dx.doi.org/10.1109/32.730542
http://www.ipcsit.com/vol1/22-A1561.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.8569
http://dl.acm.org/citation.cfm?id=657983
http://dx.doi.org/10.1007/3-540-54834-3_5
http://dx.doi.org/10.1145/581339.581374
http://dx.doi.org/10.1109/HICSS.1999.773098
http://dl.acm.org/citation.cfm?id=1088874
http://www.addison-wesley.de/9780201544350.html
http://dx.doi.org/10.1007/3-540-45441-1_7
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9398
http://dx.doi.org/10.1007/3-540-45441-1_23
http://books.google.co.in/books/about/A_Guide_for_Programmers.html?id=cUggAQAAIAAJ&redir_esc=y
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1145/1479992.1480016

1971; RJ909.
Reference Source

64. Fagin R: Multivalued dependencies and a new normal form for relational
databases. ACM Trans on Database Sys. 1977; 2(3): 262–278.
Publisher Full Text

65. Fagin R: Normal forms and relational database operators. In ACM SIGMOD
International Conference on Management of Data, USA. 1979; 153–160.
Publisher Full Text

66. Ahmed Z, Ganti SK, Kyhlbäck H: Design Artifact’s, Design Principles, Problems,
Goals and Importance. In Fourth International Conference of Statistical Sciences,
Pakistan. 2008; 15: 57–68.
Reference Source

67. Ahmed Z: Designing Flexible GUI to Increase the Acceptance Rate of Product
Data Management Systems in Industry. Int J Comp Sci Emerg Tech. 2011; 2(1):
100–109.
Reference Source

68. Klemmer SR, Lee B: Notebooks that Share and Walls that Remember:
Electronic Capture of Design Education Artifacts. In ACM Symposium on User
Interface Software and Technology. 2005.
Reference Source

69. Ahmed Z, Zeeshan S, Huber C, et al.: Software LS-MIDA for efficient mass
isotopomer distribution analysis in metabolic modelling. BMC Bioinformatics.
2013; 14: 218.
PubMed Abstract | Publisher Full Text | Free Full Text

70. Ahmed Z, Majeed S, Dandekar T: Unified Modeling and HCI Mockup Designing
towards MIDA. Int Jr Emerg Sci. 2012; 2(3): 361–382.
Reference Source

71. Ahmed Z, Helfrich-Förster C, Dandekar T: Integrating Formal UML Designs and
HCI Patterns with Spiral SDLC in DroLIGHT Implementation. Rec Pat Comp Sci.
2013; 6(2): 85–98.
Publisher Full Text

72. Ahmed Z, Helfrich-Förster C: DroLIGHT: Real Time Embedded System towards
Endogenous Clock Synchronization of Drosophila. Front Neuroinform
Conference Abstract: Neuroinformatics. 2013.
Publisher Full Text

73. Ahmed Z, Helfrich-Förster C: DroLIGHT-2: Real Time Embedded and Data
Management System for Synchronizing Circadian Clock to the Light-Dark
Cycles. Rec Pat Comp Sci. 2013; 6(3): 191–205.
Publisher Full Text

74. Ahmed Z, Majeed S, Dandekar T: Formal UML Modelling of Isotopo,
Bioinformatical Software for Mass Isotopomers Distribution Analysis. Software
Engin. 2012; 2: 147–159.
Publisher Full Text

75. Wiechert W, de Graaf AA: Bidirectional reaction steps in metabolic networks:
I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol
Bioeng. 1997; 55(1): 101–117.
PubMed Abstract | Publisher Full Text

76. Schuster R, Schuster S: Refined algorithm and computer program for calculating
all non-negative fluxes admissible in steady states of biochemical reaction
systems with or without some flux rates fixed. Comput Appl Biosci. 1993; 9(1): 79–85.
PubMed Abstract | Publisher Full Text

77. Cvijovic M, Olivares-Hernández R, Agren R, et al.: BioMet Toolbox: genome-wide
analysis of metabolism. Nucleic Acids Res. 2010; 38(Web Server issue): 144–149.
PubMed Abstract | Publisher Full Text | Free Full Text

78. Zamboni N, Fischer E, Sauer U: FiatFlux - a software for metabolic flux analysis
from 13C-glucose experiments. BMC Bioinformatics. 2005; 6: 209.
PubMed Abstract | Publisher Full Text | Free Full Text

79. Pitkänen E, Akerlund A, Rantanen A, et al.: ReMatch: a web-based tool to
construct, store and share stoichiometric metabolic models with carbon maps
for metabolic flux analysis. J Integr Bioinformatics. 2008; 5(2): 1–13.
PubMed Abstract | Publisher Full Text

80. Klamt S, von Kamp A: An application programming interface for
CellNetAnalyzer. Biosystems. 2011; 105(2): 162–168.
PubMed Abstract | Publisher Full Text

81. Ahmed Z, Majeed S, Dandekar T: Computational Feature Performance and
Domain Specific Architecture Evaluation of Software Applications Towards
Metabolic Flux Analysis. Rec Pat Comp Sci. 2012; 5(3): 165–176.
Publisher Full Text

82. Dandekar T, Fieselmann A, Majeed S, et al.: Software applications toward
quantitative metabolic flux analysis and modeling. Brief Bioinform. 2014; 15(1):
91–107.
PubMed Abstract | Publisher Full Text

83. Ahmed Z, Zeeshan S, Huber C, et al.: “Isotopo” a Database Application for
Facile Analysis and Management of Mass Isotopomer Data. Database: The
Journal of Biological Databases and Curation. 2014; [In Press].
Reference Source

84. Ahmed Z: Ant-App-Database towards Neural, Behavioral Research on Deserts
Ants and Approximate Solar Estimations. Front Neuroinform Conference
Abstract: Neuroinformatics. 2014.
Publisher Full Text

85. Camposa JC, Dohertyc G, Harrisond MD: Analysing interactive devices based on
information resource constraints. Int J Hum Comput Stud. 2014; 72(3): 284–297.
Publisher Full Text

37. Moreton R: A Process Model for Software Maintenance. J Inf Tech. 1990; 5:
100–104.
Publisher Full Text

38. Kan SH, Basili VR, Shapiro LN: Software Quality: An overview from the
perspective of total quality management. IBM Systems Journal. 1994; 33(1): 4–19.
Publisher Full Text

39. Li W, Henry S: An Empirical Study of Maintenance Activities in Two Object-
oriented Systems. Journal of Software Maintenance, Research and Practice. 1995;
7(2): 131–147.
Publisher Full Text

40. Pfleeger SL, Bohner SA: A Framework for Software Maintenance Metrics. IEEE
Transactions on Software Engineering. 1990; 320–327.
Publisher Full Text

41. Moreton R: A Process Model for Software Maintenance. J Inf Tech. 1990; 5:
100–104.
Publisher Full Text

42. Soong NL: A program stability measure. In Proceedings of Annual ACM
conference. Boulder Colorado, 1977; 163–173.
Publisher Full Text

43. Yau SS, Collofello JS, McGregor TM: Ripple effect analysis of software
maintenance. In Proceedings COMPSAC ‘78. 1978; 60–65.
Publisher Full Text

44. Black S: Automating ripple effect measurement. In 5th World Multiconference on
Systemics, Cybernetics and Informatics, Florida, USA. 2001.
Reference Source

45. Davis A: Software Requirements: Analysis and Specification. Prentice-Hall. New
Jersey, 1989.
Reference Source

46. Martin J, McClure C: Software Maintenance: The Problem and its Solutions.
Prentice-Hall. London, 1983.
Reference Source

47. Parikh G: Some Tips, Techniques and Guidelines for Program and System
Maintenance. Winthrup Publishers, Cambridge, Mass. 1982; 65–70.
Reference Source

48. Sharpley WK: Software Maintenance Planning for Embedded Computer
Systems. In Proceedings of the IEEE COMPSAC. 1977; 520–526.
Reference Source

49. Osborne WM: Building and Sustaining Software Maintainability. In Proceedings
of Conference on Software Maintenance. 1987; 13–23.
Reference Source

50. Yau SS, Collofello JS: Some Stability Measures for Software Maintenance. IEEE
Trans On Software Engineering. 1980; 6(6): 545–552.
Publisher Full Text

51. Jaffe MS, Leveson NG, Heimdahl MPE, et al.: Software requirements analysis for
real-time process-control systems. IEEE Transactions on Software Engineering.
1991; 17(3): 241–258.
Publisher Full Text

52. Chikofsky EJ, Cross JH: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Soft. 1990; 7(1): 13–17.
Publisher Full Text

53. Petersen K, Wohlin C, Baca D: The Waterfall Model in Large-Scale Development.
Product-Focused Software Process Improvement, Lecture Notes in Business
Information Processing. 2009; 32: 386–400.
Publisher Full Text

54. Rook P: Controlling software projects. Softw Eng J. 1986; 1: 7–16.
Publisher Full Text

55. Boehm BW: A spiral model of software development and enhancement.
Computer. 1988; 21(5): 61–72.
Publisher Full Text

56. Larman C, Basili VR: Iterative and Incremental Development: A Brief History.
Computer. 2003; 36(6): 47–56.
Publisher Full Text

57. Hull C, Feygin M, Baron Y, et al.: Rapid prototyping: current technology and
future potential. Rapid Prototyping Journal. 1995; 1(1): 11–19.
Publisher Full Text

58. Ambler S: Agile Modeling: Effective Practices for eXtreme Programming and
the Unified Process. Wiley Computer Publishing. 2002.
Reference Source

59. Cheriet H, Bounour N: Software evolution: Models and challenges. In International
Conference on Machine and Web Intelligence (ICMWI), 2010; 479–481.
Publisher Full Text

60. Pei Y, Wei Y, Furia CA, et al.: Code-Based Automated Program Fixing. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
2011; 392–395.
Publisher Full Text

61. William K: A simple guide to five normal forms in relational database theory.
Commun ACM. 1983; 26(2): 120–125.
Publisher Full Text

62. Codd EF: Normalized data base structure: A brief tutorial. In ACM SIG-FIDET
Workshop on Data Description, Access and Control, San Diego, 1971; 1–17.
Publisher Full Text

63. Codd EF: Further normalization of the data base relational model. IBM Res Rep.

Page 17 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.bibsonomy.org/bibtex/24b7b528f0502ff638c837f39a3ed3732/voj
http://dx.doi.org/10.1145/320557.320571
http://dx.doi.org/10.1145/582095.582120
http://arxiv.org/abs/1008.1322
http://arxiv.org/abs/1103.1134
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.1925&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/23837681
http://dx.doi.org/10.1186/1471-2105-14-218
http://www.ncbi.nlm.nih.gov/pmc/articles/3720290
http://connection.ebscohost.com/c/articles/91706635/unified-modeling-hci-mockup-designing-towards-mida
http://dx.doi.org/10.2174/22132759113069990005
http://dx.doi.org/10.3389/conf.fninf.2013.09.00053
http://dx.doi.org/10.2174/2213275906666131108211241
http://dx.doi.org/10.5923/j.se.20120204.08
http://www.ncbi.nlm.nih.gov/pubmed/18636449
http://dx.doi.org/10.1002/(SICI)1097-0290(19970705)55:1<101::AID-BIT12>3.0.CO;2-P
http://www.ncbi.nlm.nih.gov/pubmed/8435772
http://dx.doi.org/10.1093/bioinformatics/9.1.79
http://www.ncbi.nlm.nih.gov/pubmed/20483918
http://dx.doi.org/10.1093/nar/gkq404
http://www.ncbi.nlm.nih.gov/pmc/articles/2896146
http://www.ncbi.nlm.nih.gov/pubmed/16122385
http://dx.doi.org/10.1186/1471-2105-6-209
http://www.ncbi.nlm.nih.gov/pmc/articles/1199586
http://www.ncbi.nlm.nih.gov/pubmed/20134058
http://dx.doi.org/10.2390/biecoll-jib-2008-102
http://www.ncbi.nlm.nih.gov/pubmed/21315797
http://dx.doi.org/10.1016/j.biosystems.2011.02.002
http://dx.doi.org/10.2174/2213275911205030165
http://www.ncbi.nlm.nih.gov/pubmed/23142828
http://dx.doi.org/10.1093/bib/bbs065
http://www.researchgate.net/publication/263780018
http://dx.doi.org/10.3389/conf.fninf.2014.18.00001
http://dx.doi.org/10.1016/j.ijhcs.2013.10.005
http://dx.doi.org/10.1057/jit.1990.19
http://dx.doi.org/10.1147/sj.331.0004
http://dx.doi.org/10.1002/smr.4360070206
http://dx.doi.org/10.1109/ICSM.1990.131381
http://dx.doi.org/10.1057/jit.1990.19
http://dx.doi.org/10.1145/800179.810197
http://dx.doi.org/10.1109/CMPSAC.1978.810308
http://westminsterresearch.wmin.ac.uk/7186/
http://www.ebay.com/ctg/Software-Requirements-Analysis-and-Specification-Alan-M-BTG-Inc-Staff-Davis-1989-Hardcover-/5184648
http://dl.acm.org/citation.cfm?id=577837
http://catalog.hathitrust.org/Record/000762264
http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=ACC021D24C04146EF62D9696757BDAE8?cid=632140
http://www.bibsonomy.org/bibtex/2ebf08d13aefa4854b215d8c38ec263e6/pdeleenh
http://dx.doi.org/10.1109/TSE.1980.234503
http://dx.doi.org/10.1109/32.75414
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1007/978-3-642-02152-7_29
http://dx.doi.org/10.1049/sej.1986.0003
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1108/13552549510732026
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471202827.html
http://dx.doi.org/10.1109/ICMWI.2010.5647967
http://dx.doi.org/10.1109/ASE.2011.6100080
http://dx.doi.org/10.1145/358024.358054
http://dx.doi.org/10.1145/1734714.1734716

F1000Research

Open Peer Review

 Current Referee Status:

Version 2

 28 October 2014Referee Report

doi:10.5256/f1000research.5210.r6557

 Wolfgang Mueller
Heidelberg Institute of Theoretical Studies gGmbH, Heidelberg, Germany

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 26 August 2014Referee Report

doi:10.5256/f1000research.5210.r5923

 Paul Vauterin
Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 09 July 2014Referee Report

doi:10.5256/f1000research.3945.r5147

 Wolfgang Mueller
Heidelberg Institute of Theoretical Studies gGmbH, Heidelberg, Germany

Caveat: I lead a group that does scientific software development. I am interested in software development
both from the conceptual and the technical side. However, I would not be a serious contender for a
software engineering chair. As a consequence, I cannot claim full knowledge about the state of the art

of software engineering processes.

Page 18 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://dx.doi.org/10.5256/f1000research.5210.r6557
http://dx.doi.org/10.5256/f1000research.5210.r5923
http://dx.doi.org/10.5256/f1000research.3945.r5147

F1000Research

of software engineering processes.
I agree to the following takeaways that I pull out of the paper:

If you know you are building an application which is for other people than yourself, it makes sense
to follow a software engineering process.
Think about maintainability and sustainability of your software.
Think about your users and write usable software.
Operate using cyclic refinement

The model is an assembly of current software practices, emphasizing the needs of the scientificButterfly
software developer. I see the strength of the article in giving a concise overview of what a scientific
software developer should do.

However, I disagree with some statements made in the paper. Some of these statements relate rather to
anecdotal experience. This points to one of the weaknesses in the paper: There are statements made
with respect to the scientific software domain that are not marked as anecdotal, but which are not backed
by either empirical facts (e.g. questionnaires) or pointers to such facts in the literature.

In more detail:

Generally I agree, science is a fast-paced environment with rapidly changing requirements asking for
suitable software engineering processes.

Current software engineering and development

The paper comprises a large number of citations. However, I do not agree with the insights taken by the
authors from that literature.

To my knowledge, the field of Software Engineering has realized that one key factors for success is if
software matches the needs of users. Agile Development follows the view that often-times, users don't
even know what they need until they are closely involved in development and see where their own ideas
of their work (i.e. using the program) could fail. This is why there is less of an initial requirements analysis,
but there is a series of sprints that each seek the implementation of features. Each feature implemented
also influences the next stage of the requirements analysis.

The authors of this paper see the lack of quality software production as one of the weaknesses of agile
software engineering practices. However, Agile software engineering practices like XP and Scrum
emphasize the importance of testing and other practices intended to increase the software quality. Such
processes definitely do not disregard the production of quality production. So, to cut a long story short, I
do not agree with the impression created in the paper that agile processes lead to muddle-through
software that is unstable and short term due to the process.
You criticize the "ripples" through the program that come from changes. Ripples is the word describing the
needs for software changes due to one change elsewhere in the program e.g. the change in the view
necessitated by changing a model. The paper defining ripples is from 1978, and you cite another paper
about measuring ripples (2001). However to my knowledge, in agile development, refactoring (improving

code quality without changing its semantic meaning) is seen as an effort that accompanies development,

Page 19 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

code quality without changing its semantic meaning) is seen as an effort that accompanies development,
with a view on minimizing ripples. Unit, integration, acceptance tests are automated as far as possible so
they can be run after almost every change. Ongoing refactoring without being able to test easily if the
program still works is admittedly very hard. But tests well done can help with this. I think it would be useful
for the reader if you would outline how ripples are relevant in XP or Scrum.

The fact that user interaction is not written into the Scrum process does not mean that it's not on the map.
It is implicit in the requirements given by the users and users being part of the Agile team. Typically, users
that are part of the Agile team will accept or not the software created. User tests can be part of the
acceptance procedure, usability improvements can be features in a Scrum process.

While user experience is put to the forefront, the paper is quite sparse on the processes and on citations
regarding HCI.

You state: "Unfortunately HCI is the most ignored and unattended phase of scientific software solution
". To my impression, this is not the state of the art any more, and the even havedevelopment EBI

specialized UX personnel who can be called into projects.

The authors then describe what they see as reasons for poor HCI properties of scientific software and
state that no-one uses software with bad HCI and state that software with bad HCI won't be used. In my
(anecdotal) experience, many software products start out as concrete problem solvers for their authors,
with bad HCI (for others, as the original author writes the software tuned to his/her own needs) which then
are successively refined to serve a larger public. Of course this process bears its problems for outside
users. However, such software gets adopted, because of word of mouth.

In the article, HCI "design patterns" are not laid out in sufficient detail. The normal forms (1NF) etc. could
be either treated more shortly or in more detail. The enumerating of 1NF to 5NF and not saying what they
signify is in my view not the right middle ground.

" " should be changed to "Real life examples"Real time examples

I think these examples are an interesting overview, but to my feeling they are not addressing what is
needed to support the claims made about the process. Rather than giving a list of softwareButterfly
artifacts that were created using the process I would prefer more information about the outcome of the
different phases. What were iterative improvements etc.? If you are using a ticketing systems and a
versioning system, it is highly likely that you can generate from logs a compelling story that lets the
readers know more about the process in everyday life. In particular it would be interesting toButterfly
learn more about how many people performed the processes, and how the roles were distributed.

Such an approach would also benefit the software system comparison of systems that did not use
. Following the paradigm will take time and effort. Was a sufficient amount of timeButterfly Butterfly

available for the systems used for the overview?

All in all, I find this paper is a mixture between an opinion piece, a methods piece, and an overview piece.

Page 20 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.ebi.ac.uk/

F1000Research

All in all, I find this paper is a mixture between an opinion piece, a methods piece, and an overview piece.
Even if I do not agree with many claims made in the paper, I do think the question of whether scientific
software engineering (or even some scientific domains) need special software engineering processes is
an interesting one (albeit maybe not a new one).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 27 Jul 2014
, Julius-Maximilians-University Wurzburg, GermanyZeeshan Ahmed

Thank you so much for your time in reviewing our manuscript and giving valuable
suggestions, as we believe that following those our manuscript has been improve a level
ahead.

Referee Comment:

"Caveat: I lead a group that does scientific software development. I am interested in software
development both from the conceptual and the technical side. However, I would not be a serious
contender for a software engineering chair. As a consequence, I cannot claim full knowledge about
the state of the art of software engineering processes.
I agree to the following takeaways that I pull out of the paper:

If you know you are building an application which is for other people than yourself, it makes
sense to follow a software engineering process.
Think about maintainability and sustainability of your software.
Think about your users and write usable software.
Operate using cyclic refinement

We agree with you.

Referee Comment:

"The Butterfly model is an assembly of current software practices, emphasizing the needs of the
scientific software developer. I see the strength of the article in giving a concise overview of what a
scientific software developer should do."

Thanks, and we agree with you.

Referee Comment:

"However, I disagree with some statements made in the paper. Some of these statements relate
rather to anecdotal experience. This points to one of the weaknesses in the paper: There are
statements made with respect to the scientific software domain that are not marked as anecdotal,

but which are not backed by either empirical facts (e.g. questionnaires) or pointers to such facts in

Page 21 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

but which are not backed by either empirical facts (e.g. questionnaires) or pointers to such facts in
the literature."

Thank you for pointing this out - we respect your opinion.

Referee Comment:

"In more detail:
 Generally I agree, science is a fast-paced environment with rapidly changing requirements asking
for suitable software engineering processes."

True.

Referee Comment:

"Current software engineering and development
 The paper comprises a large number of citations. However, I do not agree with the insights taken
by the authors from that literature."

Thanks, and we respect your opinion.

Referee Comment:

"To my knowledge, the field of Software Engineering has realized that one key factors for success
is if software matches the needs of users."

True.

 Referee Comment:

"Agile Development follows the view that often-times, users don't even know what they need until
they are closely involved in development and see where their own ideas of their work (i.e. using the
program) could fail. This is why there is less of an initial requirements analysis, but there is a series
of sprints that each seek the implementation of features. Each feature implemented also influences

"the next stage of the requirements analysis.

We agree with you.

Referee Comment:

"The authors of this paper see the lack of quality software production as one of the weaknesses of
agile software engineering practices. However, Agile software engineering practices like XP and
Scrum emphasize the importance of testing and other practices intended to increase the software
quality. Such processes definitely do not disregard the production of quality production. So, to cut a
long story short, I do not agree with the impression created in the paper that agile processes lead
to muddle-through software that is unstable and short term due to the process."

We respect your opinion and want to explain here that the aim of this paper is not at all to
present Agile software engineering practices as muddle-through approaches, but to state

 that the “Butterfly” paradigm is more useful in some specific scenarios. Our aim is to

Page 22 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

 that the “Butterfly” paradigm is more useful in some specific scenarios. Our aim is to
generalize the basic software engineering concepts and stream line them in a way that
most of the people in Bioinformatics (non-informatics or with more biology background)
can easily adopt them. Hence, Agile software engineering practice is of course a viable
approach, and we have revised our paper and tried to elaborate the proposed new
approach in more detail, by giving a case study of a real time scientific solution’s
development and being careful not to misrepresent alternatives.

Referee Comment:

"You criticize the "ripples" through the program that come from changes. Ripples is the word
describing the needs for software changes due to one change elsewhere in the program e.g. the
change in the view necessitated by changing a model. The paper defining ripples is from 1978, and
you cite another paper about measuring ripples (2001). However to my knowledge, in agile
development, refactoring (improving code quality without changing its semantic meaning) is seen
as an effort that accompanies development, with a view on minimizing ripples."

Thanks for addressing “ripples”. We respect your opinion and you’re points are valid, in
particular regarding Agile development. However, our point is summarised here
(expanded on in revised text):

Adding new features to existing applications on a random basis in academia, can cause
unidentified and illogical errors to occur which can badly effect the stability of the
application.

For example - we have implemented some operations with mutual consent of all the team
members (including scientists, students, lab operators and computer scientists etc.) and
then when the application’s new version is completed, a new change comes from the
team. This requires the selective removal of implemented options with the addition of new
connecting features, giving a high probability that errors will occur.

Referee Comment:

"Unit, integration, acceptance tests are automated as far as possible so they can be run after
almost every change. Ongoing refactoring without being able to test easily if the program still works
is admittedly very hard. But tests well done can help with this. I think it would be useful for the
reader if you would outline how ripples are relevant in XP or Scrum."

We respect your opinion and you are absolutely right. So we now touch upon the
questions of ripples regarding XP and scrum. In our personal academic experience we
have noticed that especially in those cases when the developer is not the user of the real
time scientific software application (which will be used in the laboratories or in fields e.g.
our developed solutions DroLIGHT or Ant-App-DB), it is really hard to perform extensive
on-time testing (including Unit, integration, acceptance tests etc.).

One cannot receive the greatest benefit from testing in these situations. So when a
developer has to keep randomly and extensively changing things in an application without
on-time testing then there is a high probability of getting ripple effects.

Referee Comment:

Page 23 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

Referee Comment:

"The fact that user interaction is not written into the Scrum process does not mean that it's not on
the map. It is implicit in the requirements given by the users and users being part of the Agile team.
Typically, users that are part of the Agile team will accept or not the software created. User tests
can be part of the acceptance procedure, usability improvements can be features in a Scrum
process. While user experience is put to the forefront, the paper is quite sparse on the processes
and on citations regarding HCI.
You state: "Unfortunately HCI is the most ignored and unattended phase of scientific software
solution development". To my impression, this is not the state of the art any more, and the EBI
even have specialized UX personnel who can be called into projects."

You are absolutely right and we agree with you but this is more applicable when a
commercial application is developed or some specialised software engineering or related
group is producing the solution. We added HCI citations and mention the EBI approach as
an example of recent trends. Furthermore, it is true, HCI is extensively ignored when a
new scientific software solutions is developed in most of the scientific academia.

Along with the heavy scientific software solution development, we are also taking part in
analysing different scientific software applications for different purposes e.g.

Dandekar T, Fieselmann A, Saman M, and Zeeshan Ahmed. "Software Applications
toward Quantitative Metabolic Flux Analysis and Visualization", Briefings in
Bioinformatics, Oxford University Press, Oxford Journals; 15(1): 91-107, 2014.
Zeeshan Ahmed, Saman M, Dandekar T: Computational feature performance and
domain specific architecture evaluation of software applications towards metabolic
flux analysis. Recent Patents on Computer Science, 5(3):165-176, 2012.

We have analysed and used many different developed software applications (more than
35) and scripts. With reference to our published work, most of the time is consumed in
configuring the applications and understanding its features. If a person with an
Informatics background cannot easily configure and use Bioinformatics solutions then
how can a layman.

Moreover, when it comes to follow some already developed open source application, and
add some features to it - then if the pre-processed source code is quite large and without
any formal documentation, it can be a nightmare for Bioinformatics students.

Referee Comment:

"The authors then describe what they see as reasons for poor HCI properties of scientific software
and state that no-one uses software with bad HCI and state that software with bad HCI won't be
used. In my (anecdotal) experience, many software products start out as concrete problem solvers
for their authors, with bad HCI (for others, as the original author writes the software tuned to his/her
own needs) which then are successively refined to serve a larger public. Of course this process
bears its problems for outside users. However, such software gets adopted, because of word of
mouth."

We respect your opinion and agree with you, and have altered the statements accordingly

Page 24 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.ncbi.nlm.nih.gov/pubmed/23142828
http://www.ncbi.nlm.nih.gov/pubmed/23142828
http://eurekaselect.com/105399
http://eurekaselect.com/105399
http://eurekaselect.com/105399

F1000Research

We respect your opinion and agree with you, and have altered the statements accordingly
the revision.

Referee Comment:

"In the article, HCI "design patterns" are not laid out in sufficient detail."

Following your suggestion, we have revised it and have added some information about
HCI design patterns.

Referee Comment:

"The normal forms (1NF) etc. could be either treated more shortly or in more detail. The
enumerating of 1NF to 5NF and not saying what they signify is in my view not the right middle
ground."

Thanks for the opinion and following your suggestion, we have revised it.

Here our point was not to elaborate on database normalisation forms but emphasise its
use. In our previous experience (without denigrating any researcher or developer), we
have noticed that often, databases are created to store and manage data - but there are no
relationships between entities. This can have a negative impact - especially in search and
indexing operations. Moreover if data is well normalized then for large datasets, it will
expedite the processing speed in searching the elements.

Referee Comment:

"Real time examples" should be changed to "Real life examples"

Following your suggestion, we have revised the heading and the examples have been
augmented.

Referee Comment:

"I think these examples are an interesting overview, but to my feeling they are not addressing what
is needed to support the claims made about the Butterfly process. Rather than giving a list of
software artifacts that were created using the process I would prefer more information about the
outcome of the different phases. What were iterative improvements etc.? If you are using a
ticketing systems and a versioning system, it is highly likely that you can generate from logs a
compelling story that lets the readers know more about the Butterfly process in everyday life. In
particular it would be interesting to learn more about how many people performed the processes,
and how the roles were distributed."

We agree with you.

We have revised our paper and tried to elaborate the proposed approach in more detail,
by giving a case study of a real time scientific solution’s development. Questions such as
iterative improvement are answered by concrete examples.

Referee Comment:

Page 25 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

Referee Comment:

"Such an approach would also benefit the software system comparison of systems that did not use
Butterfly. Following the Butterfly paradigm will take time and effort. Was a sufficient amount of time
available for the systems used for the overview?"

You are absolutely right here that there must be some comparison drawn between the
software applications developed using Butterfly and without. The problem here is that our
proposed paradigm is quite new and this paper is the first public, methodological debate
on it. Moreover according to the scope of this manuscript, we have only presented our
approach with some examples but in future we will definitely try to come up with more
intensive comparisons. We are still working on the strengthening our approach. In
particular, for sustainable development of an application the Butterfly paradigm did boost
results - for instance developing metabolic modelling software (LS-MIDA, Isotopo,
LipidPRO including database applications and data management) or neurobiology
software (the running example of the paper, the DroLIGHT series of programs). We now
present the approach to others and note that we also have good results in developing the
first version of the App-Ant database, an application oriented behaviour monitoring
system, again with a planned longer term pipeline development.

Referee Comment:

"--- All in all, I find this paper is a mixture between an opinion piece, a methods piece, and an
overview piece. Even if I do not agree with many claims made in the paper, I do think the question
of whether scientific software engineering (or even some scientific domains) need special software
engineering processes is an interesting one (albeit maybe not a new one)."

Thank you so much for your valuable time in reading and evaluating our work and giving
your opinions to further improve it. We have tried to follow all your helpful suggestions
and those which are still left partly open due to the scope or limits of this paper will soon
be answered by further efforts. We have strengthened the methods section (see also our
response to Paul Vauterin) but kept our opinion and own approach as well as added more

 citations for an overview.

 No competing interests were disclosed.Competing Interests:

 12 May 2014Referee Report

doi:10.5256/f1000research.3945.r4632

 Paul Vauterin
Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

This paper addresses some major and often overlooked problems associated with software development
in an academic environment:

Lack of long-term vision due to short contract cycles.
Lack of attention to usability aspects such as well-thought user interfaces.
Lack of documentation, training material, and other follow-up.

I share the opinion of the authors that these elements pose a substantial threat to the quality of the

Page 26 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://dx.doi.org/10.5256/f1000research.3945.r4632

F1000Research

I share the opinion of the authors that these elements pose a substantial threat to the quality of the
scientific software products that are created in academic environment. Lots of valuable academic
software development projects fail because of one or more of these reasons, resulting in a waste of
efforts. Therefore, I think that papers focusing on solutions to overcome these issues certainly deserve a
place.

A substantial portion of the paper reads like an introduction to standard software engineering practices,
with a focus on scientific software development. It is generally well written, and does provide a useful
resource for academic software developers who are interested in learning more about this subject.

In addition, the authors present the “Butterfly model”, which they claim is a novel approach to software
engineering, specifically tailored towards scientific software development. It does contain some
interesting aspects, specifically the integrated attention to Human-Computer-Interaction (HCI), something
often vastly overlooked in academic software development. However, in my opinion the authors tend to
overstate the originality of this approach, as it mostly recuperates already known concepts and practices.
It does have the merit that it attempts to capture these concepts in a single framework focusing on
scientific software development in an academic environment.

Perhaps the major problem I have with the way this model is presented is that the authors do not clearly
mention its scope of application. Clearly, this model only makes sense for larger and longer-term
development projects, whereas lots of academic (bioinformatics) software projects are very small, simple
in structure, and short-lived by nature. Applying the “Butterfly model” or a similar rather heavyweight
approach to these projects could be a counter-productive and frustrating. In my opinion, the authors
missed the opportunity to stratify the preferred approach according to the size and complexity of the
project at hand. A consequent risk is that a reader might be confused and wrongly informed, thinking that
this approach should be used for every software development effort, regardless its size. I think that the
authors should properly address the scope of the model in the paper.

The authors provide a rather large set of software products they claim were developed with the Butterfly
model, but do not provide much detail about what this meant in practice. I believe that the paper would
vastly benefit if one specific case was picked, for which the practical approach of the Butterfly model
would be elaborated, and the benefits would be highlighted in a very concrete way. This would also help
to substantiate the author's claim about the novelty of the Butterfly model.

Further comments:

“Moreover the SDLCs famous for the quick development (Rapid Prototype Model, Agile
Development Model, Extreme Programming Model, Evolutionary Model, Code and Fix Model),
lack in quality software production”:

This is a rather controversial statement, as the list includes some generally respected models.
Since the paper does not provide further arguments to back this claim, I believe it should not be
made.

“Here, function requirements are those which can be implemented (based on existing resources,
time, budget, labor, tools, technologies and methodologies), and non-functional requirements are
those which cannot be implemented”:

I do not believe that this the standard definition of function(al) vs. non-functional requirements.

Functional requirements specify what the system should do (e.g. input-behaviour-output), whereas

Page 27 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

Functional requirements specify what the system should do (e.g. input-behaviour-output), whereas
non-functional requirements specify how it should do that (e.g. qualities such as speed,
robustness, scalability, maintainability, …).

“Real time examples using Butterfly”:

I think this should read “Real examples…”. Other ways, I can’t interpret this title.life

The link to the “ ” () wasIsotopo software http://www.tr34.uni-wuerzburg.de/computations/isotopo/
broken at the time this report was written. In an ironic way, this seems to illustrate one of the points
of the authors about the short-livedness of many academic software projects.

I believe that this article should be catalogued as “Methods Article” rather than “Research article”.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 27 Jul 2014
, Julius-Maximilians-University Wurzburg, GermanyZeeshan Ahmed

Thank you so much for your time in reviewing our manuscript and giving valuable
suggestions, which all helped to further improve our manuscript.

Referee Comment:

"This paper addresses some major and often overlooked problems associated with software
development in an academic environment:

Lack of long-term vision due to short contract cycles.
Lack of attention to usability aspects such as well-thought user interfaces.
Lack of documentation, training material, and other follow-up."

We agree with you.

 Referee Comment:

"I share the opinion of the authors that these elements pose a substantial threat to the quality of the
scientific software products that are created in academic environment. Lots of valuable academic
software development projects fail because of one or more of these reasons, resulting in a waste of
efforts. Therefore, I think that papers focusing on solutions to overcome these issues certainly
deserve a place."

Thanks.

 Referee Comment:

"A substantial portion of the paper reads like an introduction to standard software engineering
practices, with a focus on scientific software development. It is generally well written, and does

Page 28 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.tr34.uni-wuerzburg.de/computations/isotopo/

F1000Research

"A substantial portion of the paper reads like an introduction to standard software engineering
practices, with a focus on scientific software development. It is generally well written, and does
provide a useful resource for academic software developers who are interested in learning more
about this subject."

We agree with you, and thanks for appreciating these points.

Referee Comment:

"In addition, the authors present the “Butterfly model”, which they claim is a novel approach to
software engineering, specifically tailored towards scientific software development. It does contain
some interesting aspects, specifically the integrated attention to Human-Computer-Interaction
(HCI), something often vastly overlooked in academic software development. However, in my
opinion the authors tend to overstate the originality of this approach, as it mostly recuperates
already known concepts and practices. It does have the merit that it attempts to capture these
concepts in a single framework focusing on scientific software development in an academic
environment."

We agree with you, stressing important points of our paper.

Referee Comment:

"Perhaps the major problem I have with the way this model is presented is that the authors do not
clearly mention its scope of application. Clearly, this model only makes sense for larger and
longer-term development projects, whereas lots of academic (bioinformatics) software projects are
very small, simple in structure, and short-lived by nature. Applying the “Butterfly model” or a similar
rather heavyweight approach to these projects could be counter-productive and frustrating. In my
opinion, the authors missed the opportunity to stratify the preferred approach according to the size
and complexity of the project at hand. A consequent risk is that a reader might be confused and
wrongly informed, thinking that this approach should be used for every software development
effort, regardless its size. I think that the authors should properly address the scope of the model in
the paper.
The authors provide a rather large set of software products they claim were developed with the
Butterfly model, but do not provide much detail about what this meant in practice. I believe that the
paper would vastly benefit if one specific case was picked, for which the practical approach of the
Butterfly model would be elaborated, and the benefits would be highlighted in a very concrete way.
This would also help to substantiate the author's claim about the novelty of the Butterfly model."

Thanks for these well taken suggestions - we agree with you, and tried to incorporate
these. We have heavily revised the manuscript and now, along with some previously given

 examples, we have added a case study. Each layer of the Butterfly model is now explained
with this example of its implementation, explaining the way we have applied the concepts
in a real time scientific software solution’s development. We hope this can clarify most of
the ambiguous or unclear points including getting an idea on the specific merits and
originality as well as the stratification of the approach, e.g. how much effort should be
devoted at each step, looking at the concrete examples given.

Referee Comment:

"Further comments: “Moreover the SDLCs famous for the quick development (Rapid Prototype

Model, Agile Development Model, Extreme Programming Model, Evolutionary Model, Code and

Page 29 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

F1000Research

Model, Agile Development Model, Extreme Programming Model, Evolutionary Model, Code and
Fix Model), lack in quality software production”:
This is a rather controversial statement, as the list includes some generally respected models.
Since the paper does not provide further arguments to back this claim, I believe it should not be
made."

 Following your suggestion, we have revised this paragraph accordingly.

Referee Comment:

"“Here, function requirements are those which can be implemented (based on existing resources,
time, budget, labor, tools, technologies and methodologies), and non-functional requirements are
those which cannot be implemented”:
I do not believe that this the standard definition of function(al) vs. non-functional requirements.
Functional requirements specify what the system should do (e.g. input-behaviour-output), whereas
non-functional requirements specify how it should do that (e.g. qualities such as speed,
robustness, scalability, maintainability)."

We agree and thank you for the clarification, the paragraph has been corrected
accordingly.

Referee Comment:

 “Real time examples using Butterfly”:
 I think this should read “Real life examples…”. Other ways, I can’t interpret this title.

Following your suggestion, we have revised this sentence.

Referee Comment:

"The link to the “Isotopo software” (http://www.tr34.uni-wuerzburg.de/computations/isotopo/) was
broken at the time this report was written. In an ironic way, this seems to illustrate one of the points
of the authors about the short-livedness of many academic software projects.

We have revised and updated the web link.

Referee Comment:
"I believe that this article should be catalogued as “Methods Article” rather than “Research article”."

We agree with you, and we changed the category of the manuscript.

Thank you so much for your valuable time in reading and evaluating our work, giving your
advice to further improve it. We tried to follow your suggestions as much as possible in
the revision. Furthermore, all those questions which are still incompletely resolved due to

 the scope or limitations of this paper, we will work on further in the future.

 No competing interests were disclosed.Competing Interests:

Page 30 of 30

F1000Research 2014, 3:71 Last updated: 31 OCT 2014

http://www.tr34.uni-wuerzburg.de/computations/isotopo/

