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New insights into the pathogenesis of IgA nephropathy
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Abstract IgA nephropathy is the most common form of glo-
merulonephritis in many parts of the world and remains an
important cause of end-stage renal disease. Current evidence
suggests that IgA nephropathy is not due to a single pathogen-
ic insult, but rather the result of multiple sequential pathogenic
Bhits^. An abnormally increased level of circulating poorlyO-
galactosylated IgA1 and the production of O-glycan-specific
antibodies leads to the formation of IgA1-containing immune
complexes, and their subsequent mesangial deposition results
in inflammation and glomerular injury. While this general
framework has formed the foundation of our current under-
standing of the pathogenesis of IgA nephropathy, much work
is ongoing to try to precisely define the genetic, epigenetic,
immunological, and molecular basis of IgA nephropathy. In
particular, the precise origin of poorly O-galactosylated IgA1
and the inciting factors for the production of O-glycan-specif-
ic antibodies continue to be intensely evaluated. The mecha-
nisms responsible for mesangial IgA1 deposition and subse-
quent renal injury also remain incompletely understood. In
this review, we summarize the current understanding of the
key steps involved in the pathogenesis of IgA nephropathy. It
is hoped that further advances in our understanding of this
common glomerulonephritis will lead to novel diagnostic

and prognostic biomarkers, and targeted therapies to amelio-
rate disease progression.
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Introduction

Since its first description, les dépôts intercapillaires d’IgA-
IgG (intercapillary deposits of IgA-IgG), by Berger and
Hinglais in 1968 [1], IgA nephropathy (IgAN) continues to
be recognized as the most common form of glomerulonephri-
tis in many parts of the world [2–6]. While the disease runs a
relatively benign course in the majority of patients, up to 40%
of patients progress to end-stage renal disease (ESRD) over
the course of 30 to 40 years. Over the past two decades, sig-
nificant advances have been made in our understanding of the
pathogenesis of IgAN. It is now widely accepted that IgAN
does not arise from a single pathogenic Bhit^, but rather arises
as a consequence of multiple sequential but distinct pathogen-
ic Bhits^: principally, an increased level of poorly O-
galactosylated IgA1 glycoforms, production ofO-glycan-spe-
cific antibodies, and the formation of IgA1-containing im-
mune complexes. The resultant deposition of IgA1-
containing immune complexes in the glomerular mesangium
drives cellular proliferation and overproduction of extracellu-
lar matrix, cytokines and chemokines, culminating in glomer-
ular injury. This current concept of the pathogenesis of IgAN
has been referred to as the Bmulti-hit^ hypothesis [7].

Much of the work on the pathogenesis of IgAN has cen-
tered on understanding the nature of circulating IgA1-
containing immune complexes in IgAN and this has been
driven by two key clinical observations. Firstly, IgAN may
recur in transplanted kidneys in patients with IgAN, and
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secondly, that clearance of IgA deposits may occur in
transplanted IgAN kidneys that have been inadvertently
transplanted into recipients without IgAN [8–10]. These two
observations indicate that the initiating pathogenic insult in
IgAN must arise outside of the kidney. As we will review
below, there are striking changes in the physicochemical prop-
erties of circulating IgA1 molecules and development of cir-
culating O-glycan-specific antibodies in IgAN, which corre-
late with the composition of mesangial IgA deposits isolated
from glomeruli in IgAN.

Another well-recognized clinical observation is that al-
though mesangial IgA deposition is diffuse and global in
IgAN, there is significant heterogeneity in both the patholog-
ical response to this deposition, which may be focal and seg-
mental, and the corresponding clinical course. The sole crite-
rion for the diagnosis of IgAN is the presence of dominant or
co-dominant IgA deposits in the glomerular mesangium on
kidney biopsy. Yet, the marked heterogeneity in clinical pre-
sentation, clinical course and pathological changes in IgAN is
striking. It has been suggested that this heterogeneity likely
reflects the varied influence of genetic and environmental fac-
tors on a host of complex pathogenic mechanisms that mod-
ulate the disease phenotype in different individuals and pop-
ulations. An alternative explanation that has been proposed is
that IgAN may not be a Bsingle disease^ but rather a group of
distinct diseases sharing a final common pathway of
mesangial IgA deposition [11]. This is an important consider-
ation when reviewing conflicting data within the IgAN field,
as it may be that authors are describing different disease pro-
cesses and responses to treatment in subtly different diseases.

Another observation worthy of consideration ahead of any
review of IgAN is the fact that sub-clinical mesangial IgA
deposition is a relatively common finding in the general pop-
ulation, and in particular in Asian populations. In autopsy
series and allograft biopsy series, IgA deposition without
overt clinical disease has been observed in up to 16% of sub-
jects [12–14]. It remains unclear whether these sub-clinical
IgA deposits are biochemically different and immunologically
inert, or if inherent factors in the affected kidneys prevent the
propagation of pathogenic pathways and glomerular injury.
Importantly, these observations suggest that the mechanisms
responsible for inducing glomerular injury in IgAN are dis-
tinct from those responsible for mesangial deposition of IgA.
The natural history following the finding of subclinical
mesangial IgA deposition, and whether this is a risk factor
for overt disease in the long term, remains unclear.

At present, the diagnosis of IgAN cannot be made without
a kidney biopsy. The varied clinical course of the disease
means that many patients will not develop CKD or progress
to ESRD. In order to appropriately counsel patients with IgAN
on future risks of CKD and ESRD and direct often toxic im-
munosuppressive drug regimens to those patients most likely
to benefit, early identification of patients at greatest risk of

progression is essential. Current clinical markers of severity
of kidney disease, namely proteinuria, hypertension, and im-
paired renal function, are non-specific and manifest only when
significant (and often irreversible) renal injury and scarring
have occurred. A better understanding of the pathogenesis of
IgAN is likely to lead to the identification of novel biomarkers
to better risk stratify patients and guide treatment choices.
Furthermore, current treatment of IgAN remains generic and
applicable to many kidney diseases, focusing on modulating
downstream immune and inflammatory events, and is not spe-
cific to IgAN. It is hoped that advances in our understanding
of the pathogenesis of IgAN will identify new pathways ame-
nable to therapeutic manipulation and in this review we give a
number of examples of novel therapies currently in phase II
trials that have been triggered by a clearer understanding of
the molecular basis of IgAN [15, 16]. Here, we will review
key pathogenic pathways involved in the development of
IgAN.

IgA1 O-galactosylation in IgA nephropathy

A key observation in our understanding of the pathogenesis of
IgAN is the increased presence of poorly O-galactosylated
IgA1 glycoforms in both serum and glomerular immune de-
posits [17, 18], a finding that has been consistently reproduced
in populations of different ethnic and geographic origin
[19–22]. These O-glycoforms of IgA1 are often referred to
in the literature as galactose-deficient IgA1 (gd-IgA1), how-
ever, we believe that this is a misnomer, as most of these O-
glycoforms still carry galactose residues and Bdeficiency^ im-
plies these O-glycoforms have been defectively O-glycosylat-
ed during post-translational modification. On the contrary, we
believe poorly O-galactosylated IgA1 is the normal O-glyco-
sylated form of IgA1 produced at mucosal surfaces and its
increased presence in the serum reflects a subtle defect in the
mucosal immune system.

Human IgA consists of two subclasses: IgA1 and IgA2, but
only IgA1 is present in the mesangial deposits of IgAN [23].
IgA1 has an 18-amino acid extended hinge region between the
first and second constant domains of the α heavy chain where
O-glycans chains may attach to serine or threonine residues
(Fig. 1). Although there are up to nine possible serine/
threonine sites available for O-galactosylation in each α heavy
chain, only between 3 and 6 sites may be occupied at any time.
O-galactosylation of the hinge region occurs through a series of
stepwise co/post-translational modifications mediated by a
group of enzymes. This process is initiated by the addition of
N-acetylgalactosamine (GalNAc) via an oxygen atom to a ser-
ine or threonine residue on the IgA1-hinge region by the activ-
ity of N-acetylgalactosaminyl-transferase (GalNAcT2). The O-
glycan chain may then be extended by galactosylation, where
galactose is β1,3 linked to GalNAc to form a disaccharide by
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the activity of core 1 beta 1, 3-galactosyltransferase (C1GalT1).
Interaction betweenC1GalT1 and itsmolecular chaperone, core
1 β3GalT-specific molecular chaperone (Cosmc) is necessary
for the stability of C1GalT1 during biosynthesis and to prevent
protein misfolding. Sialic acid may be attached to the galactose
moiety by α2,3 sialytransferase (ST2,3) or be attached directly
to GalNAc in an α2,6 linkage, driven by the activity of α2,6
sialytransferase (ST2,6). It has been proposed that sialylation of
GalNAc prevents the further addition of galactose and is there-
fore an important step in IgA1 O-galactosylation [24, 25].

All individuals are capable of synthesizing IgA1 with a range
of O-galactosylated hinge regions. It has been suggested that we
have evolved the ability to alter IgA1 hinge region O-glycosyla-
tion, in particular to reduceO-galactosylation of the IgA1 hinge,
as a way of counteracting the activity of IgA1 proteases released
by bacterial pathogens attempting to circumvent themucosal IgA
immune system. Importantly, in health, serum contains poorlyO-
galactosylated IgA1 glycoforms, indistinguishable from those
seen in IgAN, however, in IgAN they comprise a greater propor-
tion of the IgA1 O-glycoform circulating pool.
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Fig. 1 Structure of human IgA1 and its O-glycans. a IgA1 has an
extended hinge region that contains between 3 and 6 O-glycans
attached to serine or threonine residue between position 225 to 236
(IgA1 with five O-glycans per hinge region is shown). b Glycosylation
of IgA1 is mediated by stepwise co−/post-translational modifications.
First, N-acetylgalactosamine (GalNAc) is added to serine/threonine resi-
due by activity of N-acetylgalactosaminyl-transferase (GalNAcT2) (step
1). Next, a galactose moiety is added to GalNAc by core 1 beta 1, 3-
galactosyltransferase (C1GalT1) and core 1 β3GalT-specific molecular
chaperone (Cosmc) (step 2). Sialic acid may then be added to the

galactose moiety by α2,3 sialytransferase (ST2,3) (step 3) or to the
GalNAc moiety by α2,6 sialytransferase (ST2,6) (step 4). Alternatively,
sialic acid may be added to GalNAc by ST2,6 before the addition of
galactose (step 2a). Notably, sialylated GalNAc (step 2a) cannot be sub-
sequently galactosylated, whereas galactosylated GalNAc may be
sialylated at either the GalNAc or galactose moiety, or both (step 3 and/
or 4). c These steps produce a combination of different O-glycoforms of
varying degree of galactosylation and sialylation. The relative proportion
of poorly galactosylated IgA1 is increased in IgAN
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Useful tools for assessing the relative degree of protein gly-
cosylation are lectin-based binding assays (lectins are proteins
that bind to specific carbohydrate groups). The most commonly
used lectin assay to measure IgA1 O-galactosylation uses the
lectin Helix aspersa agglutinin (HAA), which preferentially
binds poorly O-galactosylated IgA1 glycoforms (i.e., exposed
GalNAc residues). This assay gives a measure of the overall
degree of IgA1 O-galactosylation in the serum and is deter-
mined by the relative amounts of the differentO-galactosylated
IgA1 glycoforms present. Currently, the only way to measure
the relative amounts of individual O-glycoforms of IgA1 in
serum is to undertake mass spectrometry-based analyses, which
while highly informative are not suited to large-scale analysis in
IgAN cohorts [26].

A significant drawback to the HAA lectin assay is the vari-
ability in stability and bioactivity of HAA between batches (the
lectin needs to be isolated from the snail Helix aspersa, and a
recombinant form is not available). This has led to difficulties in
comparing results across laboratories. Recently, a novel mono-
clonal antibody with specificity for the poorlyO-galactosylated
hinge region has been developed and this may provide the basis
for a robust ELISA, although further validation of the assay will
be required in different cohorts [27].

To explain the molecular basis for the existence of different
O-glycoforms of IgA1, it has been proposed that the expression
and/or activity of the required glycosyltransferases is differen-
tially regulated in subpopulations of IgA1-committed plasma
cells. In IgAN, it has been suggested that there might be wide-
spread downregulation of C1GalT1 and/or Cosmc, while others
suggest that excessive sialylation of GalNAc by ST2,6 is key in
preventing IgA1 O-galactosylation [24, 28–30]. It is, however,
highly unlikely that a generic defect in O-glycosylation of all
IgA1 molecules underlies the shift in the complement of serum
IgA1O-glycoforms in IgAN. Importantly,O-galactosylation of
serum IgD (which is also heavily O-galactosylated in humans)
is not altered in patients with IgAN, suggesting that the de-
creased O-galactosylation of IgA1 in IgAN is not a conse-
quence of an inherent generalized defect of expression or func-
tion of galactosylation enzymes in all B cells [31].

A pivotal role for circulating poorlyO-galactosylated IgA1
in the pathogenesis of IgAN is supported by two studies that
showed that the IgA eluted from mesangial deposits was
enriched for poorly O-galactosylated IgA1 glycoforms [18,
20]. Furthermore, higher serum levels of poorly O-
galactosylated IgA1 have been shown to be associated with
disease progression in IgAN [32].

Genetic control of IgA1 O-galactosylation

There is convincing evidence that genetic factors play a major
role in influencing the composition of circulating IgA1 O-
glycoforms in serum. Up to half of asymptomatic first-

degree relatives of patients with both familial and sporadic
IgAN have been found to have high levels of poorly O-
galactosylated IgA1. Studies of familial IgAN cohorts have
previously estimated the heritability of poorly O-
galactosylated IgA1 to be between 54 and 76%, and in a
recent study of healthy monozygotic and dizygotic twin pairs
using the classic twin model, the hereditability of poorly O-
galactosylated IgA1 was found to be as high as 80% [33–37].
In contrast, the same studies demonstrated that serum total
IgA levels had low heritability, demonstrating that O-
galactosylation of IgA1 is independent of serum IgA level.
In a recently published study, serum levels of poorly O-
galactosylated IgA1 were found to be associated with a non-
coding region ofC1GALT1, the gene responsible for encoding
the C1GalT1 galactosyltransferase. An association with a non-
coding region of the gene is consistent with changes in regu-
lation of C1GALT1, perhaps in specific microenvironments
such as the mucosa, rather than a generic change in the struc-
ture of C1GalT1 galactosyltransferase affecting all cells. This
association was not restricted to IgAN but was also found in
healthy subjects and cases of membranous nephropathy, in
both white and Chinese populations, supporting the view that
circulating levels of poorly O-galactosylated IgA1 are herita-
ble and influenced by genetic variation within the C1GALT1
gene [38]. These findings have been replicated in a separate
cohort [39]. Interestingly, given that IgAN is more prevalent
in Chinese compared to white populations, levels of circulat-
ing poorlyO-galactosylated IgA1 in Chinese IgAN cases were
lower than in white IgAN cases and indeed were comparable
to that seen in a healthy white population, and this
corresponded with the low frequency of the identified
C1GALT1 risk haplotype in the Chinese population. This ob-
servation raises questions on the pathogenic importance of
changes in IgA1 O-galactosylation in different ethnic popula-
tions, and whether other pathogenetic mechanisms also act at
variable levels.

Epigenetic control of IgA1 O-galactosylation is also
thought to be important in IgAN. MicroRNAs (miRNA) are
endogenous short, noncoding single-stranded RNAmolecules
that regulate gene expression. Upregulation and overexpres-
sion of a specific miRNA (miR-148b) in peripheral blood
mononuclear cells (PBMCs) has been associated with a de-
creased expression of C1GalT1 and production of poorly O-
galactosylated IgA1. Intriguingly, a binding site for miR-148b
has been identified within the recently identified C1GALT1
risk haplotype (1365G > A polymorphism or rs1047763)
supporting further a role for miR-148b in IgAN [40].

The origin of poorly O-galactosylated IgA1 in IgAN

Recognizing that poorlyO-galactosylated IgA1 plays a pivot-
al role in the pathogenesis of IgAN, the origin of the
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responsible B/plasma cells has been the subject of intensive
study. The current belief is that the originating B cells undergo
activation and programming in the mucosal immune system,
however, a significant proportion of the resultant plasma cells
eventually reside in the bone marrow rather than in the muco-
sa, possibly due to defective trafficking during B cell
maturation.

There are numerous lines of evidence supporting the mu-
cosal immune system as the source of poorlyO-galactosylated
IgA1-secreting B/plasma cells. Clinically, patients with IgAN
not infrequently develop visible hematuria after an upper re-
spiratory tract infection (termed synpharyngitic hematuria)
and this is associated with an increase in circulating IgA im-
mune complex levels [41].Mucosal IgA, unlike systemic IgA,
is typically polymeric, of low affinity, and relatively poorlyO-
galactosylated, the physicochemical characteristics typically
observed in serum and mesangial IgA in IgAN [42, 43].
IgAN has also been associatedwith diseases in whichmucosal
immune responses are abnormal, such as coeliac disease and
inflammatory bowel disease. Significantly, recent genome-
wide association studies in IgAN have identified susceptibility
loci in genes involved in intestinal mucosal immunity [44].

While the importance of the mucosal-kidney axis in IgAN
is being increasingly recognized, it remains unclear how alter-
ations in the mucosal immune system lead to an increase in the
complement of poorly O-galactosylated IgA1 glycoforms in
the serum in IgAN. The majority of circulating IgA1 is mo-
nomeric, heavily O-galactosylated and derived from bone
marrow-residing plasma cells. In contrast, mucosally residing
plasma cells synthesize IgA1 that is predominantly polymeric,
poorly O-galactosylated, and secreted onto mucosal surfaces,
with little, if any normally entering the circulation. It has been
postulated that the increase in poorly O-galactosylated serum
IgA1 glycoforms in IgAN is the result of misdirected secretion
of Bmucosal IgA^ into the circulation, rather than onto muco-
sal surfaces. Intriguingly, the numbers of plasma cells that
secrete Bmucosal IgA^ are reduced in the mucosa but numbers
are increased at systemic sites, in particular the bone marrow
in IgAN [45, 46]. It has therefore been suggested that this
misdirected secretion of Bmucosal IgA^ into the circulation
is the result of mucosal-derived B/plasma cells that have
mistrafficked to the bone marrow instead of homing back to
mucosal surfaces, resulting in release of Bmucosal IgA^ di-
rectly into the systemic circulation. While there is some evi-
dence for defective homing receptor expression by lympho-
cytes in IgAN, muchmore work is required to define precisely
the pattern of B cell trafficking in IgAN [47–50].

Dysregulated mucosal IgA production in IgAN

In parallel with the potential mistrafficking of mucosal B/
plasma cells, there is also evidence of a subtly dysregulated

mucosal immune response to antigen in IgAN. A number of
studies have examined immune responses to mucosal antigen
challenge in IgAN and the majority have reported exaggerated
systemic IgA responses tomucosal antigen challenge [51–56].
There has been increasing interest examining links between
alterations in gut permeability, the gut microbiome, and inter-
action with the mucosal immune system in IgAN, and these
studies have recently been reviewed [57, 58]. One mucosal
antigen that has attracted particular attention is gliadin, a com-
ponent of gluten. Mice subjected to a gluten-free diet from
birth, and then exposed to a gluten-rich diet, developed in-
creased IgA deposition, with anti-gliadin IgA found in the
serum and glomerular deposit eluates [59]. Furthermore, in a
recently developed transgenic mouse model that expresses
both human IgA1 and human CD89, and develops IgAN
spontaneously, in those fed a gluten-free diet for three gener-
ations, there was a reduction in mesangial IgA deposition and
glomerular inflammatory cell infiltration [60]. Exposure of
these mice to gluten led to increased mesangial IgA deposition
and formation of anti-gliadin IgA. In a clinical study of IgAN
patients given a gluten-free diet, reductions in hematuria, pro-
teinuria, IgA immune complex formation, and anti-gliadin
IgAwere observed, but there was no difference in the rate of
decline in renal function over 4 years of follow-up [61].
Further studies regarding potential links between dietary anti-
gens and IgA immune complex formation are needed.

The molecular basis of regulation of the mucosal immune
response, and in particular mucosal B cell programming, in
health, and IgAN are complex. Two events thought to be
critical are antigen-driven activation of the innate immune
response, in particular through ligation of Toll-like receptors
(TLR), and B-cell activating factor (BAFF) and a proliferation
inducing ligand (APRIL) signaling [62].

TLRs represent an important part of the early innate im-
mune response to invading microbial pathogens and endoge-
nous danger signals via recognition of a diverse range of
pathogen-associated molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs), such as bac-
terial lipopolysaccharide (LPS), RNAs, and DNAs [63, 64].
TLRs can be found on a diverse range of cells including mac-
rophages and dendritic cells, and the stimulation of TLRs
initiates signaling cascades that result in a variety of cellular
responses including the production of interferons (IFNs), and
pro-inflammatory and effector cytokines that direct the adap-
tive immune response. B cells also express a variety of TLRs
and specifically TLR-4, −9 and −10 have been implicated in
IgAN [62, 65, 66]. Expression of mRNA for TLR-4 in circu-
lating PBMCs is increased in children with IgAN and HSP
compared to healthy subjects [67]. Exposure to environmental
antigens results in an elevated level of TLR-9 and more severe
IgA-mediated injury in a murine IgAN model [62], and stim-
ulation of mucosal lamina propria B cells by a TLR-9 ligand
containing the CpG-oligodeoxynucleotide (CpG-ODN)
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bacterial DNA motif induces IgA production [68]. Besides
driving mucosal IgA production, TLR activation can also
modify glycosyltransferase activity through methylation of
the Cosmc gene resulting in reduced activity of C1GalT1,
favoring production of poorlyO-galactosylated IgA1 [66, 69].

BAFF is necessary for B-cell maturation and survival, and
levels of BAFF are elevated in many autoimmune diseases
and correlate with autoantibody concentration [70–74]. Mice
that overexpress BAFF have raised levels of polymeric IgA,
and evidence of mesangial IgA deposition [75]. Importantly,
this IgA deposition is dependent on activation of the mucosal
immune system. In human IgAN, serum BAFF levels are
elevated, and are associated with worse renal histopathologic
injury (increased mesangial hypercellularity, segmental
glomerulosclerosis, and tubular atrophy/interstitial fibrosis)
and higher serum creatinine [76]. Tonsillar mononuclear cells
(TMCs), which are part of the mucosal-associated lymphoid
tissue of Waldeyer’s ring, from IgAN patients exposed to
CpG-ODN produce high levels of BAFF and IgA, and this
production of IgA can be inhibited by blockade of BAFF
signaling [77]. APRIL, another member of the tumor necrosis
factor ligand superfamily (TNFSF), which shares common
receptors with BAFF, also plays an important role in B cell
maturation and survival, and is involved in generation of IgA-
secreting plasma cells. Genome-wide association studies in
IgAN have identified TNFSF13 (which encodes APRIL) as
a susceptibility locus [78], and this risk variant is associated
with high serum levels of IgA in patients with IgAN. Zhai
et al. showed that increased levels of APRIL were associated
with increased levels of poorly O-galactosylated IgA1 and a
more severe clinical presentation [69]. In a recent study, Muto
et al. demonstrated that tonsillar TLR9 and APRIL levels were
elevated and correlated with one another in IgAN, and that
TLR-9 stimulation induced APRIL expression in tonsillar B
cells [79].

Therapeutic manipulation of the mucosal immune
system and BAFF/APRIL signaling in IgAN

Taken together, available data suggests that mucosal program-
ming of B cells in IgAN, involving TLRs and BAFF/APRIL,
plays a critical role in the development of IgAN. There has,
not surprisingly, been great interest in targeting these path-
ways in IgAN using novel immunomodulatory strategies
(Fig. 2) [16].

The NEFIGAN study evaluated targeted immunosuppres-
sion of the mucosal immune system using enteric budesonide
[80]. This formulation of budesonide is a modified release
formulation, designed specifically to deliver budesonide to
the ileocecal Peyer’s patches, with minimal systemic exposure
and side effects due to first-pass metabolism. In this study, a
significant reduction in proteinuria was observed following

9 months of treatment supporting the hypothesis that the mu-
cosal immune system plays an important role in IgAN.

In contrast to targeted mucosal immunomodulation, sys-
temic B cell depletion with rituximab is not effective in
IgAN, reinforcing the importance of the mucosal immune
system in the pathogenesis of IgAN. In a small open-label
randomized controlled trial use of rituximab compared to con-
ventional therapy (without immunosuppression), resulted in
more adverse events, did not significantly improve renal func-
tion or proteinuria over 1 year and did not reduce serum levels
of poorly O-galactosylated IgA1 or anti-IgA1 IgG autoanti-
bodies, despite effective circulating B cell depletion [81].

Blisibimod and atacicept are currently being evaluated in
separate phase II studies in IgAN. Both agents target the
BAFF and APRIL signaling pathways. Blisibimod is a selec-
tive peptibody antagonist of BAFF. Atacicept is a fusion pro-
tein containing the extra-cellular, ligand-binding portion of
TACI (one of the receptors for BAFF and APRIL) and the
modified Fc portion of human IgG, and acts by blocking
BAFF and APRIL. Preliminary results from the BRIGHT-
SC study, a phase 2, randomized, double-blind, placebo-
controlled trial, suggest that subcutaneous blisibimod may
prevent worsening of proteinuria in IgAN (ClinicalTrials.gov
Identifier: NCT02062684).

Hydroxychloroquine is a potent inhibitor of TLR-9, and to
a lesser extent TLR-7 and TLR-8, and inhibits antigen pro-
cessing and presentation via alkalinization of proteasomes
[82, 83]. Given the proposed role of TLRs in the pathogenesis
of IgAN, a small paired case-control study has been conducted
which described benefit in terms of reduction in proteinuria in
treated IgAN patients at 24 weeks follow-up [84]. Further
validation in larger randomized studies with longer-term fol-
low-up will be required.

O-glycan-specific autoantibodies and circulating
immune complex formation in IgAN

As already eluded to, while the presence of poorly O-
galactosylated IgA1 is a key observation in IgAN, this finding
alone is not sufficient for the development of clinical disease.
In in vitro experiments utilizing IgA1 isolated from patients
with IgAmyeloma, humanmesangial cells can be activated by
the presence of poorly O-galactosylated polymeric IgA1 and
IgG/A immune complexes but not by monomeric IgA1 alone
[85]. It has therefore been proposed that the formation of cir-
culating immune complexes, perhaps triggered by O-glycan-
specific antibodies, is necessary for the development of the
glomerular injury, and that poorlyO-galactosylated IgA1mol-
ecules are the substrate for the formation of these immune
complexes (Fig. 3). The frequent observation of co-deposits
of IgG and occasionally IgM with IgA in the mesangium in
IgAN supports the generation of mixed immune complexes in
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IgAN [86–88]. Serum levels of O-glycan-specific antibodies
are associated with disease activity and progressive kidney
disease, further supporting the role of O-glycan-specific anti-
bodies in the pathogenesis of IgAN [89, 90]. It has recently
been reported that O-glycan-specific IgG antibodies in IgAN
contain a specific amino acid sequence, Y1CS3, in the heavy
chain variable region, compared with a Y1CA3 sequence in
isotype-matched IgG from healthy controls, that the S3 resi-
due is critical for binding to poorly O-galactosylated IgA1,
and that this substitution is not observed in germline DNA
and appears to be a result of a somatic mutation, perhaps
influenced by exposure to specific environmental antigens
[86, 91].

It has been hypothesized that changes in O-galactosylation
of the IgA1-hinge region could result in conformational
change of the molecule and exposure of novel epitopes within
the hinge region. These novel epitopes may then trigger spe-
cific O-glycan-specific autoantibody production, and/or be
recognized by serum antimicrobial antibodies that mistake
the IgA1 hinge regionO-glycans for bacterial or viral cell wall
glycoprotein structures (molecular mimicry). One intriguing
possibility is that during mucosal infections it is the increased
production of antimicrobial mucosal antibodies that heightens
the serum O-glycan-specific immunoreactivity and drives im-
mune complex formation in IgAN, resulting in a temporary
flooding of the glomeruli with IgA immune complexes and

short-lived severe glomerular inflammation with development
of synpharyngitic hematuria. It is also possible that antimicro-
bial mucosal antibodies generated at the time of a mucosal
infection include poorly galactosylated IgA1, contributing fur-
ther to both the pool of the target protein and O-glycan-spe-
cific antibodies in IgAN (Fig. 3).

In support of a pathogenic role for O-glycan-specific auto-
antibody production in IgAN, the strongest signal in genome-
wide association studies in IgAN localizes to susceptibility
loci on chromosome 6p within the human leucocyte antigen
region. These loci are important in determining antigen-
processing and presentation, and this association suggests that
a dysregulated adaptive immune response may play a role in
preferentially presenting poorly O-galactosylated IgA1 as a
self-antigen and in the permissive production of O-glycan-
specific antibodies in IgAN [44, 92].

Soluble CD89 and circulating immune complexes

Another proposed explanation for the excessive formation of
IgA1-containing immune complexes is an abnormal interac-
tion between circulating IgA1 and the myeloid IgA receptor
CD89 in IgAN [93]. CD89 is an Fc α receptor and exists in
membrane-bound and soluble (sCD89) forms. Two isoforms
of sCD89 have been described in vivo with the smaller

Mucosal
infec�on

Mesangial
deposi�on of
circula�ng
immune
complexes

Mesangial cell
ac�va�on

Secre�on of poorly
galactosylated IgA1
into the systemic

circula�on

IgA1 immune complex
forma�on

Complement
ac�va�on

Renal injury

TLR
ac�va�on

Mucosal B cell
priming

Mucosal immune system Systemic circula�on Kidney

Mucosal B cells
mis-home to
systemic sites

Genera�on of O-glycan-
specific an�bodies

Environmental/
dietary an�gens

Mucosal B-cell
matura�on

BAFFAPRIL 1

32

Fig. 2 A proposed pathogenic model for IgAN with a focus on potential
therapeutic targets. In this model, a dysregulated mucosal immune system
results in excessive mucosal IgA-committed B cell proliferation in re-
sponse to mucosal antigen exposure, mediated in part through excessive
BAFF and APRIL signaling. As a result of mis-homing of a proportion of
these mucosal B cells to systemic sites mucosal IgA is secreted directly
into the circulation resulting in elevated serum levels of polymeric, poorly
galactosylated IgA1. In susceptible individuals, O-glycan-specific

antibodies are formed with the consequent generation of circulating IgA
immune complexes, which have a propensity for mesangial deposition.
Glomerular accumulation of these IgA immune complexes results in
mesangial cell activation, and release of pro-inflammatory and pro-
fibrotic mediators, and complement activation. Within this model, there
are a number of potential targets (denoted by *) for novel therapeutic
agents, many of which are currently under evaluation in clinical trials in
IgAN
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isoform present in healthy subjects and IgAN, while the larger
isoform is only present in the serum of patients with IgAN. It
has been proposed that in IgAN, circulating polymeric IgA1-
containing immune complexes induce cleavage and shedding
of the extracellular domain of membrane-bound CD89,
forming high molecular weight IgA1-CD89 complexes that
are prone to mesangial deposition. Murine studies suggest that
activation of mesangial cells by IgA1-containing immune
complexes requires sCD89, a process that is also dependent
on tissue transglutaminase 2 [94–96]. Recent data suggests
that recurrent IgAN following transplantation is also associat-
ed with higher levels of IgA-sCD89 complexes [97]. There
have, however, been conflicting studies reporting that sCD89-
pIgA1 immune complexes are not specific or relevant to the
development of IgAN [98–100].

Mesangial deposition of immune complexes
and triggering of glomerular injury

Increased levels of poorly O-galactosylated IgA1 and the pro-
duction of O-glycan-specific antibodies result in the formation
of IgA1-containing immune complexes that, in susceptible indi-
viduals, deposit in the mesangium and trigger glomerular injury.
This deposition is thought to occur through a combination of
mesangial trapping and an increased affinity of poorly
galactosylated IgA1 for extracellular matrix components, such
as fibronectin and type IV collagen [101, 102]. Once deposited,
IgA1-containing immune complexes bind to and activate
mesangial cells, leading to a wide range of molecular events,
including the local production of cytokines, such as IL-6, tumor
necrosis factor-α and transforming growth factor-β, promoting
an inflammatory response, mesangial cell proliferation, extracel-
lular matrix deposition, and in more severe cases glomerular
crescent formation, driving glomerular and tubulointerstitial fi-
brosis (Fig. 4). These pathogenic processes correspond closely

to the histopathological features identified in the Oxford classi-
fication, which are independent predictors of developing pro-
gressive renal disease in IgAN, namely mesangial
hypercellularity (M), endocapillary hypercellularity (E), seg-
mental glomerulosclerosis (S), and tubular atrophy/interstitial
fibrosis (T), and as recently reported in an update to the original
classification, glomerular crescent formation (C) [103, 104].
Mesangial cell IgA binding triggers the release of pro-
inflammatory and chemotactic mediators, which act locally in
the glomerulus, leading to mesangial cell proliferation (M) and
recruitment of inflammatory cells into the glomerulus (E), occa-
sionally resulting in crescent formation (C). These mediators
also, in turn, alter podocyte gene expression and glomerular
permeability, causing filtration of IgA immune complexes,
podocyte damage (glomerulopodocytic crosstalk), and segmen-
tal glomerulosclerosis (S) [105–108]. In addition to effects with-
in the glomerulus, glomerular-derived cytokines, along with fil-
tered pIgA1, are capable of activating proximal tubule epithelial
cells (glomerulotubular crosstalk), driving tubulointerstitial fi-
brosis (T) [109].

Recognition of mesangial IgA deposits by resident glomer-
ular cells is incompletely understood. The best-characterized
receptor for mesangial IgA is the transferrin receptor (CD71),
which is expressed by mesangial cells. CD71 is a multi-ligand
receptor that has been shown to bind polymeric IgA1 [110].
CD71 is overexpressed on the surface of proliferating human
mesangial cells in IgAN, and co-localization of CD71 with
IgA1 immune deposits has been demonstrated in kidney biop-
sies [111]. Furthermore, the binding of poorlyO-galactosylated
IgA1 to CD71 appears to further enhance the expression of
CD71 on proliferating mesangial cells, creating an
autoamplification loop for self-perpetuating glomerular injury
[112]. It has been proposed that IgA binding to CD71 in IgAN
also involves CD89, in that IgA1-sCD89 complexes are capa-
ble of binding to CD71 and activating mesangial cells [113].
However, glomerular deposition of CD89 has not been
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Fig. 3 Formation of circulating IgA-immune complexes in IgA nephrop-
athy. Polymeric poorly galactosylated IgA1 molecules form the substrate
for immune complex formation. O-glycan-specific antibodies: either IgG
and IgA1 autoantibodies, or cross-reacting anti-microbial antibodies, bind
to the exposed neo-epitopes within the poorly galactosylated IgA1 hinge

region. An alternative hypothesis for the formation of circulating IgA
immune complexes is that soluble CD89 (sCD89) is shed from myeloid
cells in response to polymeric IgA1, and form large circulating IgA1-
sCD89 immune complexes
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conclusively demonstrated in IgAN. Importantly, there is strong
evidence that CD71 is not the only mesangial cell IgA receptor,
however, none of the other well-characterized IgA receptors,
including CD89, polymeric immunoglobulin receptor, and the
hepatic asialoglycoprotein receptor, are expressed by human
mesangial cells in health or in IgAN and the nature of this
receptor(s) is not known [114].

Most studies examining renal injury in IgAN have focused
on the effects of IgA on mesangial cell biology, however, with
damage to the glomerular basement membrane, there is emerg-
ing evidence that IgA immune complexes can enter the urine
and directly interact with other cells within the nephron [115].
Data supports a direct interaction between filtered IgA immune
complexes and podocytes and proximal tubule epithelial cells
[105, 109], resulting in podocyte injury and loss, and epithelial–
mesenchymal transformation with consequent tubulointerstitial
scarring, respectively. These effects appear to be specific to IgA
immune complexes generated in IgAN and may be related, at
least in part, to the poorly O-galactosylated hinge region of the
IgA1 molecule. Understanding how filtered IgA immune com-
plexes interact with podocytes and proximal tubule epithelial
cellsmay help us understandwhy some patients with IgANhave
mesangial deposition only, while others display marked
podocyte injury and tubulointerstitial scarring, and why the de-
gree of mesangial deposition does not correlate with the severity
of ensuing renal inflammation and injury.

With the advent of a plethora of tyrosine kinase inhibitors,
there is increasing interest in defining the intracellular

biochemical pathways activated by IgA immune complexes in
the kidney in IgAN. Spleen tyrosine kinase (Syk) signaling is of
particular interest in IgAN as it is not only active in mesangial
and proximal tubule epithelial cells but is also involved in
immunoreceptor signaling in B cells and immunoglobulin pro-
duction. Glomerular Syk phosphorylation is increased in rodent
models of proliferative glomerulonephritis and correlates with
serum creatinine and histological features of disease activity
[116]. Inhibiting Syk signaling reduces pro-inflammatory cyto-
kine production, tissue inflammation and damage in both in vivo
and in vitro models of kidney injury [117, 118]. Kim et al. dem-
onstrated a clear upregulation of glomerular phospho-Syk levels
in IgAN [119]. In parallel, Syk inhibition was able to reduce the
proliferative and pro-inflammatory effects of IgA immune com-
plexes on mesangial cells in vitro, supporting the testing of Syk
inhibition as a treatment for IgAN. SIGN (Syk Inhibitor in
GlomeruloNephritis) is a currently open phase 2 randomized,
double-blind, placebo-controlled trial that is examining the effi-
cacy of fostamatinib, an oral selective Syk inhibitor, in IgAN
(ClinicalTrials.gov Identifier: NCT02112838).

The complement system in IgAN

There is strong evidence that glomerular injury in IgAN is
associated with activation of the complement system [120].
Glomerular deposition of complement component 3 (C3) is
commonly observed in kidney biopsies in the same
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Fig. 4 Pathological consequences of IgA immune complex deposition in
IgAN. IgA1 immune complexes deposit in the mesangium and trigger
mesangial cell activation, resulting in release of pro-inflammatory,
chemotactic, and pro-fibrotic mediators. Released soluble mediators re-
sult in mesangial cell proliferation, extracellular matrix (ECM) synthesis,
recruitment of inflammatory cells, and in severe cases, glomerular cres-
cent formation. Filtered mesangial cell-derived mediators cause podocyte
damage (glomerulopodocytic crosstalk) and with damage to the
permselective glomerular basement membrane filtered IgA immune

complexes compound podocyte injury. Filtered mesangial cell-derived
mediators and IgA immune complexes are also capable of injuring prox-
imal tubule epithelial cells (PTECs), promoting tubulointerstitial inflam-
mation and scarring (glomerulotubular crosstalk). These pathogenic pro-
cesses result in mesangial hypercellularity (M), endocapillary
hypercellularity (E), segmental glomerulosclerosis (S), tubular atrophy/
interstitial fibrosis (T), and crescent formation (C), pathological features
that define the Oxford classification and have been shown to be indepen-
dent predictors of outcome in IgAN
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distribution as IgA. The presence of C3, coupled with the near
ubiquitous absence of C1q, is consistent with activation of the
lectin and/or alternative pathways. Non-classical pathway
complement activation is supported by the glomerular depo-
sition of alternative pathway (properdin and factor H) [121,
122] and lectin pathway (mannan-binding lectin (MBL),
MBL–associated serine proteases 1 and 2, and C4d)
[123–125] components in IgAN. Furthermore, the presence
of lectin pathway components C4d [126–128] and MBL
[129] have been associated with increased disease activity
and subsequent development of ESRD.

Genome-wide association studies in IgAN have identified
a protective locus at chromosome 1q32 corresponding to de-
letion of CFHR3,1 (CFHR3,1Δ). CFHR3,1 encodes comple-
ment factor H-related proteins 3 and 1, regulatory proteins that
compete with factor H for the binding of C3b. CFHR3,1Δ
leads to uninhibited binding of C3b by factor H and more
effective inhibition of the alternative pathway, hence provid-
ing a protective effect against alternative pathway activation in
IgAN. Indeed, CFHR3,1Δ has been associated with higher
levels of circulating complement factor H and a reduced level
of complement activation split product C3a [130]. In addition,
levels of circulating CFH correlate positively with circulating
C3 levels and negatively with mesangial C3 deposition [130].
Histopathologically, CFHR3,1Δ is associated with reduced
tubulointerstitial injury according to the Oxford classification
criteria [131]. However, the precise molecular mechanism for
this intriguing association in IgAN remains to be elucidated. A
variable frequency of CFHR3,1Δ with opposing effects on
different immune-complex associated diseases (CFHR3,1Δ
is also protective against age-related macular degeneration
but increases susceptibility to systemic lupus erythematosus
and atypical hemolytic uremic syndrome) suggests that
balancing selection exists in the expression of this allele, a
hypothesis that remains to be tested.

Given the convincing evidence for complement activation
in IgAN and the emerging availability of agents that selective-
ly block complement activation, investigators are beginning to
explore the utility of complement inhibition in IgAN.
Eculizumab, a recombinant, fully humanized hybrid IgG2/
IgG4 monoclonal antibody against complement C5, prevents
the formation of membrane attack complex and has been
shown to be effective in atypical hemolytic uremic syndrome
and C3 glomerulopathy, glomerular diseases resulting from
dysregulation of the complement system. There have been
two case reports of eculizumab use in rapidly progressive
IgAN. In both cases, eculizumab was associated with tempo-
rary benefit in stabilizing renal function or proteinuria, but in
both cases, there was significant disease progression once
eculizumab was discontinued [132, 133]. These case reports
raise the possibility of complement inhibition as a potential
future treatment strategy in IgAN. One agent under develop-
ment is OMS721, a monoclonal antibody targeting mannan-

binding lectin-associated serine protease-2 (MASP-2), the ef-
fector enzyme of the lectin complement pathway. Early data in
IgAN suggest that OMS721, and inhibition of the lectin path-
way, reduces proteinuria in IgAN. Further data are keenly
awaited.
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Conclusions

There has been significant progress in our understanding of
IgAN over the past decade, and key pathogenic changes have
been identified. Central to our current understanding of the
pathogenesis of IgAN is a greater awareness of the importance
of IgA immune complexes and the role poorly O-
galactosylated IgA1 and O-glycan-specific antibodies play in
their formation. Mesangial immune complex deposition leads
to mesangial cell proliferation and production of mesangial-
derived mediators that drive podocyte and tubulointerstitial
injury via mesangial-podocyte-tubular crosstalk. Critical
questions, however, remain unanswered - the precise origins
of poorly O-galactosylated IgA1 and O-glycan-specific anti-
bodies are incompletely understood, as are the factors and
mechanisms determining the nephritogenic potential of
IgA1-containing immune complexes. Further advances in
our understanding of the pathogenesis of IgAN will be crucial
in the development of diagnostic and prognostic markers, and
novel therapeutics to ameliorate disease progression.
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