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Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The
genome and proteome damage response pathways constitute the pillars of this interwoven ‘defensive’ network.
Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states,
including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage
response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer.
Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the
cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit
key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel
efficient therapeutic modalities.
© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction: homeostasis and stress response

The human body is continually exposed to a variety
of stressors, a generic/collective term describing exoge-
nous and/or endogenous noxious events/factors that dis-
rupt the steady state of the cell [1]. The cell’s tendency
to resist changes in order to maintain the status quo
is called homeostasis [derived from the Greek words
homeo (same) and histimi (standing up)] [2]. From a
thermodynamic point of view, living organisms are open
systems that are constantly pushed away from their equi-
librium. This measure of disorder or ataxia is termed
entropy, and represents ‘the general trend of the universe
towards death and disorder’, as stated by Newman [3].
When a stressor ‘enters the scene’, this delicate balance
between order and disorder tilts towards pathophysio-
logical states, if not dealt with efficiently (Figure 1A).
To preserve homeostasis and counteract such challenges,
cells have developed the capacity to mount a multiplic-
ity of stress responses (SRs) [4]. Remarkably, recon-
struction of the phylogeny of SRs makes it apparent
that many of the key players participating in SRs are

not only evolutionarily conserved, but still serve related
functions.

Both the nature and the end result of a SR are deter-
mined by the type (what/which), magnitude (how much)
and duration (how long) of the deleterious stimulus.
Additionally, the spatiotemporal parameters of where
(tissue organ/cellular/subcellular site) and when (young,
old, or stage of a pathophysiogical process – early or
late) the stressogenic event takes place constitute the
parameters that affect the final outcome in a particular
cellular context (Figure 1B). Although all biomolecules
are susceptible to damage, dysfunction of the genome
and protein machineries will mainly affect the cell’s
fate. Highly sophisticated and complex protein net-
works curate and maintain the integrity of the genome
and proteome, comprising the so-called DNA damage
response (DDR) and protein damage response (PDR)
pathways [5,6]. These damage/stress response path-
ways (SRPs) are hierarchically constructed and com-
posed of sensors, signalling cascades (transducers and
effectors), trafficking and repair modules, or destruc-
tion sites (Figure 1C). Each step/process is regulated by
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Figure 1. Overview of homeostatic mechanisms. (A) DDRs and PDRs. (B) Hallmarks of stressors. (C) SRP components. See supplementary
material for a detailed legend.

regulatory feedback loops that ensure an efficient and
fine-tuned response, which is gradually turned off once
the damage is repaired, or proceeds to cell death if the
damage is irreversible. However, things are not always
so clear. Depending on the SR parameters (Figure 1B),
there are variations in the way in which the cell orches-
trates its reaction (supplementary material, Figure S1).
For instance, a high level of damage in a low bioener-
getic state (deprivation of ATP resources) will trigger
necrosis instead of apoptosis, which is energy-based [7].
Necrosis predisposes to inflammation, whereas apop-
tosis is a ‘benign and inflammation-free’ process [8].
Then again, moderate DNA damage persisting because
of repair difficulties, in an energy-proficient environ-
ment, can trigger a prolonged cell cycle arrest called
senescence* (see the Glossary in the supplementary
material for further information on items marked with
an asterisk). Senescence has a bright side and a dark
side; it can operate as a tumor barrier, but can also
foster a protumorigenic environment by resulting in
the secretion of a broad spectrum of growth factors
and cytokines (SASP*) [9,10]. As senescent cells are
resistant to apoptosis, clearance by the immune system

will neutralize long-term harmful effects induced by
SASP [11]. Concurrently, as energy supplies are con-
sumed, autophagy* is induced to secure cellular fitness,
and restore metabolism and homeostasis [12,13]. In con-
trast, low levels (how much) of persistent (how long)
DNA damage may have a long-term beneficial effect,
termed hormesis [14], recalling Nietzsche’s quote ‘That
which does not kill us, makes us stronger.’

Moreover, RNAs have an active role in SRs. They are
considered to be the ancestral life-encoding molecules
[15], and are heterogeneous and versatile molecules that
regulate many cellular processes [16]. They include long
and short RNAs, as well as coding and non-coding
RNAs, with the last group being in the majority [17].
RNAs are critical in the genome reaction to SRs. They
are involved in development and normal cell physiology,
as well as in disease states, including cancer (supple-
mentary material, Table S1), and other SRs [16]. From
the pathologist’s point of view, the cellular reaction to
SRs at the RNA level is illustrated by the generation of
stress granules, which are dense cytosolic aggregations
lacking a membrane, composed of RNAs and proteins
[18]. These granules store and protect RNAs in stressed
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cells, and are mainly identified by use of the TIA-1* and
G3BP1* factors [19]. Detailed information on this field
is provided in other excellent reviews (see supplemen-
tary material, Table S1).

Notably, in metazoans, such as humans, the
response to stress is not limited to the cellular (local)
level, but, importantly, is also elicited intercellu-
larly/systematically (global). This intercellular response
is orchestrated mainly via the immune system. It is a
paracrine and circulation-based response that attracts
the diverse immune cell types at the sites of ‘damage’
in an attempt to ‘repair and clear it’. The immune
cells execute specific and highly contextualized tran-
scriptional programmes promoting immunity, while
maintaining homeostasis. Remarkably, >1600 genes
are involved in innate and adaptive immune responses
[20,21]. The immune system is a constantly evolv-
ing functional entity via mechanisms of adaptation,
expansion, maturation, and, ultimately, immunological
memory, and represents the cornerstone of stewardship
at the organismal level [22–24].

Consequently, the outcome of this ‘stressor versus
SR confrontation’ will be determined by the cellular,
microenvironmental and organismal context, leading
either to healing or to various pathophysiological
conditions. In most pathological situations, quantitative
and/or qualitative defects in the DDR and PDR pathways
are almost always observed (supplementary material,
Figure S1). In the case of DDR, the significance of such
alterations is underscored by the wide spectrum of clin-
ical manifestations that occur when its components are
defective (supplementary material, Table S2). Among
the most unfavourable consequences of DDR and PDR
deregulation is predisposition to cancer. Cancer is a
complex, heterogeneous disease with an adverse prog-
nosis if not diagnosed early. It evolves in a multistep
process, and each phenotypic stage reflects a particular
set of molecular alterations that provides a selective
advantage to the tumor cells carrying them. Depending
on cancer type, diverse molecular defects may occur,
although key events, such as p53 mutations or pRb
pathway inactivation, are common among malignancies
[25,26]. Deciphering these molecular dynamics will
help us to better understand the trails of carcinogenesis,
and will aid in the development of efficient therapeutic
strategies. Therefore, mutational signatures* identified
by analysing the genomes of various tumors represent
the ‘DNA repair traits’, and can help to unveil the repair
routes engaged during carcinogenesis, thus suggesting
potential therapeutic targets [27,28]. These ‘DNA repair
traits’ form part of a broader process termed genomic
instability.

DDR–PDR: an integrated genome–proteome
maintenance network

GI* is a feature that nearly all tumors share, and is
considered to be a hallmark of cancer [29]. By the term

GI, we refer to the high frequency of genetic alterations
within the genome of a cellular lineage. Genetic alter-
ations can range from single-nucleotide substitutions
(SNSs) (point mutations) to more complex quantita-
tive and/or qualitative changes such as chromosome
losses, gains, and/or rearrangements. GI can result from
malfunctions at various steps of the DNA cycle, from
replication to chromosome segregation [30,31]. The
corollary of GI is that the transcriptome and proteome
landscapes will progressively change, affecting the
functionality of the cell. To comprehend the nature of
this abnormal, albeit dynamic, process, we need to go
through the essential operational characteristics of the
DDR and PDR pathways and how they are physiolog-
ically wired and rewired during cancer development
(Figures 2–4).

Overview of the DNA damage response and repair
(DDR/R) network
As DNA is the repository of genetic information, the
ultimate goal of the DDR/R network is to preserve
its integrity. However, because of the large number of
DNA lesions induced in a cell every day, this task is
not always achieved without cost (Figure 2) [32,33].
DNA lesions can be divided in two broad categories:
those occurring on one strand of the double helix
(category-S lesions), such as modified bases, abasic
sites, helix-distorting base lesions, and single-strand
breaks; and those involving both strands [category-D
lesions: interstrand crosslinks and double-strand breaks
(DSBs)]. In certain cases, such as exposure to ionizing
radiation, category-S and/or category-D lesions coexist,
and, when they are in close vicinity, they are termed
clustered DNA lesions* [34]. As shown in Figure 2, the
type of DNA lesion and the cell-cycle phase largely dic-
tate the repair programme to be engaged. Whereas some
types of damage, such as O6-methylguanine, are sub-
jected to direct protein-mediated reversal (Figure 3A),
most are repaired by a series of catalytic events entail-
ing multiple proteins and generally including two steps:
(1) damage recognition by sensors; and (2) processing
and repair of the lesion (Figures 3B and 4). Depending
on which damage category is to be repaired, these steps
encompass unique characteristics.

Repairing category-S lesions
For category-S lesions, subsequent to recognition,
the following are required for processing and repair:
(1) incisions flanking the damage; (2) excision of the
damaged area; (3) filling of the gap by nucleotide
polymerization; and (4) ‘sealing’ the gap with lig-
ation (Figure 3). More specifically, the high-fidelity
(error-free) pathways base excision repair (BER)
[35,36] and nucleotide excision repair (NER) [37] deal
with single-base DNA defects and helix-disorting base
lesions, respectively, whereas repair of nucleotide mis-
incorporation is mediated by mismatch repair (MMR)
(Figure 3B) [38]. In the case of NER, the global release
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Figure 2. Synopsis of DNA damage type frequency and repair (A), DDR signalling cascades that activate the various checkpoints (B), and
DNA repair mechanisms (C). See supplementary material for a detailed legend.

of RNAPII waves from promoter proximal pausing
sites maximizes sensing and accelerates the repair
of category-S lesions equally well in genes with low
and high expression via transcription-coupled (TC)
NER, guaranteeing unbiased transcriptome surveillance
[39]. However, if BER and NER malfunction or are
overloaded by ‘fixing’ demands, then the translesion
synthesis (TLS) pathway, which is a low-fidelity repair
module (error-prone) pathway known as DNA-damage
tolerance (DDT), takes over (Figure 3C) [40]. To avoid
replication of damaged DNA that could lead to fork
collapse, DSB production, and genome destabilization,

cells opt to recruit TLS/DDT to bypass encountered
lesions and repair them at a later time [40]. Thus,
TLS/DDT is considered to be responsible for the
majority of mutagenic events, playing a central role
in carcinogenesis. Although the latter is an undesired
event, from a broader perspective it is a ‘cost’ that
the cell has to pay to avoid DSBs, thus preserving
double helix continuity [41,42]. In line with this, inhi-
bition of factors involved in category-S defect repair
processes has the potential to induce DSB formation
during replication, triggering RS* and death if the cell
is also deficient in components implicated in DSB
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Figure 3. Repair routes for category-S lesions (DDR surveillance). (A) Direct protein-mediated reversal. (B) BER and NER. (C) TLS repair. See
supplementary material for a detailed legend.

repair (Figure 3). One of the best examples supporting
this scenario is the enzyme poly(ADP-ribose) poly-
merase (PARP) [43]. PARP is a vital repair protein
involved in single-strand break (SSB) repair and BER.
PARP catalyses the synthesis of negatively charged
poly(ADP-ribose) chains by utilizing the respiratory
coenzyme NAD+, with release of nicotinamide. The
negative charge of the ADP-ribose polymers around
SSBs repels the positively charged histones of the
nucleosomes, opening chromatin and thus allow-
ing access to the repair machinery [8]. Targeting of
PARP has been shown to kill cancer cells deficient
in the homologous recombination factors breast can-
cer susceptibility gene 1 (BRCA1) and breast cancer
susceptibility gene 2 (BRCA2) (see below), paving
the way for the use of PARP inhibitors in clinical
practice [44,45].

Repairing category-D lesions
DSBs are category-D defects, and are considered to be
the most deleterious types of DNA damage. From their
frequency (Figure 2), it is apparent that the cell cannot
tolerate them, as repair of a single DSB requires >105

ATP molecules [46]. Such an energy investment calls
for a staggering level of cellular reorganization once
DSBs occur. With the exception of immune receptor

diversity [V(D)J and class switch (CS) recombination]
and chromosomal crossover during meiosis II of gamete
production, in which DSBs form part of physiological
programmes [47,48], the cellular reaction to DSBs
epitomizes an integrated cellular SR to ‘imminent
danger’. Once a DSB is formed, a cascade of biochem-
ical events take place within minutes in an effort to
efficiently ‘access, repair, and restore’ [49,50]. These
biochemical processes are characterized by extensive
PTMs* of the involved DDR proteins and chromatin
structure of the damaged area; these processes: (1) are
much faster chemical reactions than transcription; and
(2) form docking sites for the recruitment of repair
factors [51].

Two classes of DDR proteins are recruited at dam-
aged sites: those that present directly at DSBs (called
sensors* and mediators*), and those associated with
the DSB-flanking chromatin, altogether constituting
so-called DDR foci (Figure 4) [52]. Over time, the
DDR foci spread away from the DSB to distances up
to megabases in mammals, forming an amplification
mechanism recruiting signal transduction factors that
further amplify the signal with effectors that set the
cell in an ‘alarm’ state (Figure 4; DDR cascade). This
mechanism has, on the one hand, a local effect by
relaxing the chromatin and increasing the concentration
of repair factors at the damaged site, and, on the other
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Figure 4. Repairing category-D lesions (DDR surveillance). See supplementary material for a detailed legend.

hand, a systemic effect, termed checkpoint activation*,
that reduces the activity of CDKs* (Figure 2B) [5].
Notably, in certain cases and depending on the cellular
context, checkpoint activation, apart from the DDR
signalling cascade, also involves the parallel action

of other SR signalling routes (Figure 2), like the p38
mitogen-activated protein kinase (p38MAPK) pathway,
which coordinates several cellular functions [53]. The
endpoint of the SR signalling cascade is always the
cyclin–CDK complex* (Figure 2B). The cyclin–CDK
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complexes represent drivers of the cell cycle and, when
they are suppressed, the cell enters a state of arrest,
providing time for repair.

One of the earliest features that mark these DDR
foci is histone variant H2AX phosphorylation at serine
139, (also referred to as γH2AX), by ataxia telangiec-
tasia mutated (ATM) backed up by ataxia telangiecta-
sia and Rad3-related (ATR) and DNA-dependent protein
kinase, catalytic subunit (DNA-PK); all three kinases are
members of the phosphatidylinositol 3-kinase (PI3K)
family and key DDR signalling components (trans-
ducers) [51,54–57]. Subsequently, the DNA damage
mediator called mediator of DNA-damage checkpoint 1
(MDC1) attaches to γH2AX, acting as a platform for the
meiotic recombination 11 (MRE11)–Rad50–Nijmegen
breakage syndrome 1 (NBS1) (MRN) sensor complex
that activates ATM, thus forming an amplification loop
[58,59]. Concurrently, MRN complexes bind the DSB
avidly, playing a pivotal role in the initial processing
of the break, generating single-strand (ssDNA) DNA
3′-overhangs that are recognized by replication protein
A (RPA). This event brings into play the ATR trans-
ducer kinase, which, in cooperation with ATM, turns on
the downstream transducer* kinases checkpoint kinase
1 (Chk1) and checkpoint kinase 2 (Chk2) (Figure 4)
[60]. In concert, these kinases activate a key effector*
of the DDR pathway, namely p53 [61,62]. p53 is a tran-
scription factor that governs a complex SR programme
covering a bewildering range of biological functions,
explaining why p53 is frequently mutated in cancer
[63]. Activation of p53, mainly via PTMs, induces the
expression of numerous downstream effectors, includ-
ing the universal CDK inhibitor p21WAF1/Cip1, leading
to cell-cycle arrest. Concurrently, ATM imposes a tran-
scriptional silencing programme by shutting down both
RNA polymerase II* and RNA polymerase I*, thus sav-
ing the energy that transcription demands and prevent-
ing collision between transcription and repair (analysed
below in ‘Malfunction of endogenous operations as a
cause of DNA damage’) [64–66]. In parallel with this,
the cell gains time and reshuffles energy resources for
the repair machinery to ‘seal’ the DSBs, or it other-
wise proceeds to apoptosis or senescence, depending on
the extent of damage (Figure 4; supplementary material,
Figure S1). Concomitantly with these global effects,
repair is facilitated by extensive chromatin modifications
and remodelling* at the site of the DSB [67]. In brief,
SWI/SNF-dependent histone H2A.Z exchange for his-
tone H2A destabilizes the nucleosomes surrounding the
DSB. This nucleosome remodelling event exposes the
N-terminal tail of histone H4, which, in turn, is acety-
lated by TIP60 histone acetyltransferase, further relax-
ing chromatin and enabling access to downstream repair
factors [68].

The actual repair of the DSB lesion is carried out
by homologous recombination repair (HRR) and
non-homologous end joining (NHEJ) (Figure 4; sup-
plementary material, Figure S1) [69,70]. HRR is
considered to be an error-free repair system occurring
during the S and G2 cell-cycle phases, whereas NHEJ

is an error-prone repair pathway dealing mainly with
non-replication-associated DSBs, and represents the
predominant repair route that functions irrespective
of the cell cycle (Figure 2). HRR is initiated by the
binding of BRCA1 to the ubiquitin chain added by the
E3 ligases ring finger protein 8 (RNF8) and ring finger
protein 168 (RNF168) to the remodelled nucleosome
[49,71–73]. In this way the BASC* connects sensing
and signalling with the repair component BRCA2,
which controls the Rad51 recombinase that replaces
RPA. The BRCA2–Rad51 complex then invades the
homologous template and primes DNA synthesis,
copying and restoring the genetic information [74,75].
When the homologue donor strand is the sister chro-
matid, HRR is accurate. However, recombination may
take place across different genome regions, challeng-
ing previous notions concerning the error-free nature
of HRR (Figure 5) [76]. Hence, to secure sealing of
DSBs, various routes of HRR exist that may favour
inappropriate pairing. Alternatively, three critical
histone modifications, namely histone H4 lysine 20
dimethylation (H4K20me2) [catalysed sequentially by
methyltransferases SU(VAR)3-9H1 and SETD8], ubiq-
uitylation of histone H2A on lysine 15 (H2AK15ub)
(induced by the E3 ligase RNF168), and histone H3
lysine 79 methylation (H3K79me), are recognized by the
signalling mediator p53-binding protein 1 (53BP1) at
DSBs, promoting NHEJ [77–82]. Importantly, 53BP1
accumulation antagonizes BRCA1-mediated HRR in
favour of NHEJ (Figure 4) [83–85]. In NHEJ, the DSB
is sensed by the lupus Ku autoantigen protein p80
(Ku80)–lupus Ku autoantigen protein p70 (Ku70) het-
erodimer, which recruits and assembles the DNA–PK
complex, which, in turn, processes the DNA ends and
increases the recruitment of ligase IV/X-ray repair com-
plementing defective repair in Chinese hamster cells 4
(XRCC4), which carries out the rejoining reaction [74].
Although HRR is the favoured pathway to deal with
a DSB, ensuring DNA sequence fidelity, in the event
that HRR is non-functional the cell ‘prefers’ to follow
inappropriate repair routes to secure cell viability [86].
In this case, the faster kinetics of the Ku heterodimer
for DSBs compared to those of the HRR factors [87]
make the error-prone NHEJ (the repair pathway of
choice) operate even during S phase, with potential
unfavourable effects for the cell [86,88–90].

The second type of category-D defects comprises
DNA interstrand crosslinks (ICLs) that are generated
by a class of agents such as mitomycin C (MMC) and
diepoxybutane (DEB), or circulating metabolites such
as formaldehyde. ICLs are toxic, because the covalent
links that they form prevent DNA from unwinding,
thereby blocking replication and transcription, caus-
ing replication and transcription stress, respectively.
These lesions are fixed by the Fanconi anaemia (FA)
pathway, which is a replication-dependent repair
mechanism that appeared relatively late in evolu-
tion (Figure 4) [91]. It is considered to be the most
sophisticated repair route, enlisting modules of three
classic repair pathways, i.e. TLS, NER, and HRR.
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Figure 5. A model depicting how oncogene-induced RS aids the progressive formation of certain hallmarks of cancer (early events: steps
1–5), while paving the way for angiogenesis, evasion from immune surveillance, invasion, and metastasis (late events: step 6). See
supplementary material for a detailed legend.

The central components of the FA pathway are the 13
complementation groups identified so far, i.e. Fanconi
anaemia complementation group (FANC) A, FANCB,
FANCC, and FANCD1 (better known as BRCA2),
FANCD2, FANCE, FANCF, FANCG, FAQNCI, and
FANCJ [BRCA1-interacting protein C-terminal heli-
case 1 (BRIP1) or BTB domain and CNC homologue
1 (BACH1)], and FANCL, FANCM, and FANCN [also
termed partner and localizer of BRCA2 (PALB2)],
which are mutated with various frequencies in FA*

[92]. FANCA–FANCG, FANCC–FANCE–FANCF
and FANCB–FANCL–FAAP100 form the core com-
plex that is recruited at the damage site by FANCM and
FA-associated protein of 24 kDa (FAAP24), which sense
the stalled replication fork. The FA core complex* pos-
sesses ubiquitin ligase properties; it mono-ubiquitinates
FANCD2 and FANCI, which is regarded as the essential
step for FA activation, in analogy to proliferating
cell nuclear antigen (PCNA) ubiquitination-dependent
recruitment of TLS polymerases. Subsequently, DNA
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repair is organized by engaging ubiquitinated FANCD2
and FANCI with the downstream factors FANCD1
(BRCA2), the helicase FANCJ (BRIP1 or BACH1)
and BRCA2 (FANCD1)-interacting partner FANCN,
also termed PALB2 [93]. The subsequent repair steps
require coordinated and sequential activity of TLS,
NER and HR enzymes. Once the replication fork
moving from both directions stalls at the ICL, a dual
incision by endonucleases methyl methanesulphonate
and ultraviolet (UV)-sensitive clone 81 (MUS81) and
essential meiotic structure-specific endonuclease 1
(EME1) at the 3′-end of the lesion, and excision repair
cross-complementation group 1 (ERCC1) (XPF) at the
5′-end unhooks the ICL, which is then bypassed by a
TLS polymerase, probably Rev1 (polymerase ζ). NER
removes the bypassed crosslink and HRR repairs the
broken chromatid by using the newly repaired by TLS
sister as a template (Figure 4) [37,94].

Shutting off the DDR pathway
In a normal setting, DDR/R activation is coupled with
inactivation to allow a cell to complete its cycle. Feed-
back control of DDR fine-tunes the magnitude and
duration of the response, limiting aberrant DNA repair.
Turning off DDR/R is a more arcane process than
it was initially considered to be. Timely termination
of DDR is controlled in a spatiotemporal manner, by
different mechanisms acting in an overlapping man-
ner [95]. As activation of DDR/R signalling encom-
passes a series of PTMs, shutting it off calls for the
reverse procedure. To date, several protein phosphatases
(PPs) and deubiquitinating enzymes (DUBs) have been
recognized as critical players in DDR/R termination
(Figure 4). PP2A is among the best studied PPs; it
catalyses dephosphorylation of γH2AX [96]. PP2 cat-
alytic subunit-α (PP2A) inhibition results in persistent
γH2AX foci, compromising DDR/R and rendering cells
hypersensitive to DNA damage. Another DDR/R reg-
ulator is Wip1, which is involved in the dephosphory-
lation of multiple DDR components [97,98]. Notably,
Wip1 is a transcriptional target of p53, and is stimu-
lated after genotoxic stress [99]. Activation of Wip1
[100] facilitates p53 degradation by murine double
minute 2 (MDM2), forming a negative feedback loop
that allows termination of DDR. Conversely, overex-
pression of Wip1 has an oncogenic effect, signifying the
importance of fine-tuning for proper DDR/R operation
(Figure 4) [98,101]. Recruitment of ubiquitin-specific
peptidase (USP) 44 and USP11 at DSBs antagoniz-
ing RNF8/RNF168 mono-ubiquitination of histone H2A
[102,103] represents an example of how DUBs regu-
late DDR/R. Likewise, the activity of the deubiquitinat-
ing complex USP1–UAF1 over FANCD2 keeps the FA
pathway in check [104,105].

An additional way to terminate the activity of
phosphorylated checkpoint proteins is through pro-
teolytic degradation [106]. Phosphorylation marks
targets for proteolysis via the ubiquitin–proteasome
(UPP) pathway, pinpointing the interdependence of the

proteostasis and DDR/R networks [107]. This mecha-
nism is exemplified by SCFβTrcP, which acts as a switch
between checkpoint initiation and recovery [6]. Upon
DNA damage, phosphorylated CDC25A is recognized
by SCFβTrcP, promoting G2 arrest, whereas, when the
DNA damage is repaired, the same complex mediates
claspin* and Wee1* degradation, favouring checkpoint
recovery and progression to mitosis.

Malfunction of endogenous operations as a cause
of DNA damage
Further to various exogenous mutagenic agents (clas-
togens*), deregulation of endogenous processes can
create a genetic landscape prone to DSBs, adding an
extra level of pathophysiological complexity. As with
exogenous stimuli, a key aspect related to endogenous
operations is keeping CDK activity in check. In mam-
mals, several CDK–cyclin complexes are essential for
normal proliferation [108]. The significance of these
complexes is underscored by the fact that aberrant
CDK activity is a universal feature of human tumors.
Deranged function of cyclin–CDK complexes [108] is
counteracted by checkpoint activation, which is aimed
at preserving genome integrity (Figure 2) [5,109].
Distinct checkpoints halt the cell cycle at specific
phases and activate the DDR/R pathway, allowing time
for DNA repair completion before entry into mitosis
(Figure 4) [6]. If there is extensive DNA damage, and
depending on its severity, checkpoints activate apop-
tosis or senescence instead of cell-cycle resumption.
Thus, aberrant CDK activity exerts selective pres-
sure on the checkpoints, eventually breaching them,
allowing DNA damage accumulation and the emer-
gence of GI with pathological consequences [29,109],
making CDKs attractive targets for inhibition [108].
As another example, RT* is a highly regulated pro-
gramme giving rise to early, middle and late time zones,
and is strictly coordinated with transcription to avoid
replication–transcription collision [110,111]. If this
spatiotemporal process is altered by misregulation of
an RT-related gene [32] or a replication process step,
e.g. replication licensing* [112,113], the propensity to
DSB formation due to replication–transcription colli-
sion increases [114–116]. In this regard, low-density
replication–initiation may lead to unfinished replica-
tion, owing to the long distance between replication
forks, making breakage a probable event [117]. Com-
mon fragile sites (CFSs), which are late-replicating
areas of the genome with a paucity of replication
origins, are particularly vulnerable to RS, and are
at high risk of breaking [118]. Conversely, ill-timed
replication–initiation can cause re-replication, a form
of RS that leads to DSBs and GI, and, as discussed
later, is frequently observed in cancer from its earliest
stages. Overproduction of replication and/or transcrip-
tion intermediates that are normally formed in low
amounts can also pose a threat to genome integrity
(supplementary material, Figure S3A,B) [119,120].
A particular DNA:RNA hybrid termed the R-loop*
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(supplementary material, Figure S3B), identified
42 years ago [121], has drawn attention as a source of GI.
R-loops usually have short lifespans (∼20 min), as they
are efficiently removed under normal circumstances,
and play an important role in various processes such
as immunoglobulin class switches, and transcriptional
regulation and termination [122]. However, production
of R-loops resulting from various defects, such as lack
of RBPs*, which coat and protect nascent RNA from
illicit DNA hybridization [123], make these structures
‘hotspots’ for damage [124]. The thermodynamically
stable DNA:RNA hybrid structure of the R-loop can
impede proper completion of replication, leading to
replication fork stalling and collapse*, and DSB for-
mation, whereas the relatively unstable non-template
ssDNA of the R-loop can act as a substrate for deami-
nases. Another endogenous cause of DNA damage is an
inability of nucleotide biogenesis to cope with hyper-
proliferative states, resulting in replication fork deceler-
ation, which can lead to fork stalling and, if not reversed,
to fork collapse [125]. Exogenous supplementation with
nucleosides reverses these adverse effects [126].

A delicate operation that the cell has to carry out fol-
lowing stalling or collapse replication forks is repair and
replication restart (supplementary material, Figure S3C)
[127]. Depending on the duration (how long) of the
replication block, there are two options. (1) In short
replication blocks (2–4 h), restart is mediated by fork
remodelling of replication intermediate structures (fork
reversal: ‘chicken foot’). Replication fork reversal
is a mechanism in which a three-way junction at a
replication fork is converted to a four-way junction
by the annealing of the two newly replicated strands
into a regressed arm at the forks [128]. Regressed
fork restart requires restoration of the typical replica-
tion fork structure, and involves helicase (RECQ-1*,
WRN*, BLM* and DNA2 nuclease*) [128,129] and
translocase (SMARCAL1*, ZRANB3* and HLTF*)
activity in the resolution of these intermediates [129].
Whether these helicases recognize different struc-
tures or act on the same substrates is a matter of
investigation [130–132]. RAD51 recombinase has
been described as an essential factor in replication
fork restart [127], as RAD51-mediated strand inva-
sion rapidly and effectively leads to replication fork
remodelling [133]. As the regressed arm of a reversed
replication fork resembles a one-ended DSB, it has to
be protected from cleavage. RAD51-coated nucleofil-
aments protect nascent DNA from MRE11*-mediated
nucleolytic attack [134,135]. BRCA2 has been shown
to be dispensable for RAD51-mediated fork reversal
[136], but is crucial for the assembly of stable pro-
tective RAD51 nucleofilaments on regressed arms
[134,135,137,138]. MRE11-mediated degradation has
recently been shown to be one of the leading causes of
sensitivity to DNA-damaging agents in BRCA-deficient
cancers [139]. Recent studies have shed light on MRE11
recruitment at regressed forks by highlighting the role
of PTIP*, MLL4*, and RAD52* [136,139]. Recently,
a combination of electron microscopy with DNA fibre

analysis further defined the events in reversed fork
resection in BRCA-deficient tumors [140]. It was
shown that CtIP* initiates MRE-mediated degrada-
tion, which is then extended by EXO1* [140]. How
cells cope with extensive resection at the forks and
how different remodellers collaborate to catalyse fork
reversal is still poorly understood. (2) In long repli-
cation blocks (>24 h) resulting in fork collapse, new
origins are fired in an attempt to compensate, and repair
takes place by remodelling, utilizing structure-specific
endonuclease complexes* [30,115] that generate DSBs,
promoting Rad51-dependent homologous recombina-
tion (Figure 4). The significance of the above factors
is underscored by the severity of the clinical mani-
festations presented in disorders such as Bloom* and
Werner* syndromes, in which corresponding helicases
are mutated [141,142].

Chromatin structure, DNA damage, and DDR/R
Remarkably, susceptibility to DNA damage is not
the same across the genome (where), as chromatin
compaction seems to provide a ‘shield’ against DNA
insults, with heterochromatin (compact chromatin)
providing significant protection against breaks, but
euchromatin (open chromatin), which is a relaxed and
transcriptionally active conformation, being vulnerable
to damage [143]. A feature of heterochromatin is its
high level of enrichment in repetitive DNA sequences*
and its concentration in pericentromeric and telomeric
genomic regions. Given that repetitive sequences rep-
resent recombination ‘hotspots’, and are thus prone
to DSBs, heterochromatin formation at these sites has
evolved as a protective mechanism preventing illegiti-
mate recombination events [144]. A specialized type of
compact chromatin is present at telomeres* [145,146].
Telomeres resemble staggered DSBs, and, if not pro-
tected by the shelterin complex*, will be recognized
as a damaged area, eliciting a DDR with detrimental
effects (see ‘Monitoring mitosis: the last checkpoint’
below) [147,148].

However, a disadvantage of compaction is that it is
refractory to repair, as demonstrated by the inability to
expand γH2AX [149]. Studies in yeast and mammals
showed fewer γH2AX foci at DSBs in heterochromatin
than in euchromatin [150]. When a break occurs in
euchromatin, a complex of heterochromatin-associated
proteins*, including KRAB-associated protein 1
(KAP1), heterochromatin protein 1 (HP1), and
SU(VAR)3-9H1, assist in trimethylation of H3K9,
which is a repressive histone PTM. This reaction facil-
itates an amplification process that spreads over many
kilobases from the damage [116]. Activated TIP60 (see
above) binds to H3K9me3, leading to ATM activation
and H4 acetylation, promoting chromatin relaxation.
In turn, ATM phosphorylates KAP1, releasing it from
chromatin and enhancing access to the damaged site. It
appears, that following DNA damage, there is a transient
shift in euchromatin, like the ‘squeezing phase of an
accordion’, to increase compaction to recruit TIP60 and
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ATM [68]. Compaction can also function as a regulatory
mechanism for uncontrolled DSB-end resection and
HR, as we recently showed, via retention of KAP1
and HP1 at the damaged site by the histone chaperone
SET/TAF-Ib/I2PP2A/INHAT [151]. In contrast, KAP1
undergoes localized phosphorylation by ATM in a
53BP1-dependent manner in heterochromatin, dispers-
ing the nucleosome remodeller* CHD3.1, leading to
focal relaxation, unlike the diffused relaxation observed
in euchromatin [152–154]. The difference in DDR
initiation between euchromatin and heterochromatin
influences the choice of repair, with transcription-
ally active euchromatin regions preferring HRR, and
compacted chromatin favouring NHEJ [143]. Another
repetitive area that is influenced by chromatin com-
paction, and that is of immense importance for genome
and proteome integrity, is composed of the ribosomal
DNA (rDNA) clusters, located in the nucleolus.

The nucleolus at the crossroad of stress response
The nucleolus, which is the largest structure in the
nucleus, is responsible for rRNA production and
ribosomal assembly, as reflected by its characteristic
tripartite spatial organization* (supplementary mate-
rial, Figure S4A) [155,156]. To cope with increased
protein production, rDNA is organized into clusters
of gene repeats around areas termed NORs* [157].
Depending on the demands of protein synthesis, an
additional regulation step occurs, which involves
adjustment of the number of ‘active’ repeats and
alteration of their transcriptional rates [158]. RNA
polymerase I transcribes rDNA into rRNA, forming
the framework of the ribosome. rRNA constitutes
80% of the total cellular RNA, making rDNA the
highest-transcribed locus of the genome. Obviously, the
propensity for replication–transcription collisions and
R-loop formation is increased in rDNA loci, especially
under conditions of oncogene-induced RS [159]. As
a ‘precautionary measure’, the RFB* (supplementary
material, Figure S4A), which is an intergenic rDNA
site, is recognized as a site coordinating replication and
transcription [160], whereas heterochromatin associated
with the rDNA clusters acts as a ‘buffer zone’ against
genotoxic conditions [161–163]. Regardless of cellular
demands, not all rDNA sequences are transcriptionally
active, and a fraction of nucleolar rDNA is always
silent (supplementary material, Figure S4A). The
stability of the repetitive and recombinogenic-prone
rDNA sequences requires chromatin silencing com-
plexes [162,164,165]. The fraction of ‘active’ versus
‘silent’ rDNA is regulated by the rDNA remodelling
complexes NoRC*, eNoSC*, and NuRD*, which
limit accessibility to the recombinogenic machinery
[166–169]. Disruption of rDNA-associated silenc-
ing proteins within the inner nuclear membrane*
disturbs the nucleolus–nucleoplasm boundary, induces
the formation of recombination foci, and destabi-
lizes the repeats [170,171]. Finally, almost 70% of
nucleolar proteins have functions unrelated to ribosome

biogenesis, including triggering SR pathways. A char-
acteristic example is p53 activation following nucleolar
segregation (ribosomal stress*) upon DNA damage
or transcription inhibition (supplementary material,
Figure S4A) [172–174].

Surveillance and maintenance of mitochondrial
genome integrity
Mitochondria are the ‘energy factories’ of cells, and
they also regulate other vital functions, including apop-
tosis. The symbiotic relationship between mitochondria
and eukaryotic cells started more than a billion years
ago, leading to synchronized action between the two
genomes, with most proteins involved in mitochondrial
DNA (mtDNA) metabolism being encoded by nuclear
DNA [175]. Conversely, proteins participating in oxida-
tive phosphorylation are encoded by mtDNA, making
mtDNA integrity of paramount importance for cell
homeostasis [176]. mtDNA is more prone to damage
than nuclear DNA, with a 10–20-fold higher mutation
rate, possibly because of proximity to reactive oxygen
species (ROS) production (supplementary material,
Figure S4B).

mtDNA is an approximately 16-kb closed circular
DNA containing a specific regulatory region, termed
the D-loop*, harbouring initiation sites for both repli-
cation and transcription. The mitochondrion-specific
polymerase-γ (pol-γ) holoenzyme is responsible for
replication, with >200 mutations in POLG having been
linked to mitochondrial diseases [177]. In contrast to
the nuclear genome, which is organized into nucleo-
somes, mtDNA lacks nucleosomes and is arranged as
protein–DNA complexes known as nucleoids. Interest-
ingly, super-resolution microscopy has revealed that the
mtDNA packaging density is higher than that of nuclear
chromatin, forming a ‘shield’ against mutagenesis [178].
Interestingly, Twinkle helicase is essential for mtDNA
maintenance and a key regulator of mtDNA copy num-
ber by linking the mitochondrial replication machinery
with the cytoplasmic dNTP pool [179]. As mitochondria
are the largest consumers of dNTPs in the cell, con-
trolling mtDNA copy number is apparently essential for
meeting cellular energy requirements [180].

Oxidative damage is a common mechanism of
mitochondrial injury. Byproducts of oxidative phos-
phorylation are ROS, because, during the series of
redox reactions, a small percentage of electrons leak
directly to oxygen. Thus, 1–2% of the oxygen con-
sumed within the cell is released from mitochondria
as ROS. Under normal conditions, the amount of ROS
produced is relatively low and essential for proper
intracellular signalling, metabolism, and responses to
pathogens; however, during periods of increased and/or
prolonged ROS production, extensive and persistent
mtDNA damage may occur (supplementary material,
Figure S4B) [181]. BER is the predominant DNA
repair pathway for category-S lesions in mitochondria,
whereas they lack effective MMR and are deficient
in NER. Adducts requiring NER for their removal
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will accumulate, resulting in mtDNA mutations and,
ultimately, mtDNA degradation [182]. Importantly,
pol-γ can bypass some lesions by TLS. Regarding TLS,
primase-polymerase (PrimPol), which is an archaic
enzyme with dual primase and polymerase activities,
identified in human mitochondria, has the unique
feature of de novo DNA synthesis, and the ability to
tolerate lesions such as 8-oxoguanine (8-oxoG) and
apurinic/apyrimidinic or abasic (AP) sites [183]. Along
the same line, Pif1, a 5′–3′ DNA helicase that is essen-
tial for mtDNA replication [184], is involved in the
repair of many types of mtDNA damage, including the
unwinding of genotoxic G-quadruplex DNA* [183].
For category-D lesions, the prevailing view is that both
HR and NHEJ are active in mitochondria, although
recent evidence suggests that NHEJ is replaced by
microhomology-mediated end-joining (MMEJ), also
known as alternative non-homologous end joining
(alt-NHEJ) (Figure 4) [185].

Depending on the type and amount of damage, inef-
ficient mtDNA repair activates either mitochondrial
fusion* or fission* [186]. Fusion rearranges the matrix
content of a damaged mitochondrion with a healthy
one; this event results in diluting the damage that relates
e.g. to unfolded proteome or to mutated DNA. On
the other hand, fission partitions damaged material to
daughter organelles. If the above fail, mitophagy* or
apoptosis will take place, determined by the extent of
damage (supplementary material, Figure S4B) [187].
Molecular players dictating the outcome include ATM,
p53, and Sirt1* [188]. Sirt1 is a master regulator inhibit-
ing p53-mediated apoptosis, and, by interacting with
AMPK*, directs the SR to mitophagy. Concurrently,
by deacetylating PGC1-a*, it stimulates mitochondrial
biogenesis to compensate for losses.

Monitoring mitosis: the last checkpoint
The cell’s final level of surveillance occurs during
mitosis, as its genetic material must be accurately and
equally transferred to offspring. Mitosis is an orches-
trated process leading to aneuploidy, CIN* or death
if deregulated (supplementary material, Figure S5)
[189–191]. Owing to its complexity and short duration
(∼1 h), multiple control checkpoints ensure the fidelity
of genome inheritance [192,193]. Identified check-
points occur: (1) between prophase and prometaphase,
controlled by checkpoint with forkhead and ring fin-
ger domain (CHFR), which is implicated in sensing
microtubule poisons [194,195]; (2) during metaphase,
governed by the SAC* [196]; and (3) in telophase,
regulated by the cytokinesis or ‘abscission’ checkpoint*
(AC), which is Aurora-B*-dependent (supplementary
material, Figure S5) [197–199].

The SAC is the most important surveillance mecha-
nism, monitoring kinetochore–microtubule attachment,
and ensuring correct alignment of chromosome pairs
before segregation [200–202]. During metaphase, the
unattached kinetochores recruit the SAC machinery*,
which sequesters CDC20* to block activation of the

APC/C* [203]. Proper chromosome alignment results
in SAC silencing, allowing activation of APC/C, which,
in turn, targets securin* and cyclin-B* for degradation
[204]. Destruction of securin releases separase*, which
cleaves the cohesin rings*, promoting sister chromatid
separation (supplementary material, Figure S5). The
significance of SAC was demonstrated in mouse models
showing that complete loss of these genes results in early
embryonic lethality, whereas heterozygous and hypo-
morphic* mice are viable and fertile despite showing
increased levels of aneuploidy. Although aneuploidy is
evident in these mice, malignant transformation is a rare
and late event [189], questioning whether aneuploidy as
such is causative for cancer development [205]. Differ-
ences in cancer incidence among individuals with iden-
tical aneuploidy, as well as between common genetic
disorders such as trisomies 13 [206], 18 [207] and 21
[208], suggest that additional hits are required for cancer
to evolve. Moreover, extensive analysis in common spo-
radic cancers with aneuploidy demonstrated the low fre-
quency of mutations in caretaker genes*, including SAC
genes, arguing against their role in promoting cancer
[29]. In this regard, the role of centrosome* aberrations
in aneuploidy and CIN [189,209,210] requires more
clarification, especially in view of emerging concepts
such as ‘centrosome inactivation checkpoint’ [211] that
link components of the DDR/R machinery with centro-
some ‘status’ and ‘mitotic catastrophe’* (supplementary
material, Figure S5) [211,212]. Likewise, how delayed
abscission affects chromosome homeostasis requires
further investigation [199]. Unexpectedly, overexpres-
sion of SAC genes is a more frequent event in human
cancer [29]. Conditional Mad2 upregulation predis-
poses mice to a wide range of early-onset, aneuploid
malignant tumors [213]. The main difference from hap-
losufficienct Mad2 mice, which develop only benign
tumors [189,214], is the occurrence of extensive struc-
tural aberrations, implying that the structural branch of
CIN, involving DSBs, lies behind cancer progression
[109,215,216] (see the next section). Notably, p53 and
pRb inactivation lead to Mad2 overexpression, CIN, and
a malignant phenotype encompassing highly aggres-
sive features [217–219]. These data corroborate previ-
ous reports linking p53/pRb expression aberrations with
aneuploidy and CIN in common human malignancies
[220,221]. Overall, these observations support the idea
that deregulation of critical checkpoints impinges on
mitotic surveillance and fidelity, determining the fate of
daughter cells.

The significance of engaging the repair machinery in
the correct context (where and/or when) is vital. During
interphase, DNA repair is essential to maintain genome
stability, whereas in mitosis it may be deleterious
[222]. Induction of DSBs in mitosis leads to a ‘muted’,
non-classic DDR (supplementary material, Figure S5).
Mitotic DSBs are marked by MRN, MDC1 and γH2AX
foci in a PI3K-dependent manner, whereas RNF8 and
RNF168 localization with mitotic γH2AX does not take
place, excluding the recruitment of 53BP1 and BRCA1
[223], thus blocking NHEJ and HRR, respectively
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[224]. By the suppression of DRR/R in mitosis,
telomere–telomere fusion is avoided. In metaphase, the
shelterin complex aquires a loose configuration, termed
telomere dispersion, promoting condensin loading
and chromosome segregation [225], that concurrently
renders chromosomes prone to fusions favouring struc-
tural CIN [222]. Notably, restoration of RNF8 and
53BP1 accumulation at mitotic DSB sites results in
telomere–telomere end-to-end fusion and aneuploidy,
especially in the presence of exogenous genotoxic stress
[226]. Likewise, mitotic DDR/R activation can lead to
deleterious chromosomal alterations [224]. In particu-
lar, instead of suppressing Plk1*, as it does in G2 phase
[227–229], it upregulates Plk1 activity and, along with
Aurora-A*, it increases kinetochore*–microtubule sta-
bility, favouring merotelic attachments*, lagging chro-
mosomes*, micronucleus formation*, and chromoth-
ripsis* (supplementary material, Figure S5) [230–233].

The outcome of mitotic DDR/R activation depends
on the underlying stress parameters (Figure 1B). For
instance, cells with DNA damage but intact p53 (cellular
context) escape or slip out from mitotic arrest and suc-
cumb to G1 arrest, whereas p53-deficient cells continue
to cycle and become aneuploid [234,235]. Likewise, in
cells with low DNA damage levels (how much), mitotic
DDR/R marks DSBs (memory signals) for repair in the
subsequent G1 phase [236–238], resulting in a similar
fate to that of cells with DNA damage and signalling
effects occurring in earlier cell-cycle phases [239–241].
In contrast, excessive DNA damage (how much) acti-
vates the SAC, leading to mitotic arrest [237]. Arrested
cells may either die by mitotic catastrophe* or may exit
mitosis prematurely without proper chromosome segre-
gation and cytokinesis, through a process termed mitotic
slippage* (supplementary material, Figure S5) [242].
The destiny of these cells is not clear. They can follow
the road to cancer, acquire a senescent phenotype, or
die (supplementary material, Figure S5). Altogether,
rewiring DSB repair to a ‘repressive mode’ during
mitosis has advantages and disadvantages. Specifically,
as execution of classic DDR/R is an ATP-consuming
process, it possibly saves energy for the demanding
process of mitosis [243]; also, it favours rapid execution
of mitosis at the expense of increased sensitivity to
DNA-damaging stressors; and it protects against struc-
tural alterations. On the other hand it is prone to causing
numerical CIN.

Overview of the proteostasis network (PN):
connecting the PDR with DDR

Downstream of the critical, but ‘lifeless’, genetic infor-
mation, there is a world of immense complexity, namely
the proteome. The entry point to this world occurs via
protein synthesis, which takes place in the cytosol and
endoplasmic reticulum (ER) by a complicated machine
(i.e. the ribosome) that (1) decodes the information
stored in nucleic acids, and (2) shifts the chemistry from
nucleic acids to amino acids.

Overview of the PN: links with DDR/R
Human cells express millions of polypeptides of >10
000 different species [244] that fold into well-defined
three-dimensional structures that form parts of protein
machines. Because the average protein and proteome
sizes have increased significantly during evolution
[245], and the consequences of an unstable proteome can
be catastrophic [246,247], cells have evolved a modular,
but integrated, system that ensures general proteome
quality control, called the PN [248]. The PN performs
the daunting task of curating polypeptide synthesis, fold-
ing, conformational maintenance, sorting–trafficking,
and degradation; it also responds to conditions of pro-
teotoxic stress by addressing the triage decision of fold,
hold, or degrade (supplementary material, Figure S6A).
The PN comprises ∼2000 chaperones, folding enzymes,
trafficking modules, and degradation components, and
it is not surprising that proteome stability maintenance
consumes the majority of cellular ATP [249,250].
Because of the wiring and interdependence of various
PN branches, defects in one module trigger a breakdown
of the entire network; these effects are evident during
ageing and in age-related diseases such as cancer [251].

The ‘chaperome’ consists of hundreds of cytosolic
and organelle-specific chaperones that, along with their
associated factors, bind to a wide range of distinct sub-
strates [252,253]. Chaperones* are involved in proper
polypeptide folding, unfolding, and remodelling, and
in the assembly of protein machines or the delivery
of damaged polypeptides to degradation machineries
(supplementary material, Figure S6). Nuclear chaper-
ones provide examples demonstrating how components
of the PN assist the DDR/R machinery, unveiling a new
role of proteome quality control in preserving genomic
stability (supplementary material, Figure S6A). Specif-
ically, nuclear chaperones orchestrate the delivery of
newly produced histones to DNA, and also facilitate his-
tone turnover [68,254]. Hence, reassembly of chromatin
upon DNA repair is highly dependent on chaperones
[51,255].

When folding of a mutated or a post-translationally
irreversibly modified polypeptide fails, cellular pro-
teases take over. The two main branches of this part
of the PN are the UPP and autophagy–lysosome
(ALP) pathways, comprising ∼850 and ∼500 different
components, respectively (supplementary material,
Figure S6A) [256–260]. The UPP pathway degrades
short-lived poly-ubiquitinated normal proteins and
non-functional or misfolded polypeptides and is
composed of ubiquitin-conjugating enzymes and
the 26S (or 20S) proteasome* [261,262]. The ubiq-
uitin ligase family confers substrate specificity and
comprises almost 600 genes in humans [257,263].
The UPP pathway is central to protein synthesis
quality control, as non-functional newly synthesized
polypeptides are targeted for degradation to cytosolic or
ER-bound proteasomes [ER-associated protein degra-
dation (ERAD)] [264]. Proteasomes are also located
in the outer mitochondrial membrane, and perform
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outer mitochondrial membrane-associated degradation
(OMMAD) during activation of the mitochondrial
unfolded protein response (UPRMT) [265]. The UPP
pathway is also involved in the degradation of mito-
chondrial fusion/fission proteins, and thus, apart from
genome and proteome stability, PN modules are also
critical for mitostasis* [186]. It is not thus surprising
that ubiquitin ligases are frequently deregulated in
cancer [262].

The ALP pathway is an intracellular self-catabolic
process that comprises three forms in mammalian
cells: (1) chaperone-mediated autophagy (CMA);
(2) microautophagy; and (3) macroautophagy
[12,266–268]. In CMA, damaged polypeptides are
degraded in lysosomes after being recognized by
chaperones, which bind to the lysosomal LAMP2A
receptor [269]; CMA offers an alternative to the
UPP pathway for degradation of misfolded proteins.
Microautophagy is a less well understood process
involving engulfment of small cytosolic regions by the
lysosomal membrane. Finally, in macroautophagy, the
Atg* proteins form autophagosomes that capture lipids,
proteins, or even organelles, transferring them to lyso-
somes for degradation [270]. The ALP pathway also
degrades ubiquitinated substrates (including protein
aggregates) via the action of microtubule-associated
histone deacetylase 6 (HDAC6) and sequestrome-1
(p62/SQSTM1) [271].

Genome damage results in the activation of pro-
teostatic modules, and crosstalk between the DDR/R
machinery and autophagy has been established (supple-
mentary material, Figure S6A) [272–274]. Prominent
connections include those between ATM and PARP1
with AMPK*, one of the central metabolic regu-
lators in eukaryotes. AMPK is activated when the
AMP/ATP ratio is high, setting in motion autophagic
flux [275–277]. Likewise, p53 has been shown to
upregulate components of autophagy, thus forming an
amplification loop [278]. Autophagy modulates DNA
repair by degrading (among others) KAP1, HP1, and
sequestrome-1 (p62/SQSTM1), which hinder BRCA1
and Rad51 accessibility to DSB sites, promoting suc-
cessful completion of HRR [279]. Similarly, the UPP
pathway and ubiquitylation are integral parts of the
DDR pathway, as ubiquitylation of DDR factors has
emerged as a switch that initiates signalling cascades
and also as a proteolytic signal coordinating recruitment
and disassembly of these proteins [280]. Furthermore,
the proteasome is involved in the degradation of DNA
repair proteins following completion of the process
(see above). Given the extensive ongoing damage and
genome remodelling during cancer, it is not surprising
that proteostatic machineries are deregulated during
oncogenic transformation (supplementary material,
Figure S6B) [251,262,281]. However, the link between
DDR/R and the PN or the PDR warrants further investi-
gation, especially during carcinogenesis (supplementary
material, Figure S6C), as this interrelationship is not
straightforward. Specifically, recent in vivo data indi-
cate an inverse relationship in precancerous lesions,

whereas, at the cancerous stage, PN modules and the
DDR operate in parallel [272,274,281].

PDR signalling
Polypeptides are post-translationally modified either by
PTMs, which are normal regulatory processes and do
not increase proteome instability, or by non-enzymatic
protein modifications (NEPMs), which are stochastic
and disrupt their structure and function [282]. Unfolded
or damaged proteome components impinge on the
PN, triggering a response pathway called PDR (see
Introduction) (supplementary material, Figure S6A).
The PDR branches are coordinated by a series of
complementary homeostatic mechanisms, which sense
and respond to imbalances in proteostasis and/or
to increased amounts of stressors. These signalling
cascades, namely the heat shock response, hypoxia
response, oxidative stress response, unfolded pro-
tein response in the ER (UPRER)*, and UPRMT*,
are modulated by transcription factors that sense
stress and mobilize genomic–cytoprotective responses
[274,281,283]. These responses are also coupled with
a decrease in protein synthesis, thereby reducing the
influx of newly synthesized proteins and/or allowing
preferential translation of stress-responsive mRNAs
until proteome stability restoration [284–286].

Proteome instability is mainly counteracted by heat
shock factor 1 (Hsf1), which is maintained in an inert
state by chaperone binding [287]. Upon heat or other
types of stress that destabilize the proteome, these
chaperones are titrated away from Hsf1 by binding to
denatured proteins, and Hsf1 thus translocates to the
nucleus, inducing transcription of a wide range of pro-
teostatic modules [288,289]. Similarly, chaperones that
are localized in the ER guide the folding of membrane
or secreted proteins. Furthermore, the ER has its own
stress response pathway (UPRER) that is activated in
cases of increased flux or heavy secretory loads, or after
heat shock that increases protein misfolding [290]. The
UPRER attenuates de novo protein synthesis and induces
the expression of chaperones to aid proper polypep-
tide folding, or, if organelle proteostasis cannot be
restored, triggers apoptosis. Likewise, the UPRMT main-
tains mitochondrial functional integrity by increasing
the rates of polypeptide folding and degradation through
the transcriptional activation of specific mitochondrial
chaperones and proteases [291–293]. Additionally, the
UPRMT induces OMMAD, mitophagy, or apoptosis if
disruption of mitostasis is irreversible [293,294]. An
SR of paramount importance for cellular survival is
triggered by hypoxia and is regulated by the Hif-1
transcription factor [295]. Under normoxic conditions,
Hif-1 is targeted for proteosomal degradation by the
VHL E3-ubiquitin ligase. In hypoxic conditions, Hif-1
is protected, activating a transcriptional programme that
includes (among other things) the upregulation of chap-
erones [296]. Finally, the Nrf2 signalling pathway plays
a crucial role in defence against oxidative and/or xeno-
biotic damage by activating [after binding to antioxidant
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response elements (AREs)] a broad range of detoxifica-
tion enzymes [297,298] and by inducing UPP and ALP
pathway genes [299,300].

The PDR and DDR/R: an intermingled fate
Unmitigated stress will eventually exceed the buffer-
ing capacity of the PN, leading to proteome instability
(supplementary material, Figure S6B) [301], which is a
daunting prospect. As the DDR/R machinery includes
complex protein machines, the faithful execution of
the triage ‘access–repair–restore’ is obviously depen-
dent on proteome stability. Failure of the PDR path-
way to cope with proteotoxic stress poses a risk for
genomic integrity. Conversely, constitutive DDR/R acti-
vation will eventually wear out the proteome because of
defective transcription and reduced polypeptide quality
(supplementary material, Figure S6B). Suppressed ribo-
somal biogenesis during DNA damage is an example
of how activation of DDR/R may affect proteostasis
[302]. Furthermore, sustained DNA damage can com-
promise DDR/R efficiency, increasing the production
of mutated polypeptides and proteome instability. Sub-
sequently, a vicious cycle of low-fidelity DDR/R–PN
activity develops that will trigger pathophysiological
states, including carcinogenesis [303]. The most char-
acteristic paradigm of a ‘saturated’ PDR linked with
aberrant DDR activation is accumulation of lipofuscin
during oncogene-induced senescence, with detrimental
effects for the cell (see the next section; supplementary
material, Figure S6).

Oncogene-induced DNA damage and cancer
development; ‘a model to rule them all?’

In a seminal paper in the early 1990s, Fearon and
Vogelstein [304] proposed a genetic model for can-
cer development, using colorectal cancer as the basis
of their study. They suggested that salient molecular
alterations characterize each morphological stage of
colorectal cancer progression, from the early small
adenomas (benign phase) to the large metastatic carci-
nomas (malignant phase). Molecular changes increase
from the benign to the malignant phase, and include
mutational activation of oncogenes* coupled with inac-
tivation of tumor suppressors* [305]. Since then, the
general features of this model have been applied to other
epithelial neoplasms [306]. The idea of analysing the
molecular traits of each developmental stage of cancer
has revolutionized the field and played a major role in
the emergence of molecular pathology. Twenty years
later, findings largely based on the above models led
Hanahan and Weinberg [307] to propose six hallmarks
of cancer. These include sustained proliferative signals,
inactivation of tumor suppressors, resistance to apopto-
sis, replicative immortality, increased angiogenesis, and
invasion/metastasis. Conceptual advances in the last
decade provided two additional hallmarks: escape from
immune surveillance and deregulated metabolism [308].

In spite of the value that the above model provided by
setting the timeline of molecular events, it does not offer
an explanation of how one molecular alteration leads
to the next. In other words, it is a static model lack-
ing the dynamic parameter of the driving force. Some
years ago, we put forward a model for cancer develop-
ment postulating that oncogene-induced DNA damage
followed by error-prone repair could be the link between
the hallmarks of cancer [109]. The concept was based
on the simple finding that carcinomas show DDR foci
from their earliest stages of development, whereas adja-
cent normal epithelium is ‘clear’ [309,310]. This obser-
vation suggested that an endogenous source within the
incipient cancerous environment caused DNA damage,
triggering constitutive activation of the DDR pathway.
We hypothesized that a hyperproliferative state could
be the origin. Hyperproliferative signals, in most cases,
represent parts of SR pathways that deviate from their
adaptive/protective role, particularly when SR parame-
ters stray beyond certain limits. For example, squamous
metaplasia of the bronchial epithelium is an adaptive
response to toxic injury caused by cigarette smoke stim-
ulated by the epidermal growth factor receptor (EGFR)
pathway [311]. Depending on the cellular and environ-
mental context, squamous metaplasia can shift progres-
sively to dysplasia and to full neoplastic transformation
in which EGFR becomes frequently amplified, fulfilling
the first hallmark of cancer [Figure 5(1), lower panel]
[307,312,313].

To functionally recapitulate the above scenario, we
utilized various types of normal cells and precan-
cerous models, and showed that hyperproliferative
stimuli, including activated oncogenes, caused DSBs
[159,309,310,314]. Interestingly, the lesions occurred
predominantly at CFSs* [159,309,314,315]. As men-
tioned above, CFSs are late-replicating regions of
the genome with a sequence composition that makes
them vulnerable to RS [Figure 5(2,3); lower panel]
[118,316,317]. As a result, they show breaks, losses and
rearrangements, which are genetic alterations collec-
tively termed CFS expression [Figure 5(3); lower panel]
[118,318–320]. Their expression is not just a ‘passive’
event, but an incident with severe repercussions, as
CFSs constitute highly ‘functional’ entities harbour-
ing cancer-related genes, often extending over large
genomic regions (long genes), microRNAs (miRNAs),
and regulatory sequences, with a much higher density
than in non-fragile sites [118,321]. For instance, two
of the long genes located within CFSs are FHIT in
FRA3B, and WWOX in FRA16D, both of which are
potent tumor suppressors that are frequently inactivated
in cancer [322–325]. Consistently, sequencing of colon
adenomas revealed that SNSs mapped more often to
very large genes [326]. Likewise, in a precancerous
cellular model, we noticed that, apart from CFSs, the
repetitive and damage-prone rDNA (see ‘The nucleolus
at the crossroad of stress response’ above) was an
additional ‘hotspot’ for oncogene-mediated damage
[Figure 5(3); lower panel] [159].
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The above observations led us to suggest that acti-
vated oncogenes compromise DNA replication, provok-
ing RS and, in turn, activating the DDR/R pathway
in an effort to ‘fix’ the generated lesions [Figure 5(2);
lower panel]. Concurrently, to impede the transition of
mutated genetic material to offspring, the DDR sets in
motion the antitumor barriers of apoptosis and senes-
cence [109,159,309,310,314,327–330]. However, sus-
tained RS would lead to accumulation of damage that,
at some point, would overwhelm the capacity of the
high-fidelity DNA repair routes, shifting error-free to
error-prone repair [Figure 5(2,3)]. This switch will, in
due course, modify the genome landscape, exhausting
the integrity of antitumor responses and paving the way
for cancer progression [Figure 5(2–5); lower panel].

A prediction of this model whereby
oncogene-induced RS (OIRS) acts as a driving force
for cancer progression is that the replication machin-
ery and its regulatory network* should play a vital
role in cancer initiation and progression [Figure 5(2);
lower panel] [331,332]. Genes that either positively or
negatively regulate growth would be primary targets
for activating or inactivating mutations, respectively,
whereas DNA repair genes will be spared to ‘fix’, as
otherwise the incipient cancer cell will die. Recent
high-throughput sequencing studies in sporadic cancers
support this notion, showing: (1) a high frequency
of inactivating mutations in checkpoint genes such
as RB (retinoblastoma), TP53, and ATM; (2) a high
incidence of activating events (e.g. mutations and gene
amplifications) in growth-promoting genes such as RAS
and EGFR; and (3) a paucity of mutations in DNA
repair genes [29]. Particular attention should be given
to the p16INK4A –Rb–E2F pathway, which is a major
‘molecular crossroad’ that most mitogenic/oncogenic
signals converge to. Its phosphorylation status deter-
mines whether the cell will bypass the ‘restriction
point’ of G1 phase, committing the cell to progress
to S phase without the requirement for extracel-
lular stimulants [112–333]. Hence, inactivation of
p16INK4A –Rb signalling is not a surprising finding
in cancer [221,334–337], as it releases E2F tran-
scription factor 1 (E2F1) from its inhibitory control
[329,333,338,339], stimulating the sustained expres-
sion of cell-cycle drivers such as cyclin E, Cdc6,
and Cdt1, converting them into ‘oncogenic stimuli’
[Figure 5(1); lower panel] [112,210,314,327,338,340].
In support of this, we observed that E2F1, Cdc6 and
Cdt1 are aberrantly expressed in most cancer types
examined, and, importantly, from their earliest stages
[112,314,329,338–340]. Deregulated production of
E2F1, Cdc6 and Cdt1 was not a mere reflection of an
increased proliferation rate, as their forced expression
(utilizing various inducible cellular systems covering the
whole spectrum of carcinogenesis) triggered RS, DNA
damage and DDR activation with induction of apop-
tosis and/or senescence [159,314,327,329,340–342].
In accordance with the main prediction of our model,
p53 function was gradually attenuated, apoptosis was
reduced, and a fraction of senescent cells escaped,

showing aggressive traits [Figure 5(4–6); lower panel]
[159,314,327,342], such as increased invasiveness,
aneuploidy,* and features reminiscent of EMT*
[159,314,343], which is an embryonic developmen-
tal programme exploited by cancer cells to invade
and metastasize [344,345]. The above sequence of
events explains why p53 needs to be inactived in
tumors for oncogenes to exert their adverse effects
[221,335,338,339,346–350].

The functional coupling between oncogene activa-
tion and inactivation of tumor barriers provides exper-
imental evidence that OIRS acts as a driving force
exerting selective pressure that eventually shapes the
stage for cancer progression (Figure 5). The mecha-
nism behind OIRS and cancer development depends on
the availability of ‘quantitative and qualitative repair
resources’. When the latter condition is not met, contin-
uous rewiring of DNA repair networks occurs, favouring
the survival of the ‘fittest incipient cancer cell’. As a
consequence, chronic activation of the DDR/R network
results in the exhaustion of essential short-lived repair
factors controlling high-fidelity repair, such as Rad51 or
53BP1, thus forcing repair to follow less accurate routes
[342,351,352]. Within this framework, we noticed that,
in a p53-deficient environment, p21WAF1/Cip1 (a tra-
ditional tumor suppressor) revealed a ‘dark side’ of
promoting GI by deregulating the replication licens-
ing machinery and rewiring the DNA repair network
to favour Rad52-dependent error-prone break-induced
replication (BIR) and single-strand annealing (SSA)
[Figure 5(2,3); lower panel] [342,353,354]. This obser-
vation challenges the conventional view of dividing
cancer-related genes into ‘oncogenes’ and ‘tumor sup-
pressors’, stressing the significance of cellular context
in protein function.

As the activities of the DDR/R network go well
beyond the boundaries of just ‘sensing, signalling and
repairing DNA lesions’, by crosstalking with crucial
SR pathways, OIRS-mediated DNA damage makes the
situation more complex [23,274,355]. It is thus apparent
that, when DDR components such as p53 and ATM are
targeted, essential intercellular and intracellular surveil-
lance operations will be modified, favouring, in the end,
cellular transformation. There are two additional DDR
interactions worth mentioning: (1) the immune system;
and (2) metabolic pathways [Figure 5(3); lower panel].
Regarding the first, the DDR pathway communicates
with nuclear factor-κB (NF-κB), the central hub of
the immune response. Two of the best-characterized
connections involve ATM-dependent activation of
NEMO, a regulatory subunit of the IKK complex,
stimulating NF-κB activity [356–360], and of NKG2D
and DNAM-1/CD226 ligands, two key players in innate
imunity [361–363]. Another paradigm of DDR and
immune response crosstalk is that between p53 and
ICAM1 [364–366], showing a direct role of p53 in
immunosurveillance. As a result, tumor-promoting
inflammation, which is an enabling characteristic of
cancer [308], can be attributed, to a certain degree, to
a sustained DDR [23,109,367–369]. Considering the
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link with metabolism, the most prominent example is
that of p53 inhibiting glycolysis by inducing TIGAR
[355,370]. Within this context, cells deficient in ATM
or p53 will create, over time, a permissive environment
favouring immune evasion and ‘aerobic glycolysis’,
both of which are hallmarks of cancer cells (Figure 5).

Collectively, the above data further support the role
of GI in carcinogenesis, making it a hallmark of can-
cer [Figure 5(3); lower panel] [29,308]. Nevertheless,
although our model provides a unified mechanistic
explanation of how the hallmarks of cancer are for-
mulated during cancer development, several questions
remain to be answered (Figure 5). For instance, how
does OIRS lead to replicative immortality? Surprisingly,
reactivation of telomerase, which occurs in almost 90%
of human cancers, is attributable to two nucleotide sub-
stitutions, C228T and C250T, located within the TERT
promoter, implying that error-prone repair was involved
in the selection of these mutations (Figure 5) [371].
Another issue is how angiogenesis is induced within
the context that we propose. A potential mechanism
could be via ROS production, which prevents Hif-prolyl
hydroxylase from activating Hif, which, in turn, stim-
ulates neovascularization [372]. Escaping senescence
is an emerging concept in cancer progression. OIRS
seems to play a role in shaping the genetic landscape
for ‘escape’ to occur [159,342,354,373]. However,
apart from genetic alterations, epigenetic modifications,
extensive chromatin remodelling, increased proteome
instability and metabolic reprogramming should also
take place for such a dramatic shift in cellular behaviour
to occur [68,251,374–377]. Addressing the mechanistic
details linking OIRS with these molecular adjustments
would help immensely in finding the ‘Achilles’ heel’
and designing analogous therapeutic strategies.

Therapeutic strategies, novel tools, and future
perspectives

If OIRS and error-prone repair drives cancer, targeting
this process will kill cancer cells [303,378,379]. This
hypothesis has been tested by designing various rele-
vant therapeutic approaches over the last few years. The
most characteristic example is PARP inhibition. In 2014,
olaparib was the first PARP inhibitor approved for the
treatment of advanced BRCA1/2 mutant ovarian cancer
[380,381]. ATR or Chk1 inhibitors are not particularly
toxic for normal cells, but cancer cells harbouring DNA
lesions rely on ATR for survival. Two highly selective
and potent ATR inhibitors, AZD6738 and VX-970, are
in early-phase clinical trials, either as monotherapies or
in combination with a variety of genotoxic chemother-
apies [382]. In addition to inhibitors of RS, cell-cycle
checkpoint inhibitors against the Wee1 kinase and sev-
eral CDKs are also under development as stand-alone
or combination therapies [383,384]. A parameter to be
taken into consideration in future therapeutic interven-
tions is the circadian rhythm, as increasing evidence has

demonstrated its impact on key biochemical functions,
including the DDR/R [385–388]. This constraint should
be into consideration when novel therapeutic modalities
are designed, to augment the therapeutic effect.

The dramatic changes that occur in cellular
metabolism during cancer development have drawn
attention to novel therapeutic approaches. Specifically,
the increased oxidative stress that characterizes most
cancer cells has been an object of intense investigation.
Targeting enzymes that hydrolyse and remove oxidized
nucleotides, such as mutT homologue 1 (MTH1),
has shown promising results [389–392]. An addi-
tional relationship that can be exploited therapeutically
is that between ATM and alternative reading frame
(ARF). ARF is encoded together with p16INK4A by
the CDKN2 locus. Historically, it was the first tumor
suppressor reported to sense and react to oncogenic
stimuli [393]. It is interesting that, for many years,
it was considered to act in a DDR-independent man-
ner, showing multiple functions such as regulating
p53 stability and ribosome biogenesis [394,395]. We
recently showed that ATM keeps ARF in check, as a
‘second line of defence’ [174]. Moreover, ARF shows
a higher activation threshold to ‘oncogenic load’ than
the DDR pathway, thus forming together the DDR
with a hierarchically organized ‘antitumor barrier’
[330]. Consequently, targeting ATM, particularly in
p53-deficient tumors, will probably set in motion the
antitumor properties of ARF, simultaneously crippling
DDR signalling and cumulatively inhibiting tumor
growth [174].

As the functionality of proteostatic modules [261]
and anti-stress responses [298] decline during age-
ing, these events also fuel ageing and age-related
diseases, including cancer (supplementary material,
Figure S6B,C) [248,301,396]. However, during the late
phases of carcinogenesis and because of accumulating
stressors, there should be a selective pressure for upreg-
ulation of the cytoprotective PN, and advanced and/or
metastatic tumors may thus become ‘addicted’ to the
higher expression levels and/or activities of proteo-
static modules [Figure 5(3); lower part]. This hallmark
of advanced tumors can be exploited therapeutically,
because, apart from the increased load of mutated
polypeptides, the high replication rates of cancer cells
requires upregulated protein synthesis and maintenance
that are out of balance relative to differentiated cells.
Indeed, cancer cells are highly sensitive to Hsp90
inhibitors [397], and proteasome inhibitors have shown
clinical efficacy in haematological cancers [398]. Like-
wise, the ‘stress phenotype’ of cancer cells offers novel
therapeutic strategies, as cancer cells have probably
exhausted their capacity to survive under conditions of
increased stress. In support of this, it was found recently
that piperlongumine (a compound that upregulates ROS
in both cancer and normal cells) had selective antitumor
effects with no apparent toxicity in physiological tissues
[399].

However, one thing that cancer has taught us is
its resilience, adaptation to therapy, and evolution
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[400]. One of the most intriguing features of can-
cer evolution, aside from loss or enhancement
of function, is gain of novel functions, further
increasing the level of ‘plasticity’. Evasion from
senescence, circumvention of immune surveillance and
p53 ‘gain-of-function’ mutations are representative
examples [159,342,349,373,401–407]. A decade ago,
the weapons in our arsenal with which to investigate
such complicated phenomena were still limited. The
era of -omics provides us with tremendous amounts
of data, and molecular resolution capabilities have
reached the single-cell level [408]. Nevertheless, the
rapid increase in the amount of information can lead
to erroneous or misleading conclusions in certain
cases, challenging established knowledge. At this
point, advanced bioinformatics tools combined with
sophisticated molecular methods take centre stage,
unveiling hidden patterns and providing accurate mech-
anistic insights into disease and particularly cancer
development [409–411]. For instance, whole genome
sequencing, even at the single-cell level, can identify
mutational signatures that actually represent the repair
history of a cancer cell, thus highlighting potential ther-
apeutic targets [27,28,39,412,413]. Other revolutionary
methods include chromosome conformation capture
techniques that facilitate a three-dimensional view of
genome–proteome interactions, providing, for the first
time, unique opportunities to monitor ‘holistically’ the
regulation and deregulation of homeostatic mechanisms
[414–416]. Nevertheless, conventional methods still
play a role, not only at the diagnostic level but also at
the front line of research. The best example is the emer-
gence of lipofuscin, a substance identified 175 years ago
by Adolf Hannover, as a key hallmark of cellular senes-
cence (supplementary material, Figure S6D) [417,418].
On the basis of this feature, we recently developed a
novel reagent that is able to monitor senescence in any
biological setting, including archival material, provid-
ing a solution to a challenge that haunted the field for
almost 50 years [418]. The latter is of vast importance
now that senolytic drugs are entering the scene. From all
of the above, it is evident that we are moving from the
‘era of -omics’ to the ‘era of quantum bioinformatics*’
[419]; thus, for the first time, the prospects for precision
medicine are bright.
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