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Background. Aging is an essential risk factor for cancer. However, aging-related genes (ARGs) have not been comprehensively
analyzed in bladder cancer (BC). Therefore, the study is aimed at derivating a risk stratification system for BC patients based
on ARGs. Methods. Public databases were used to acquire ARGs sets, transcriptome files, and clinical data. The “limma”
package was then used to screen for differential ARGs while also using univariate Cox regression analysis to explore for
prognostic ARGs. The “ConsensusClusterPlus” package was used to perform aging patterns in BC patients based on the above
prognostic ARGs. Subsequently, aging patterns were investigated in survival prediction, mutation landscape, immunotherapy,
immunological checkpoints, and immune microenvironment. We likewise utilized gene enrichment analysis to explore the
biological functions that were behind the findings. To construct a risk signature and nonogram for prognostic prediction, we
used LASSO and Cox regression analysis based on differential genes in aging patterns. In addition, we plotted a nomogram
and validate the accuracy of the risk signature in GEO and TCGA cohorts. We explored the possible biological mechanism
using GSEA analysis and preliminarily identified a hub gene using PPI network. Finally, we validated the expression of hub
gene in BC cell lines. Results. We screened 84 downregulated ARGs, 74 upregulated ARGs, and 32 prognostic ARGs in the
human aging genome resource. The aging patterns based on prognostic genes had excellent survival prediction (p < 0:001) and
discriminatory ability in 405 BC patients. In addition, we found no significant differences in aging patterns in mutation
analysis, which were all characterized by TP53, TTN, and KMT2D mutations. It is worth noting that cluster B in the aging
patterns has a better response to immunotherapy and a more active immune microenvironment (p < 0:05). In addition, gene
enrichment analysis showed that aging patterns may be related to biological processes such as Staphylococcus aureus infection,
phagosome, and cytokine-cytokine receptor interaction. Subsequently, we constructed a risk signature based on 16 differential
genes from different aging patterns and had good survival prediction ability in both GEO and TCGA cohort. Specifically,
survival analysis revealed a significantly shorter survival time in the high-risk group than in the low-risk group (TCGA and
GEO, p < 0:001). In addition, AUC values in the ROC analysis predicted 1, 3, and 5 years in TCGA cohort that are 0.713,
0.714, and 0.738, respectively. AUC values predicted 1, 3, and 5 years in GEO cohort that are 0.606, 0.663, and 0.718,
respectively. There is no doubt that risk score was an independent prognostic factor from results of multivariate Cox
regression analysis in BC patients (p < 0:001). There were also significant differences in immune cell infiltration, immune
checkpoint, and immune score between the two groups (p < 0:05), but it should not be ignored that the correlation with the
HLA expression was weak. Finally, we identified and validated CLIC3 as a hub gene that may be involved in the Wnt signaling
pathway, etc. Conclusion. We provided robust evidences that aging patterns based on ARGs can guide targeted therapy and
survival prediction in BC patients.

1. Introduction

Bladder cancer (BC) is one of the most prevalent genitouri-
nary system cancers [1], and it can be divided into muscle-

invasive and nonmuscle-invasive subtypes depending on
infiltration. Notably, the incidence of BC is rising, and it
ranks third among in male cancers [2]. Biomarker discovery
and survival prediction are important topics in BC diagnosis
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across the world [3]. As a result, establishing an effective
stratification method is critical for monitoring the survival
status of BC patients as well as their treatment.

The human aging genome resource (HAGR) is a gene set
database that uses a comprehensive analysis of the biology
and genetics in the human aging process to screen hub genes
related with aging, exposing aging-related genes (ARGs) as
network hubs [4]. The gradual degradation of functions at
the molecular and cellular levels is the most notable manifes-
tation of aging [5]. The correlation between aging and cancer
is becoming more obvious [6], and the primary markers of
aging and cancer cell senescence have been investigated [7],
with immunological senescence being one of the most promi-
nent examples [8]. Meanwhile, bioinformatic-based methods
were utilized to construct EMT-related [9] and immune-
related [10] risk signature to predict overall survival in BC
patients. However, aging-related risk signatures to predict
survival status have never been established in BC patients.

Therefore, in this study, to assess the prognostic value of
ARGs in BC, we constructed aging patterns and further

established a risk signature to reveal the potential association
of ARGs with immunotherapy and survival prediction.

2. Materials and Methods

2.1. Bioinformatic Datasets and Data Preprocessing. The BC-
clinical data, BC-RNA sequencing profiles (n = 414), and
normal bladder epithelium RNA sequencing profiles
(n = 19) were obtained from The Cancer Genome Atlas
(TCGA) database [11]. We excluded BC patients without
RNA sequencing and survival time, and finally, only 405
patients were retained for subsequent analysis. In addition,
we downloaded the GSE13507 dataset from the GEO data-
base and included 165 patients with primary BC as an exter-
nal validation cohort. Meanwhile, genes were identified
based on annotation documents of the GENCODE database
[12] and GPL6102. Finally, a total of 20634 common genes
were annotated in the above two datasets. In addition, 307
PRGs were extracted based on previous studies [13].
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Figure 1: Consensus clustering for aging-related patterns. (a) The volcano plot for the ARGs in BC patients. Black dot, blue dot, and red dot
represent no statistical significance genes, low expression genes, and high expression genes, respectively. (b, c) Consensus clustering
identified two subgroups according to the expression of prognostic ARGs. (d) PCA analysis, including cluster A and cluster B. (e)
Kaplan-Meier survival analysis in different clusters.
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2.2. Sample Classification for Aging Patterns. The “limma”
package was used to screen for differential ARGs in normal
and tumor tissues (∣logFC ∣ >2 and p < 0:05). Prognostic
ARGs (p < 0:05) were then screened using univariate Cox
regression analysis. We performed two classifications using
“ConsensusClusterPlus” package in R software. In the whole
BC patients, the best k value was selected by identifying the
inflection point of the sum of squared error (SSE) based on
the prognostic ARG expression. After k = i, the rate of
decline slowed down; so, k = i was chosen. In addition, we
performed Kaplan-Meier survival analysis and PCA analysis
on cluster A and B groups in aging patterns.

2.3. Construction of an Aging-Related Risk Signature and
Nomogram. The “limma” package was used to screen for dif-
ferential genes in cluster A and B groups (∣logFC ∣ >2 and

p < 0:05). Prognostic genes (p < 0:05) were then screened
using univariate Cox regression analysis. These prognostic
genes were further incorporated into multivariate Cox and
LASSO regression analysis to identify genes involved in sig-
nature construction. We used the appropriate λ to build the
model and to control the complexity of LASSO regression.
The risk score was calculated as follows: risk score for OS =

〠
n

i=1
Coef i × xi: ð1Þ

Based on the coefficients of the above formula, we use
“regplot” package to build a normograms. In addition, we
performed Kaplan-Meier survival analysis, ROC analysis,
and calibration curve for validating.

2.4. Functional Enrichment Analysis. Enrichment analysis
was performed in differential genes in cluster A and cluster
B groups using “ggplot2,” and “clusterProfiler” packages in
R software. Gene Ontology (GO) analysis and the enrich-
ment analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) were extracted from the result of “clus-
terProfiler” package. In addition, GSEA enrichment analysis
was also conducted in different risk groups distinguished by
risk signature.

2.5. Comprehensive Immune Analysis. In the exploration of
differences in immune cell infiltration, we simultaneously
used the CIBERSORT algorithm to estimate the abundances
of immune cells in different risk groups distinguished by risk
signature. Moreover, we used the estimation algorithm to
calculate purity of tumor. More importantly, we also
explored the expression levels of immune checkpoint and
HLA-related genes in different risk groups.

2.6. Construction of PPI Network. To investigate interacting
genes, genes involved in risk signature were imported into
a STRING database (confidence = 0:900), which was used
to predict the PPI network. We then selected the gene with
the highest number of sides as the hub gene.

2.7. Assays. Two bladder cancer cell lines (5637 and UM-
UC-3) and a normal bladder epithelium cell line (SV-
HUC-1) were purchased from ATCC. The RNA expression
was assessed by quantitative real-time PCR using the TB
Green Premix Ex Taq II kit (TakaRa, Japan). Si-RNA target-
ing CLIC3 was purchased from Genepharm (Nanjing,
China). Relevant antibodies were purchased from Santa
Cruze (USA) and diluted at 1 : 1000. Detailed experimental
details were carried out according to the methods in previ-
ous reference [14]. The sequences of the primers used for
qRT-PCR are as follows: CLIC3 (forward: 5′-CAGATC
GAGGACTTTCTGGAG-3′, reverse: 5′-GGAGAACTTGT
GGAAAACGTC-3′) and GAPDH (forward: 5′-CAGGAG
GCATTGCTGATGAT-3′, reverse: 5′-GAAGGCTGGGG
CTCATTT-3′) [15].

2.8. Statistical Analysis. All statistical analyses were per-
formed using the R software (v.4.0.1). Detailed statistical

Table 1: Univariate Cox regression analysis of differential
expression ARGs in patients with bladder cancer.

ARGs HR HR.95L HR.95H p value

AGTR1 1.1551 1.0081 1.3234 0.0379

EGR1 1.1502 1.0452 1.2658 0.0042

GHR 1.2555 1.0760 1.4648 0.0038

A2M 1.1255 1.0166 1.2461 0.0227

FGFR1 1.1679 1.0635 1.2824 0.0012

CTGF 1.1304 1.0398 1.2288 0.0040

NUDT1 1.2603 1.0175 1.5611 0.0341

JUN 1.1888 1.0463 1.3507 0.0080

PDGFRA 1.2099 1.0778 1.3583 0.0012

PYCR1 1.1704 1.0482 1.3068 0.0051

ELN 1.1368 1.0501 1.2306 0.0015

SIRT6 0.6340 0.4577 0.8782 0.0061

RAE1 1.3194 1.0005 1.7399 0.0496

NGF 1.2540 1.1046 1.4235 0.0005

IGF1 1.3595 1.1103 1.6646 0.0030

EFEMP1 1.1450 1.0727 1.2221 0.0000

MYC 1.1543 1.0445 1.2756 0.0049

NGFR 1.0914 1.0030 1.1877 0.0425

LMNA 1.2945 1.0409 1.6098 0.0203

TFDP1 1.2020 1.0031 1.4404 0.0462

PLAU 1.1024 1.0084 1.2052 0.0320

POLB 0.7633 0.6338 0.9193 0.0044

FOXO3 1.2321 1.0034 1.5130 0.0463

APEX1 1.4098 1.0529 1.8877 0.0211

NCOR1 1.2654 1.0134 1.5802 0.0378

STAT5A 0.8325 0.7013 0.9882 0.0361

PAPPA 1.3585 1.1414 1.6170 0.0006

GRN 1.2490 1.0109 1.5432 0.0394

PDGFRB 1.2099 1.0871 1.3465 0.0005

PRDX1 1.5245 1.2226 1.9008 0.0002

EIF5A2 1.2015 1.0373 1.3918 0.0144

ERCC5 0.6840 0.5056 0.9253 0.0138
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methods about transcriptome data are covered in Bioin-
formatics Method. p < 0:05 was considered statistically
significant.

3. Results

3.1. Aging-Related Patterns Are Mediated by 32 Aging-
Related Genes in BC Patients. Firstly, we conducted a differ-
ence analysis of 307 ARGs between BC samples and normal

samples and found that 84 genes were downregulated, and
74 genes were upregulated (Figure 1(a)). Meanwhile, 32
prognostic ARGs were screened using univariate Cox regres-
sion analysis, as shown in Table 1. We classified the aging
modification patterns of 405 BC samples according to the
expression of ARGs (Figure 1(b)). At the same time, we fur-
ther explored the expression of ARGs to determine the opti-
mal clustering stability (k = 2) and finally identified two
different modification patterns (Figure 1(c)), including 211
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Figure 2: Mutation analysis in different aging-related patterns. (a) Mutation frequency of different genes in cluster A. (b) Mutation
frequency of different genes in cluster B.
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Figure 3: Differences in immune microenvironment based on different aging-related patterns. (a) Comparison of ESTIMATE scores,
immune scores, and purity in patients with different aging-related patterns. (b) Comparison of HLA-related genes in patients with
different aging-related patterns. (c) Differential expression analysis of immune cells. (d) Comparison of immune checkpoint-related genes
in patients with different aging-related patterns.
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cases in cluster A and 194 cases in cluster B. Subsequently,
according to aging patterns, PCA analysis showed that BC
samples could be completely distinguished (Figure 1(d)).
Also, noteworthy was the results of the survival analysis,
and there was more longer survival time in cluster A than
in cluster B (p = 3:297e − 04), as shown in Figure 1(e). In
addition, we found no significant differences in mutation
analysis, which were all characterized by TP53, TTN, and
KMT2D mutations (Figures 2(a) and 2(b)).

3.2. Aging-Related Patterns Regulate the Immune
Microenvironment in BC Patients. We followed the algo-
rithm in Methods to calculate the content of immune cells,
stromal score, immune score, and tumor purity in whole
patients with aging patterns. Compared with cluster B,
patients in cluster A had higher stromal score, higher
immune score, and lower tumor purity (p < 0:05), as shown
in Figure 3(a). Excitingly, there were significant differences
in immune cell content, HLA-related gene expression, and
immune checkpoint-related gene expression among the dif-
ferent groups (p < 0:05), as shown in Figures 3(b)–3(d).

These results may suggest that aging modifications may alter
the immune microenvironment in BC tissue.

3.3. The Potential Biological Characteristics in Different
Aging-Related Patterns. In order to explore the potential bio-
logical functions and pathways of different aging patterns, we
screened out the 1221 differentially expressed gene, including
1110 upregulated genes and 111 downregulated genes. GO
enrichment analysis showed that above 1221 genes were
mainly related to extracellular matrix organization, etc. in
the BP section, collagen-containing extracellular matrix, etc.
in the CC section, and antigen binding, etc. in the MF section
(Figure 4(b)). Meanwhile, GO enrichment analysis showed
that above 1221 genes were mainly related to extracellular
matrix organization, etc. in the BP section and collagen-
containing extracellular matrix, etc. (Figure 4(a)).

3.4. Construction and Validation of a Risk Signature Based
on Aging-Related Patterns. In order to explore the potential
prognosis value in aging patterns, we screened out 944 prog-
nosis genes in above 1221genes. To avoid collinearity in
high-dimensional transcriptome data, LASSO regression
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Figure 4: GO and KEGG enrichment analysis in different aging-related patterns. (a) KEGG enrichment analysis. (b) GO enrichment
analysis, including BP, MF, and CC.
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was performed on these genes associated with survival
(Figures 5(a) and 5(b)). Multivariate Cox regression analysis
was performed for the 16 genes involved in risk signature, in
which the Coef of each gene was determined. The 16 genes
involved in risk signature included MXRA7, ALDH1L2,
HEYL, FKBP10, TPST1, CYTL1, EPDR1, EMP1, ANXA1,
FER1L4, CES1, PCOLCE2, CD3D, PTPRR, CLIC3, and
CTSE. Also, noteworthy was the results of the survival anal-
ysis, and there was more shorter survival time in the high-
risk group than in the low-risk gourp, and AUC values in
the ROC analysis predicted 1, 3, and 5 years in TCGA
cohort that are 0.713, 0.714, and 0.738, respectively
(Figures 5(c) and 5(e)). To ensure the stability of this signa-
ture, we stratified the risk of primary BC patients in
GSE13507 based on the above genes and divided them into
risk groups according to the same cut-off value. There is no
doubt that the reliability of GEO cohort for prediction in 1,
3, and 5 years is good, with AUC values of 0.606, 0.663, and
0.718, respectively (Figure 5(f)). In addition, it also had
shown a robust ability to predict survival in GEO dataset
(Figure 5(d)).

3.5. A Nomogram for Predicting Survival Status in BC
Patients. To further investigate the independent prognostic
value of this prognostic signature, Cox regression analysis
showed that risk score was an independent prognostic
factor, as was age and stage (Figures 6(a) and 6(b)). We
combined indicators in Cox regression analysis to construct
the visual prognostic model-nomogram, as shown in
Figure 6(c). Moreover, the calibration curve of the nomo-
gram showed that the prediction curves are close to the stan-
dard curve in TCGA cohort, which indicates that the
predicted survival rate is closely related to the actual rates
at 1, 3, and 5 years, as shown in Figures 6(d)–6(f).

3.6. Differences in Immune Microenvironment Based on
Different Risk Subgroups. We followed the algorithm in
Methods to calculate the content of immune cells, stromal
score, immune score, and tumor purity in all patients with
different risk subgroups. Compared with the low-risk group,
patients in the high-risk group had higher stromal score,
higher immune score, and lower tumor purity (p < 0:05)
(Figure 7(a)). However, unlike the aging pattern, differences
in the expression of only a few HLA-related genes, such as
HLA-DOB, HLD-DRB6,HLA-DMB, and HLA-DPA1, were
found between risk groups (p < 0:05) (Figure 7(b)). Excit-
ingly, there also were significant differences in immune cell
content and immune checkpoint-related gene expression
among the different groups (p < 0:05), as shown in
Figures 7(c) and 7(d). These results may suggest that risk
subgroups based on aging pattern may distinguish the
immune microenvironment of BC tissues.

3.7. Construction of PPI Network and Exploration of a Hub
Gene. In order to study the biological pathways that may differ
in different risk groups, we used GSEA enrichment analysis to
find that the high-risk group may be associated with ecm
receptor interaction, focal adhesion, mapk signaling pathway,
wnt signaling pathway, etc. (Figure 8(a)). In addition, we per-
formed genes involved in risk signature that were imported
into a STRING database (confidence = 0:900). Finally, we
then selected the CLIC3 with the highest number of sides as
the hub gene (Figure 8(b)).

3.8. Vitro Validation. To further validate the hub gene of the
PPI network, we detected expression level of CLIC3 mRNA
in BC cell lines. The results showed that the expression of
CLIC3 was upregulated in tumor cell lines compared to
SV-HUC-1, as shown in Figure 9(a). In addition, si-CLIC3
and si-NC were transfected in 5637 and UM-UC-3 cells,
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Figure 5: Construction and validation of a risk signature based on aging-related patterns. (a) λ selection plot. (b) LASSO Cox analysis of
PRLs. (c) Kaplan-Meier survival analysis in TCGA cohort. (d) Kaplan-Meier survival analysis in GEO cohort. (e) ROC curve in TCGA
cohort. (f) ROC curve in GEO cohort.
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respectively, and qRT-PCR and Western blot were used to
detect the protein expression of AGTRAP. It was found that
the CLIC3 expression was downregulated in BC cell lines with
transfection, as shown in Figures 9(b) and 9(c). Similarly,
CCK-8 assays showed that BC cell proliferation was inhibited
after transfection with CLIC3, as shown in Figures 9(d) and
9(e). In addition, the result of GSEA enrichment analysis
showed that Wnt signaling pathway is activated in the high-
risk group; so, we performed Western blot assays in BC cell
lines transfected with CLIC3 siRNA to detect this pathway.
Western blot analysis revealed that p-β-catenin levels were
increased, and p-GSK3β levels were decreased in 5637 and
UM-UC-3 cells after CLIC3 silencing. The ratio of p-β-catenin
to total β-catenin was increased, while the ratio of p-GSK3β
to GSK3βwas decreased, suggesting the shutdown ofWnt/β-
catenin signaling, as shown in Figures 9(f) and 9(g).

4. Discussion

In biologically speaking, ageing is a natural process that can-
not be avoided over time. It manifests itself such as degener-

ative changes in structure and a decline in function [5].
Aging has been identified as an independent risk factor for
the majority of common cancers, including BC [16]. Fur-
thermore, aging may have a tumor-suppressing effect, as
tumors that are in a state of senescence-induced growth
arrest slow down their growth [5]. Because of the impor-
tance of aging-related genes, ageing indicators may also have
the ability to predict prognisis in cancer patients.

We performed a PPI network analysis on 17 aging-
associated genes included in the risk signature, and CLIC3
was experimentally validated. To our knowledge, CLIC3
belongs to the intracellular chloride channel family [17], and
it is overexpressed in a variety of tumors, resulting in a poor
prognosis for patients [18]. CLIC3 has been demonstrated to
have a role in invasion andmetastasis in breast cancer cell line,
and the overexpression of CLIC3 in oestrogen receptor-
negative predicts a poor prognosis [19]. Furthermore, CLIC3
and Rab25 work together to promote cancer progression
[20]. Our findings imply that more research into the involve-
ment of CLIC3 in cellular senescence is warranted. Although
there is currently a bioinformation-based study on the role of
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Figure 6: Cox regression and nomogram validation combined with clinical information. (a) A forest plot for risk score and
clinicopathological factors in Cox univariate regression analysis. (b) A forest plot for risk score and clinicopathological factors in Cox
multivariate regression analysis. (c) A nomogram based on risk score, age, and stage. (d) Calibration curves of 1, 3, and 5 years.

14 Disease Markers



0.9

0.3

High Low
Risk

0.6

Tu
m

or
 p

ur
ity

⁎⁎⁎⁎

2000

4000

–2000

High Low
Risk

0Im
m

un
e s

co
re

⁎

2000

–2000

High Low
Risk

0

St
ro

m
al

 sc
or

e

⁎⁎⁎⁎

Risk
High
Low

(a)

15
ns ns ns ns ns ns ns ns ns ns ⁎ ⁎ ⁎ ⁎ns ns ns ns ns ns ns ns ns ns

10

5

En
ric

h 
sc

or
e

0

H
LA

-E

H
LA

-D
PB

2

H
LA

-C

H
LA

-J

H
LA

-D
Q

B1

H
LA

-D
Q

B2

H
LA

-D
Q

A
2

H
LA

-D
Q

A
1

H
LA

-A

H
LA

-D
M

A

H
LA

-D
O

B

H
LA

-D
RB

1

H
LA

-H

H
LA

-B

H
LA

-D
RB

5

H
LA

-D
O

A

H
LA

-D
PB

1

H
LA

-D
RA

H
LA

-D
RB

6

H
LA

-L

H
LA

-F

H
LA

-G

H
LA

-D
M

B

H
LA

-D
PA

1

Risk
High
Low

(b)

Figure 7: Continued.

15Disease Markers



1.00

0.75

En
ric

h 
sc

or
e

0.00

0.25

0.50

ns ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎ns ns

Ac
tiv

at
ed

 B
 ce

ll

Ac
tiv

at
ed

 C
D

4 
T 

ce
ll

Ac
tiv

at
ed

 C
D

8 
T 

ce
ll

C
en

tr
al

 m
em

or
y 

CD
4 

T 
ce

ll

C
en

tr
al

 m
em

or
y 

CD
8 

T 
ce

ll

Eff
ec

to
r m

em
or

y 
CD

4 
T 

ce
ll

Eff
ec

to
r m

em
or

y 
CD

8 
T 

ce
ll

G
am

m
a d

elt
a T

 ce
ll

Im
m

at
ur

e B
 ce

ll

M
em

or
y 

B 
ce

ll

Re
gu

la
to

ry
 T

 ce
ll

T 
fo

lli
cu

la
r h

elp
er

 ce
ll

Ty
pe

 I 
T 

he
lp

er
 ce

ll

Ty
pe

 1
7 

T 
he

lp
er

 ce
ll

Ty
pe

 2
 T

 h
elp

er
 ce

ll

Ac
tiv

at
ed

 d
en

dr
iti

c c
el

l

CD
56

br
ig

ht
 n

at
ur

al
 k

ill
er

 ce
ll

CD
56

di
m

 n
at

ur
al

 k
ill

er
 ce

ll

Eo
sin

op
hi

l

Im
m

at
ur

e d
en

dr
iti

c c
el

l

M
ac

ro
ph

ag
e

M
as

t c
el

l

M
D

SC

M
on

oc
yt

e

N
at

ur
al

 k
ill

er
 ce

ll

N
at

ur
al

 k
ill

er
 T

 ce
ll

N
eu

tro
ph

il

Pl
as

m
ac

yt
oi

d 
de

nd
rit

ic
 ce

ll

Risk
High
Low

(c)

9

En
ric

h 
sc

or
e

0

3

6

ns ns ns ns ns ns ns ns nsnsns ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎ ⁎ ⁎ns ns ns ns ns ns

A
D

O
RA

2A
BT

LA
BT

N
L2

CD
16

0
CD

20
0

CD
20

0R
1

CD
24

4
CD

27
CD

27
4

CD
27

6
CD

28
CD

40
CD

40
LG

CD
44

CD
48

CD
70

CD
80

CD
86

CT
LA

4
H

AV
CR

2
H

H
LA

2
IC

O
S

IC
O

SL
G

ID
01

ID
O

2
KI

R3
D

L1
LA

G
3

LA
IR

1
LG

A
LS

9
N

RP
1

PD
CD

1
PD

CD
1L

G
2

TI
G

IT
TM

IG
D

2
TN

FR
SF

14
TN

FR
SF

18
TN

FR
SF

25
TN

FR
SF

4
TN

FR
SF

8
TN

FR
SF

9
TN

FS
F1

4
TN

FS
F1

5
TN

FS
F1

8
TN

FS
F4

TN
FS

F9
VS

R
V

TC
N

1

Risk
High
Low

(d)

Figure 7: Differences in immune microenvironment based on different risk subgroups. (a) Comparison of ESTIMATE scores, immune
scores, and purity in patients with different risk subgroups. (b) Comparison of HLA-related genes in patients with different risk
subgroups. (c) Differential expression analysis of immune cells. (d) Comparison of immune checkpoint-related genes in patients with
different risk subgroups.
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CLIC3 in bladder cancer, the study only conducted a simple
expression difference analysis and clinical correlation of
CLIC3 [15]. In the validation part of our study, we further
explored the protein expression of CLIC3 and the change of
Wnt pathway in BC cell lines after CLIC3 silencing.

To construct aging-related patterns and investigate their
impact on the immunological microenvironment, pharma-
ceutical sensitivity, and survival status in BC patients, we uti-
lized differential ARGs in the consensus clustering method.
Following that, 17 ARGs were chosen from the differential
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participating in risk signature.
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genes in aging-related patterns to construct a risk signature
for TCGA cohort. There are still some limitations of our
study that are worth noting. The bioinformatic results, for
starters, have been validated using TCGA and GEO samples.
However, we were unable to conduct a second external val-
idation, because we lacked the sufficient funding to sequence
BC patients in our hospital. Second, we only used PPI net-

work to corroborate our findings for the hub gene, and we
will need to conduct more experiments in the future to con-
firm our conclusion.

In conclusion, we have developed a risk signature based
on ARGs and validated the hub gene. Therefore, the findings
based on this study are useful for promoting individualized
immunotherapy and survival prediction in BC patients.
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Figure 9: Vitro validation. (a) Relative expression of CLIC3mRNA in normal and tumor cell lines. (b) Relative expression of CLIC3mRNA
in UM-UC-3 cell lines transfected with si-CLIC3. (c) Relative expression of CLIC3 mRNA in 5637 cell lines transfected with si-CLIC3. (d)
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5. Conclusion

We provided robust evidences that aging patterns based on
ARGs can guide targeted therapy and survival prediction
in BC patients.
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